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Abstract: Track irregularities directly affect the quality and safety of railway vehicle operations. 

Quantitative detection and real-time monitoring of track irregularities are of great importance. 

However, due to the frequent variable vehicle speed, vehicle operation is a typical non-stationary 

process. The traditional signal analysis methods are unsuitable for non-stationary processes, mak-

ing the quantitative detection of the wavelength and amplitude of track irregularities difficult. To 

solve the above problems, this paper proposes a quantitative detection method of track irregularities 

under non-stationary conditions with variable vehicle speed by order tracking analysis for the first 

time. Firstly, a simplified wheel–rail dynamic model is established to derive the quantitative rela-

tionship between the axle-box vertical vibration and the track vertical irregularities. Secondly, the 

Simpson double integration method is proposed to calculate the axle-box vertical displacement 

based on the axle-box vertical acceleration, and the process error is optimized. Thirdly, based on the 

order tracking analysis theory, the angular domain resampling is performed on the axle-box vertical 

displacement time-domain signal in combination with the wheel rotation speed signals, and the 

quantitative detection of the track irregularities is achieved. Finally, the proposed method is vali-

dated based on simulation and field test analysis cases. We provide theoretical support and method 

reference for the quantitative detection method of track irregularities. 
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1. Introduction 

Track irregularity is one of the main reasons for vibration in railway vehicle opera-

tion [1]. When these vibrations are unacceptable, several problems will follow, such as 

riding comfort reduction, running stability decline, wheel–rail noise pollution, fatigue 

strength failure of components, etc. [2–5]. Therefore, track irregularity should be con-

trolled and managed as much as possible to create a better vehicle operating environment. 

The current hot research topic of track irregularity can be summarized as the follow-

ing aspects: ① Track infrastructure evolution—due to the coupling effect of temperature, 

humidity, load, and other factors, the railway infrastructure undergoes the evolution of 

physical and chemical properties. The track infrastructure presents overall or local cumu-

lative deformation, which affects the track irregularity state [6–8]. ② Track-vehicle inter-

action—taking the track and vehicle as a whole system, the long-term interaction between 

the track and the vehicle will affect the track geometry. The deterioration of track irregu-

larity will make the vehicle system produce a more significant response, accelerating the 

deterioration of track and vehicle components [9–11]. ③ Track management and mainte-

nance—however, before the causing mechanisms of the problem mentioned above are 

thoroughly clarified, and some basic solutions are proposed, scientifically managing all 
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kinds of railway (high-speed, heavy-haul, urban subways, etc.) operating lines and main-

taining a safe, stable, and reliable railway vehicle service environment is a crucial problem 

[12,13]. 

The track management and maintenance prerequisite is to obtain actual track irreg-

ularity state data. The selection of measurement methods greatly affects the authenticity 

of the results. ① Static measurement—is directly measured by hand or using some small 

devices to obtain the track irregularity state data for a short distance. Since the force acting 

on the track by the measuring device is relatively small, the elastic deformation of the rail, 

bed, roadbed, etc., is negligible. The measured track irregularity data is geometric irregu-

larity at this time, which is called static irregularity. ② Dynamic measurement—however, 

when the vehicles are running on the track, the enormous dynamic load can cause com-

prehensive elastic deformation of the rail, bed, and roadbed, called dynamic irregularity. 

Strictly speaking, compared with static irregularity, dynamic irregularity is more reflec-

tive of the actual vehicle working environment because it includes both the geometric ir-

regularity before loading and track elastic deformation after loading [14–16]. Obviously, 

dynamic irregularity can not be obtained by direct measurement. Currently, two main 

indirect methods for detecting dynamic vertical track irregularity are as follows: the chord 

measurement method and the inertial reference method. 

① The chord measurement method—takes the fixed chord length as the measure-

ment reference and equal interval sampling is used to obtain the chord measurement 

value of each sampling point. Its mathematical calculation model is as follows [17]: 

( ) ( )
( ) ( ) 

2

pkhpkh
khky

++−
−=  (1) 

where k is the mileage position of the sample point, y(k) is the chord measurement value 

at the mileage position k, p is the half chord length, and h(k), h(k − p), h(k + p) are the vertical 

irregularity amplitudes of the track at the mileage positions k, k − p, k + p. 

Performing the discrete Fourier transform to Equation (1), the transfer function H(ω) 

can be expressed as: 
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where ω is the spatial angular frequency (ω = 2π/λ), and λ is the track irregularity wave-

length). 

As shown in Equation (2), H(ω) is the transfer function related to the spatial angular 

frequency, independent of the vehicle running speed and time. Therefore, there is no non-

stationary problem. However, the value of the transfer function H(ω) is varied with ω in 

the range [0, 2] and cos(ωp) is in the range [−1, 1] [18]. Especially when the value of the 

transfer function H(ω) is close to 0, it is easy to be disturbed by the noise signal, and the 

track irregularity state near its corresponding wavelength is difficult to detect, leading to 

a lack of stability in the measurement accuracy. In addition, the chord measurement 

method is only applied to a specific rail inspection vehicle. With the increasing growth of 

rail transportation tasks, the free time of rail inspection vehicles for line inspection is in-

sufficient, and it is impossible to achieve real-time monitoring. Hence, the chord measure-

ment method’s shortcomings in the economy and efficiency are gradually exposed [19–

21]. 

② The axle-box on-board measurement method—due to the small elastic defor-

mation caused by the interaction between the wheel and rail, the wheel and rail can be 

considered rigid bodies, and there is no suspension system between the wheelset and axle-

box. All the track irregularity can be reflected in the axle-box vibration signal [22–25]. 

Therefore, evaluating the track irregularity state by collecting axle-box vibration infor-

mation online has become a hot research topic in recent years. Kawasaki et al. obtained 
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the acceleration vibration features of an axle-box by establishing a rail–vehicle system sim-

ulation model and then judged the track irregularity state through the features identifica-

tion [26]; M. Bocciolon et al. developed a real-time track condition monitoring technique 

by calculating the mean square value of axle-box vibration acceleration to analyze the 

track irregularity state [27]; Yang et al. applied wavelet transform theory to eliminate the 

axle-box vibration acceleration trend term, performing the double integration to the accel-

eration signal and evaluating the track irregularity state based on the obtained axle-box 

displacement signal [28]; Ning et al. combined the improved empirical mode decomposi-

tion (EMD) with Cohen’s kernel, and applied it to the analysis of the axle-box non-station-

ary vibration signal to achieve online monitoring of the track irregularity fault location 

[29]; Zhang et al. designed a refined system transfer function identification test method 

by combining the iterative analysis of simulation and test to reproduce the track irregu-

larity based on the axle-box vibration acceleration [30]; Sun et al. used the inertial refer-

ence method and digital filtering method to analyze the axle-box vibration acceleration of 

high-speed trains to achieve online monitoring of track irregularity [17]. However, the 

above studies were limited in solving the fundamental problem of non-stationary vibra-

tion signals, and have not been able to achieve quantitative detection of the essential pa-

rameters of the track irregularity. 

This paper proposes a complete set of quantitative detection methods for track irreg-

ularities under variable vehicle speed conditions. In Section 1, a brief overview of the cur-

rent research about track irregularities is given. In Section 2, a simplified wheel–rail dy-

namics model is established, and the quantitative relationship between axle-box vertical 

vibration frequency, amplitude, and track irregularity is demonstrated by theoretical der-

ivation. In Section 3, the axle-box vertical vibration displacement calculation method 

based on Simpson time-domain double integration is proposed, and the improved Ho-

drick–Prescott decomposition method is used to optimize the process error. Section 4 pro-

poses the quantitative detection method of track vertical irregularity under vehicle varia-

ble speed conditions based on the order tracking analysis theory. In Sections 5 and 6, the 

correctness of the above quantitative detection method is verified based on simulation and 

field test cases, respectively. The conclusion is given in Section 7. The overall technical 

route is shown in Figure 1. 

 

Figure 1. The overall technical route. 

2. The Quantitative Relationship between the Axle-Box Vertical Vibration and  

Vertical Track Irregularity 

To derive the quantitative relationship between the axle-box’s vertical vibration and 

vertical track irregularity, a simplified vertical wheel–rail dynamics model is established, 

as shown in Figure 2. Due to the minimal elastic deformation caused by the interaction 

between the wheel and rail, the dynamic model can be considered a rigid body [31,32]. 

Because there is no suspension system between the wheelset and axle-box, the track irreg-

ularity characteristics can be reflected in the vibration signal of the axle-box. 
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Figure 2. Vertical wheel–track dynamic model. 

In Figure 2, v is the vehicle running speed, m1 is the unsprung mass, m2 is the mass of 

the steel rail, k1 is the elastic contact stiffness between the wheel and rail, k2 is the vertical 

stiffness of the rail, c2 is the vertical damping of the rail, z1 is the vertical displacement of 

the wheelset/axle-box, z2 is the vertical displacement of the steel rail, and u is the vertical 

displacement excitation. The directions to the right and down are positive here. 

The motion differential equation of the above dynamic model is expressed as: 
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When the initial displacement and velocity are both 0, the Laplace transform of Equa-

tion (3) can be written as: 
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(4) 

The irregularity excitation can be seen as a linear superposition of multiple harmonic 

waves with different wavelengths, amplitudes, and phases. The irregularity excitation u(t) 

of a single harmonic, as shown in Figure 3, can be expressed as a cosine function: 

( ) ( ) tatu −= cos1
2

1
  (5) 

where a is the wave depth of the irregularity and ω is the time angular frequency. 

 

Figure 3. Single harmonic irregularity excitation. 

By the Laplace transformation, Equation (5) can be rewritten as: 

( )
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Then, to find the transfer function of the responses z1 and z2 corresponding to the 

irregularity excitation u, assume the following relationship: 
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where z1(s) and z2(s) are the Laplace transforms corresponding to z1(t) and z2(t), and Hz1(s) 

and Hz2(s) are the transfer functions corresponding to the irregularity excitation u(s) in 

response to z1(s) and z2(s). 

By combining Equations (4) and (7), the transfer function Hz1(s) can be solved: 
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Then, the quantitative relationship between the axle-box vertical vibration accelera-

tion and the vertical irregularity excitation can be expressed as: 

( ) ( ) ( ) ( )susHsszssz z  
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Then, the vertical vibration acceleration and displacement of the axle-box can be ex-

pressed as: 
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Solving the inverse Laplace transformation of Equations (10) and (11), the axle-box 

vertical vibration acceleration and displacement can be obtained: 

( ) ( ) ( )tHatz z  cosj
2

1
1

2

1 =  (12) 

( ) ( ) ( ) tHatz z −= cos1j
2

1
11

 (13) 

Comparing the oscillation characteristic terms in Equations (12) and (13), the ampli-

tude of the vertical acceleration of the axle-box is ω2 times the vertical displacement with 

a phase difference π. According to the vertical displacement z1(t) of the axle-box and the 

frequency response function Hz1(jω), the vertical track irregularity excitation can be calcu-

lated, as shown in Equations (7) and (8). With the vehicle running speed v known, the 

vertical vibration frequency of the axle-box can be used to estimate the wavelength of the 

track irregularity. The vertical vibration amplitude D of the axle-box acceleration or dis-

placement can be used to estimate the wave depth of the track irregularity. 

3. Time-Domain Track Vertical Irregularity Displacement Excitation 

Equation (12) can be written as: 

( ) ( ) 01 cos QtDtz ++=   (14) 

where D is the amplitude of axle-box vertical vibration acceleration, which is a constant 

factor related to ω1, ω2, c2, k1, k2, and ω. ψ is the phase and Q0 is the constant term. 
Then, the vertical vibration velocity and displacement of the axle-box can be obtained 

by the first and second times integrals of Equation (14), expressed as: 

( ) ( ) 101 sin QtQt
D
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

  (15) 
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 (16) 

Comparing the oscillation characteristic term in Equations (15) and (16), the ampli-

tude of the vertical acceleration of the axle-box is ω2 times the vertical displacement with 
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a phase difference π. This characteristic is entirely consistent with the conclusion in Sec-

tion 2, which indicates that it is theoretically possible to use the double integration method 

to calculate the vertical oscillation displacement of the axle-box. Then, combining the fre-

quency response function Hz1(jω), the track irregularity excitation can be calculated. 

3.1. Improved Simpson Time-Domain Integration Method 

There are two methods for calculating displacement by using integrated acceleration: 

the frequency-domain method and the time-domain method. However, the railway vehi-

cle speed in operation frequently changes. The vibration signal is the typical non-station-

ary signal. The traditional discrete Fourier transform will lead to frequency ambiguity in 

the frequency domain, leading to serious estimation errors. Therefore, the frequency do-

main integration method is unsuitable for analyzing and processing this situation. How-

ever, the time-domain integration can avoid frequency distortion, frequency ambiguity, 

and other problems caused by discrete Fourier transform [33,34]. The Simpson integral 

formula can be expressed as: 
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where a and b represent the lower and upper limits of the integration interval, respec-

tively. 

Substituting the discrete acceleration time series a(n), (n = 1, 2, …, N0) into Equation 

(18) can obtain the velocity time series v(n), (n = 1, 2, 3, …, N0 −1). 
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Then, substitute the discrete acceleration time series v(n), (n = 1, 2, …, N0−1) into Equa-

tion (19) to obtain the displacement time series s(n), (n = 1, 2, 3, …, N0−2). 
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where Δt is the time interval. 

Furthermore, the integral remainder error of Simpson formula can be expressed as: 

  ( ) ( )baηηf
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Equation (20) shows that the residual error of the Simpson formula is related to (b − 

a). The absolute value of the error decreases as the integration range [a, b] between adja-

cent points decreases. Therefore, we propose to add a nonlinear interpolation to the initial 

signal before integration to reduce the time interval of the signal and, thus, improve the 

integration accuracy. This idea is validated in Section 3.3. 

3.2. Trend Term Decomposition and Elimination 
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In addition to the integration errors, the errors caused by the trend term should be 

given more attention. Since the initial value of the acceleration signal is affected by uncer-

tain factors during the acquisition process, the signal is often accompanied by phenomena 

such as zero drift and noise interference. This error information accumulates and ampli-

fies during integration, affecting the calculation results. Removing these trend terms is a 

critical issue in time-domain integration operations. 

The main trend term elimination methods are polynomial fitting, CEEMDAN empir-

ical mode decomposition, and Hodrick–Prescott trend decomposition. The research on 

polynomial fitting and CEEMDAN empirical mode decomposition is quite mature, and 

their theories and methods can be seen in references [35–37], which do not need to be 

elaborated further. This paper will focus on the theory and application of the Hodrick–

Prescott trend decomposition method and compare it with the above two methods to ver-

ify its correctness. 

Assuming there is a trend term g(n) and a residual term c(n) in the signal a(n): 

( ) ( ) ( )ncngna +=  (21) 

where a(n) represents the initial signal, g(n) represents the trend term, and c(n) represents 

the residual term, which contains the fluctuation and noise terms. 

Then, establish a loss function, which is expressed as: 
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where λ is the smoothing factor. 

As shown in Equation (22), the first term on the right is essentially the principle of 

least squares, characterizing the closeness between the initial signal a(n) and the trend 

term g(n). The second term on the right can be viewed as a second-order difference equa-

tion for g(n), i.e., Δg(n) − Δg(n − 1) = [g(n + 1) − g(n)] − [g(n) − g(n − 1)], characterizing the 

smoothness of the desired trend term g(n). When the loss function M takes the minimum 

value, it means that the resulting trend term g(n) is both closest to the trend of the initial 

signal a(n) and sufficiently smooth.  

Calculate the first order derivatives of Equation (22) to g(1); g(2); …, respectively, and 

set them equal to 0: 
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It can be expressed as matrix form: 

FGCGA ==−  (24) 

where A is the initial signal vector, G is the trend term vector, C is the residual term vector, 

and F is the coefficient matrix, expressed as Equation (25). 
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Therefore, the formula for the trend term vector G can be expressed as: 

( ) 1−
+= IFAG   (26) 

where I is the unit vector. 

As shown in Equation (26), the trend term g(n) can be separated from the initial signal 

a(n) as long as the smoothing factor λ takes an appropriate value. When the loss function 

M is a number very close to 0, the optimal smoothing factor λ can be expressed as: 
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where σc2 is the variance of the residual term c(n) and 
2

2gΔ


is the variance of the second-

order difference of the trend term g(n). 

Since the trend term g(n) and the residual term c(n) are unknown before the calcula-

tion, the smoothing factor λ is also unknown. Here, we propose an optimal smoothing 

factor λ search method, as the following technical route: 

(a) consider the smoothing factor as a coefficient to be determined and set the initial 

value as λj (j = 0); 

(b) substitute λj into Equation (26) to separate the trend term gj(n) and the residual term 

cj(n); 

(c) calculate the variance 
2

2gΔ


of the second-order difference of the trend term gj(n) and 

the variance σcj 2 of the residual term cj(n), respectively; 

(d) calculate the equivalent error εj , εj = |−λjσΔgj2/σcj2| − 1; 

(e) reset λj = λj + jΔλ (j = 1, 2, …) and repeat the steps (a) to (d); 

(f) find λj corresponding to the smallest equivalent error εj, which is the optimal smooth-

ing factor λopt. 

In addition, it is worth noting that the optimal smoothing factor λopt determined by 

the above technical route must be based on certain assumptions, namely that the trend 

term g(n) and the residual term c(n) are subordinate to independent normal distributions. 

Meanwhile, the second-order differential equation for g(n) in Equation (22) shows that the 

determination of the smoothing factor is closely related to the sampling time interval. 

Therefore, it has been proposed that the smoothing factor should be corrected according 

to the sampling frequency (or sampling interval). 

However, the correction method is controversial, and the formula has no exact deri-

vation and proof [38–40]. In this paper, a series of simulated signals were cyclically tested. 

The fitted trend curves were analyzed for different values of the smoothing factor. It was 

proposed that the fitted trend curve for a vibration signal with a sampling frequency of 

5120 Hz and λ = 1.47 × 1012 has the smallest error with the simulated trend curve, as shown 

in Figure 4. 
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Figure 4. Searching for the optimal smoothing factor. 

3.3. Validation and Analysis 

To verify the correctness of the above time-domain integration method and trend 

decomposition method, assume a simulation vibration acceleration signal a(t) and use the 

above methods to calculate the vibration displacement. The simulation signal a(t) is su-

perimposed by five signals. a1(t), a2(t), and a3(t) represent the vibration acceleration gener-

ated by short, medium, and long wave periodic track irregularities features, respectively: 

( ) ( ) ( ) ( ) ( ) ( )tatatatatata 54321 ++++=  (28) 

where a1(t) = 30·cos(2π·50t + 60) and a2(t) = 10·cos(2π·6t + 120); a3(t) = 2·cos(2π·2t + 201). 

Then, to express the non-stationary characteristics, assume the signal a(t) contains an 

initial trend term a4(t): 
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Finally, add a Gaussian white noise signal a5(t) into the signal a(t); its mean is 0, and 

its variance is 100. Perform the analogue-to-digital conversion to the analogue signal and 

obtain the discrete signal a(n). The sampling time is 2 s and the sampling frequency is 500 

Hz. 

The three trend term decomposition methods are used for the analysis, as shown in 

Figure 5. All three methods as a whole can fit the trend term well. However, the polyno-

mial fit decomposition method has a poor fit superiority at the breakpoints of the segmen-

tation function (e.g., 0 s, 1.0 s). The CEEMDAN empirical modal decomposition method 

has serious trend errors at the end, caused by the inherent defect of the empirical modal 

decomposition class of methods (i.e., the endpoint error effect). However, the Hodrick–

Prescott decomposition method has the most stable overall performance. This is because 

the Hodrick–Prescott decomposition method contains both the least squares fitting idea, 

which makes the fitted trend term closest to the initial signal, and the fluctuation term 

constraint, which makes the fitted trend term smooth enough. 

  
(a) (b) 
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(c) (d) 

Figure 5. Fitting of the trend term. (a) Time interval 0 s~2 s (overall); (b) Time interval 0 s~0.2 s 

(partial); (c) Time interval 0.9 s~1.1 s (partial); (d) Time interval 1.8 s~2.0 s (partial). 

As shown in Figure 6, both the single-segment and segmented trend curves show 

good adaptability. Therefore, the Hodrick–Prescott decomposition method is also used in 

the subsequent integration calculation for trend elimination of the curves before and after 

integration. 

 

Figure 6. Decomposition of trend item. 

Then, as shown in Equations (17)–(19), the Simpson double integration method can 

be used to calculate the axle-box vertical displacement based on the acceleration signal. It 

is necessary to perform three trend term eliminations on the signal before the first integra-

tion, before the second integration, and after the second integration. Taking the simulation 

acceleration signal a(t) as an example, the results obtained by the first and second direct 

Simpson integrations are shown in Figure 7 for the velocity signal and the displacement 

signal, respectively. The time-domain integration process produces the trend terms, and 

the velocity and displacement signals after removing the trend term have a reduced error 

with the theoretical signal. 

  
(a) (b) 

Figure 7. Simpson time-domain integral calculation. (a) Speed signal; (b) Displacement signal. 

Meanwhile, since the error is related to the size of the integration region [a, b] be-

tween adjacent points, theoretically, the error is smaller when [a, b] is smaller. We propose 
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to reduce the sampling interval of the signal by adding a spline interpolation step before 

the integration and then improve the accuracy of the time-domain integration. As shown 

in Figure 8, the Simpson integration error can indeed be effectively reduced by reducing 

the sampling time interval of the signal, improving the accuracy of the time-domain inte-

gration.  

  
(a) (b) 

Figure 8. Compare the calculation results of interpolation and non-interpolation before integration. 

(a) Speed signal; (b) Displacement signal. 

To quantitatively evaluate the accuracy of the interpolated and uninterpolated meth-

ods before time-domain integration, the degree of agreement between the theoretical dis-

placement signal and the displacement signal obtained by integration is reflected by cal-

culating the correlation index R. The closer the value of R is to 1, the higher the accuracy 

of the integration calculation [41]. The correlation index R is 0.7343 for the displacements 

calculated directly without interpolation before integration, while the correlation index R 

is 0.9210 for the displacements calculated after interpolation before integration, and the 

correlation is significantly improved. 

In summary, it is theoretically possible to calculate the axle-box vertical displacement 

signal by double integration of the axle-box vibration acceleration. Considering that the 

measured signal is non-stationary, the time-domain integration method should be used, 

and the effects of integration error and trend term error should be focused on. Finally, the 

time-domain track vertical irregularity displacement excitation can be calculated accord-

ing to the axle-box vertical displacement and the frequency response function H(ω). 

4. Quantitative Detection of Vertical Track Irregularities Based on the Order Tracking 

Analysis Theory 

Railway vehicles always operate at variable speeds, causing the axle-box vertical vi-

bration acceleration to become the typical non-stationary signal. Hence, the time-domain 

track vertical irregularity displacement excitation calculated according to the method in 

Section 3 is the non-stationary signal. Traditional signal processing methods cannot detect 

the wavelength and amplitude of track irregularities from non-stationary signals. But, if 

these time-domain signals can be converted into the spatial domain signal, the problem of 

non-stationary signals will be completely solved. Considering the wheel as the rotating 

mechanical component, we propose the order tracking analysis theory for the non-station-

ary signal processing for the first time. This section will focus on the detailed derivation 

and verification of applying this theory in the quantitative detection of vertical track ir-

regularities. 

4.1. Introduction and Derivation of Order Tracking Analysis Theory 

Order tracking analysis is an effective method for extracting fault features under var-

iable speed conditions. The key is to measure and analyze the wheel rotational speed or 

angular velocity, then resample the time-domain signal non-uniformly by using an equal-

angle sample method. Therefore, the non-stationary signal in the time-domain is trans-

formed into a stationary signal in the angular domain (spatial domain). Finally, the 



Sensors 2024, 24, 3804 12 of 30 
 

 

resampled angular-domain signal is analyzed by order spectrum to detect the fault fea-

tures of the components quantitatively. 

The order is a signal characterization parameter related to wheel rotational speed, 

expressed as: 

R

f
o


=

60  (30) 

where o is the order (dimensionless), f is the vibration frequency, R is the rotational speed 

of the wheel (revolutions per minute, rpm), and R = 60·ω/2π; ω is the angular velocity of 

the wheel. 

As shown in Equation (30), the order tracking analysis is essentially a kind of fre-

quency analysis. However, the frequency information is not fixed; it changes with the ro-

tational speed change. The larger the order o, the higher the corresponding vibration fre-

quency f, which reflects the vibration characteristics of short wave track irregularities. 

When the order o is smaller or even the fractional (a number less than 1), the correspond-

ing vibration frequency f is lower, which reflects the vibration characteristics of long-wave 

vertical track irregularities. 

A simple case is used to illustrate how to convert the time-domain track vertical ir-

regularity displacement excitation into a spatial signal in the angular domain, and finally, 

the order spectrum analysis is performed. Let a track vertical irregularity displacement 

excitation be z(t), as shown in Equation (31) and Figure 9. The sampling frequency is 1024 

Hz and the total sampling length is 10 s. 

( ) ( ) ( ) ( )( ) ( )( )tttttttztztz 8.024π2cos52.05.0π2cos10 2323

21 +−++−=+=  (31) 

The signal z(t) contains two vibration features z1(t) and z2(t), having the characteristic 

of increasing vibration frequency with time, which is typical of a non-stationary signal. 

These vibration features in Figure 9 are similar to the axle-box vertical irregularity dis-

placement excitation generated when rail vehicles accelerate on tracks. z1(t) and z2(t) cor-

respond to the wavelength of l1 and l2 of the two kinds of periodic vertical track irregular-

ity. 

 

Figure 9. Simulated non-smooth signal (partial). 

If the discrete Fourier transform is directly applied to estimate the irregularity char-

acteristics (wavelength, amplitude) from the signal, z(t) will cause serious errors, even in-

correct results. As shown in Figure 10, it exhibits severe frequency ambiguity with char-

acteristic frequencies ranging from 0 to 500 Hz. The wavelength and amplitude of irregu-

larities are completely unrecognizable. As shown in Figure 11, When the time–frequency 

analysis method is used, the change in signal frequency with time is analyzed by a short-

time Fourier transform. It exhibits the trend of frequency variation in the time-frequency 

plot. However, the magnitude of the track irregularity is reflected by the depth of the color 

and does not quantitatively express the degree of track irregularity. In addition, the fre-

quency ridges are also very blurred (thick), which will cause significant errors in estimat-

ing the frequency (wavelength). Therefore, traditional frequency domain analysis meth-

ods are unsuitable for the above non-stationary signals. 
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Figure 10. Traditional frequency spectrum analysis. 

 

Figure 11. Traditional time–frequency analysis. 

However, the above problems will be very clear when the order tracking analysis is 

used. Basically, the vertical displacement excitation frequency is related to the vehicle 

speed and the wavelength, i.e., f = v/l. Since the vertical track irregularity l is fixed and 

unchanged, the ultimate influence on the vibration frequency f is the operating vehicle 

speed v. Due to the mutual conversion relationship between the vehicle running speed v 

and the wheel rotation speed R, the complete derivation process is as follows: 
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where f is the vertical displacement excitation frequency (axle-box vertical vibration fre-

quency), v is the vehicle running speed (wheel longitudinal speed), ω is the wheel angular 

velocity, r is the wheel radius, l is the vertical track irregularity wavelength, C is the wheel 

circumference, o is the order (the ratio of the wheel circumference C to the track vertical 

irregularity wavelength l, C/l), and R is the wheel rotation speed. 

Therefore, according to the simulated signal in Equation (31), its wheel rotational 

speed can be calculated: 
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Since the vibration response characteristics of z1(t) and z2(t) are generated by the same 

wheel in operation, the wheel rotational speed must be the same, i.e., R(t) = R1(t) = R2(t). 

Different vibration characteristics actually correspond to different track irregularity char-

acteristics. As shown in Equations (33) and (34), o1 = o2/4, which is expressed as the wave-

length l1 is four times l2, i.e., l1 = 4l2. In this case, assuming the wheel circumference C = 2l2, 

there are orders o1 = 1/2, o2 = 2. Therefore, the signals z1(t) and z2(t) essentially represent 

the physical meaning of the vibration response generated by a wheel traveling on a track 

with two periods of irregular characteristics at a speed of R(t). The wavelength of these 
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two periods of irregularity is one-half of the wheel circumference, i.e., l2 = C/2; one is two 

times the wheel circumference, i.e., l1 = 2C. The wheel rotational speed is shown in Figure 

12. 

 

Figure 12. Wheel rotation speed curve. 

4.2. Resample the Time-Domain Signal Non-Uniformly in the Equal-Angle Sample Method 

Once the wheel rotation speed time-domain signal is obtained, the original time sig-

nal can be resampled non-uniformly in the equal-angle sample method. Before that, we 

summarize some parameter relationships for order tracking analysis. When the length of 

the sampled data is an integer multiple P of the arc length of the wheel rotation, and the 

number of sample points for each revolution of the wheel is M, the maximum analysis 

order Omax in the order domain is M/2, and the order analysis resolution ΔO is 1/P. In other 

words, M is the sampling rate and M × P is the sampling length. The larger the value of 

M, the wider the order domain of the analysis. The larger the value of P, the higher the 

accuracy of the order domain of the analysis. 

Since the order o1 = 1/2, o2 = 2 in this case, according to Nyquist’s sampling theorem, 

the sampling points number for each wheel revolution should be M = 2·max(o1, o2) = 4. 

Meanwhile, like the traditional frequency domain analysis, the order domain analysis also 

exists the phenomenon of signal aliasing, caused by the sampling interval Δθ being too 

large or the sampling rate M being too small, which will cause serious estimation errors. 

There are two ways to solve the signal aliasing problem. ① An anti-aliasing filter—using 

the low-pass filter to clear the frequency components larger than half of the sampling fre-

quency can avoid signal aliasing problems. However the actual filter hard has the ideal 

filter characteristics, and it is easy to introduce artificial errors. ② Higher sampling rate— 

increasing the sampling rate or decreasing the sampling interval can solve the signal ali-

asing problems. In this case, since M = (2.56~4)·max(o1, o2), let M = 8 and Δθ = 2π/8 = π/4. 

Finally, considering the order analysis resolution ΔO = 1/2 can guarantee that the order 

spectrum does not suffer from spectrum value leakage. Therefore, P = 2n. In this case, let 

P = 2, which means the signal must be collected for two revolutions of the wheel. 

After resampling the z(t) signal, the angular domain signal is shown in Figure 13. The 

horizontal coordinate is the wheel rotation phase angle, Δθ = π/4. The vertical coordinate 

is the vertical irregularity displacement excitation whose amplitude remains unchanged 

at 10 μm and 5 μm. Compared with the z(t) signal in Figure 9, it shows good stationarity 

after converting the time-domain signal to the angular domain signal. 
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Figure 13. Angular domain signal z(t) (M = 8, P = 2). 

4.3. Order Spectrum Analysis and Quantitative Detection 

Then, the discrete Fourier transform is performed to obtain the order spectrum, as 

shown in Figure 14. The horizontal coordinate is the order that reflects the ratio of the 

wheel circumference C to the track vertical irregularity wavelength, as shown in Equation 

(32). The vertical coordinate is the amplitude. Compared with Figures 10 and 11, the am-

plitude of the corresponding vibration can be clearly identified with 0 error, proving the 

advantage of order tracking analysis to the non-stationary signal whose vibration fre-

quency is related to the wheel rotational speed, as shown in Figures 13 and 14. In practical 

engineering, since the exact wavelength of the track irregularity is not known at the be-

ginning, it is difficult to ensure that the collected signal corresponds to an integer multiple 

of the period irregularity, causing the signals to be non-periodic. If the discrete Fourier 

transform is directly performed on these non-periodic signals, it will cause energy leakage 

in the order spectrum. For this case, like the traditional frequency domain analysis, the 

window function (Hanning) can be used to the resampled angular domain signal, and 

then correcting the spectrum value of the discrete Fourier transformed spectrum by mul-

tiplying 2.0, the desired result can be obtained. 

 

Figure 14. The order spectrum (M = 8, P = 2). 

Based on the order information, it can be converted into a spatial domain signal of 

track vertical irregularity: 
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where u is the vertical track irregularity, x is the longitudinal distance of the track, l1 and 

l2 are the track irregularity wavelength, C is the wheel circumference, and o1 and o2 are the 

orders. 

The curves in Figure 13 could be smoother, mainly because the M and P determined 

in the above cases are smaller enough, which satisfies the analysis accuracy requirement. 

Compared with Figures 13 and 14, as shown in Figures 15–18, with increasing M, the sam-

pling point number of each wheel revolution will increase, and the sampling interval Δθ 

will decrease, resulting in a smoother curve. With the increase of P, the number of sampled 
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rotations will increase, resulting in a longer signal. Therefore, to detect short-wave track 

irregularity, we should try to make M larger. Increasing the P value will achieve a better 

order analysis resolution, which will help to distinguish the two types of track irregularity 

with similar wavelengths in the order spectrum. 

 

Figure 15. Angular domain signal z(t) (M = 64, P = 2). 

 

Figure 16. The order spectrum (M = 64, P = 2). 

 

Figure 17. Angular domain signal z(t) (M = 64, P = 8). 

 

Figure 18. The order spectrum (M = 64, P = 8). 

  



Sensors 2024, 24, 3804 17 of 30 
 

 

5. Simulation Case Analysis and Verification 

To verify the accuracy and reliability of the above methods, this section conducts 

simulation analysis and verification by establishing a vehicle system dynamics model. 

5.1. Track–Vehicle Dynamic Model 

Due to the weak coupling between the vertical and lateral dynamics of rail vehicles, 

the modeling can be carried out independently to reduce the complexity of the problem. 

The vehicle vertical dynamics model is shown in Figure 19. 

 

Figure 19. Track–vehicle vertical dynamic model. where Mb is the body mass, Mt is the bogie frame 

mass, Jb is the body nodding inertia, Jt is the bogie frame nodding inertia, ks is the secondary spring 

vertical rigidity, kp is the primary spring vertical rigidity, cs is the secondary spring vertical damp-

ing, and cp is the primary spring vertical damping. 

As shown in Table 1, a series of track vertical irregularities are designed and are input 

as the excitation in the above model. The wheel circumference is 2639 mm. The vehicle 

runs on a 1000 m straight track with an initial speed of 10.8 km/h. The axle-box vertical 

vibration acceleration and the vehicle running speed are output to estimate the track ir-

regularities. The sampling frequency is 1000 Hz, and the sampling time is 190 s, as shown 

in Figures 20 and 21. 

Table 1. Track irregularity parameters (speed: v = 10.8 km/h; wheel circumference: C = 2.639 m). 

Type 
Wavelength 

l/mm 

Amplitude 

a/mm 
Phase φ Frequency f/Hz Order 

Short wave irregularity 
50.00 0.30 69.81 60.00  52.78  

200.00 0.60 67.13 15.00  13.19  

Medium wave irregularity 

1000.00 1.00 17.89 3.00  2.64  

3000.00 2.00 54.55 1.00  0.88  

8000.00 4.00 70.43 0.38  0.33  

15,000.00 5.00 16.52 0.20  0.18  

Long wave irregularity 

30,000.00 10.00 60.06 0.10  0.09  

45,000.00 12.00 7.25 0.07  0.06  

60,000.00 18.00 88.54 0.05  0.04  

 

Figure 20. Axle-box vertical vibration acceleration. 
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Figure 21. Vehicle running speed. 

5.2. Signal Analysis and Pre-Processing 

The axle-box vertical vibration displacement time-domain signal can be obtained by 

time-domain double integration and trend term elimination, according to the method in 

Section 3, as shown in Figure 22. Since the low vehicle speed in this validation scheme, the 

transfer relationship between the axle-box vertical displacement and the track vertical ir-

regularity displacement excitation is close to 1. Therefore, the axle-box vertical displace-

ment basically follows the track vertical irregularity at this time. 

 

Figure 22. Axle-box vertical vibration displacement. 

However, as shown in Figure 21, the vehicle speed frequently changes during oper-

ation. The axle-box vertical displacement signal in Figure 22 is non-stationary. As shown 

in Figures 10 and 11, traditional signal processing methods cannot quantitatively detect 

the wavelength and amplitude of track irregularities from non-stationary signals. How-

ever, the time signal in Figure 22 can be resampled non-uniformly in the equal-angle sam-

ple method and converted into the angular (spatial) domain signal by using the proposed 

method in Section 4. The quantitative detection of track irregularities can be achieved. 

According to the analysis method in Section 4, it is known that the estimation of the wheel 

rotational speed R is the key to converting the time-domain signal into the angular domain 

signal. The relationship between the wheel rotational speed R and the vehicle running 

speed v is shown in Equation (32), and the wheel rotational speed is calculated, as shown 

in Figure 23. 

 

Figure 23. Vehicle running speed. 
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Based on the improved Simpson integration method and trend item decomposition 

method in Section 3, the wheel rotation phase angle time-domain signal can be calculated 

as shown in Equation (36). Then, determine the time tn (n = 0, 1, 2, …) according to the 

wheel rotation phase angle (θn = n·Δθ, n = 0, 1, 2, …). Finally, we sequentially extract the 

corresponding values from the axle-box vertical displacement time-domain signal (Figure 

22) based on the time tn (n = 0, 1, 2, …) to obtain the resampled signal. 
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(36) 

where θn is the wheel rotation phase angle time series, and R(n) is the wheel rotational 

speed time series. 

In the above case study, since the wavelength characteristics of track irregularity, as 

shown in Table 1, combined with the wheel circumference and vehicle running speed, it 

is necessary for the order spectrum analysis to accurately express the characteristics of 

track irregularity when ΔO ≤ 0.01 and M ≥ 4 × 52.779 (i.e., P ≥ 50, M ≥ 211.11). Therefore, 

let P = 100 and M = 240 here to ensure sufficient accuracy. That is, collect the vibration 

signal corresponding to 100 revolutions of the wheel with resampled at equal angular 

intervals for 240 points per revolution (i.e., Δθ = 2π/M = π/120). However, all the above 

signals are discrete (non-continuous) and cannot be expressed by specific functions. When 

resampling by equal angles, the time tn (n = 0, 1, 2, …) may not exist or between two dis-

crete time points, causing the sampling failure. Therefore, this paper proposes a nonlinear 

interpolation method to obtain an accurate value between two discrete points as follows. 

Assuming a cubic piecewise polynomial function S(t) that passes through t1, t2, t3, and 

t4, to calculate the S(tn) (t2 < tn < t3), the analytical expression of the function S(t) needs to 

be solved. Therefore, 12 conditional formulas must be needed to determine the 12 poly-

nomial coefficients in total: ① the S(t1) = B1, S(t2) = B2, S(t3) = B3, and S(t4) = B4 are already 

known by simulated output signal; ② based on the fact that S(t) has a continuous second 

derivative and satisfies continuity conditions at t2 and t3, i.e.,

2,3)()()()()()( 000000 ==== +−+−+− jtStStStStStS jjjjjj ，，，   ; ③ there are two endpoint 

boundary conditions are already known by simulated output signal, i.e.,

4411 )()( CtSCtS ==  ， . We solve the cubic piecewise polynomial S(t) based on the above 12 

conditional formulas, and substitute t = tn into it to obtain S(tn). The resampled angular 

domain signal of the axle-box vertical vibration displacement is shown in Figure 24, which 

is the spatial domain signal and does not have non-stationary characteristics. 

 

Figure 24. Resampled angular domain signal of axle-box vertical vibration displacement (M = 240, 

P = 100). 
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5.3. Order Spectrum Analysis 

We perform the discrete Fourier transform to the angle-domain signal in Figure 24 to 

obtain the order spectrum. As shown in Figure 25, the horizontal axle represents the order, 

which is expressed as the ratio of the wheel circumference to the track irregularity wave-

length. The vertical axle represents the amplitude of the track irregularity. Compared with 

the real amplitude in Table 1, the wavelength estimation error of track irregularity is less 

than 2.31%, and the amplitude estimation error of the track irregularity is less than 20%, 

as shown in Table 2. 

 

Figure 25. Order analysis spectrum of track irregularity. 

Table 2. Detection error analysis of track irregularities. 

Wavelength l/mm 
Error (%) 

Amplitude a/mm 
Error (%) 

Real Value Estimated Value Real Value Estimated Value 

50.00 50.00 0 0.30 0.30 0 

200.00 200.00 0 0.60 0.60 0 

1000.00 999.98 0 1.00 1.00 0 

3000.00 3002.20 −0.07 2.00 1.70 −17.00 

8000.00 7996.78 0.04 4.00 4.00 −0.50 

15,000.00 14,909.25 0.61 5.00 4.10 −18.60 

30,000.00 30,332.62 −1.1 10.00 8.70 −13.50 

45,000.00 45,498.93 −1.1 12.00 10.30 −14.42 

60,000.00 58,643.06 2.31 18.00 14.60 −18.72 

As shown in Table 2, the accuracy of the order analysis in estimating the short and 

medium wave irregularity is significantly higher than the long wave irregularity. The 

main reasons are as follows: ① since the long wave irregularity generally corresponds to 

low frequency signals, which are easily susceptible to interference from trend terms. Be-

cause the trend term can not be completely eliminated, even a small residual error will 

affect the estimation accuracy; ② due to the wide variety of track irregularity wave-

lengths, it is impossible to ensure the intercepted signal is an integral multiple of the pe-

riod of corresponding wavelength irregularity. There must be obvious truncation errors 

when analyzing the track irregularity. Overall, compared to the traditional frequency do-

main analysis method, the order analysis method for identifying track irregularities under 

non-stationary conditions has significant advantages. Section 6 will further analyze and 

discuss its application in practical engineering. 

6. Field Test Case Analysis and Verification 

Based on the analysis and derivation in Sections 3 and 4, using the axle-box vertical 

vibration acceleration and vehicle running speed to estimate the track vertical irregularity 

state (wavelength, amplitude) is feasible. This section will conduct analysis and research 

to apply the above series of methods in practical engineering. 
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6.1. Calculation of Time-Domain Track Irregularity 

Taking a Chinese subway vehicle as an example, we conducted the axle-box vibration 

acceleration tests to detect the track irregularity. As shown in Figure 26, glue the acceler-

ation sensor (type: J13510, Shanghai Beizhi Electronic Technology Co., Ltd. (Shanghai, 

China)) to the axle-box. When the vehicle operates under AW0 (empty load) condition and 

ATO (automatic train operation) mode, the axle-box vibration acceleration signal is trans-

mitted to the signal acquisition cabinet (type: INV3020D, China Orient Institute of Noise 

& Vibration, Beijing, China) via the data line. The sampling frequency is 5120 Hz, and the 

sampling duration is for full process collection. 

  
(a) (b) 

Figure 26. axle-box vertical vibration acceleration test. (a) Acceleration sensor; (b) Signal acquisition 

equipment. 

Since the measured signals often have severe test errors and outliers, it is necessary 

to perform the required pre-processing to the test signals, such as zero drift elimination, 

singular value elimination, electronic noise elimination, etc. In this paper, based on the 

signal processing toolbox that comes with MATLAB R2023b, the Savitzky Golay filter 

smoothing function is called to pre-process the initial signal to eliminate the zero-drift and 

trend terms due to real-time testing. As shown in Figure 27, the axle-box vibration accel-

eration signal collected from the down-process shows severe zero-frequency stepwise er-

rors in the local time domain, and the difference before and after signal processing is sig-

nificant, showing the importance of signal pre-processing. 

 

Figure 27. Axle-box vertical vibration acceleration (down-process). 

According to the proposed method in Section 3, we performed the time-domain dou-

ble integration and trend term elimination to calculate the axle-box vibration displace-

ment. Then, according to the transfer relationship H(jω) between the axle-box vertical dis-

placement and the track irregularity excitation in Equation (8), the track irregularity dis-

placement excitation u(t) can be obtained, as shown in Figure 28. 
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Figure 28. Track irregularity displacement excitation (down-process). 

As shown in Figure 28, there is no apparent short-wave irregularity, which mainly 

shows height variation throughout the trajectory. This variation can be seen as a low-fre-

quency trend term. The trend and fluctuation terms can be obtained separately by apply-

ing the Hodrick–Prescott decomposition method in Section 3. Since the trend term is very 

close to Figure 28, it is omitted here. The fluctuation term is shown in Figure 29. Compared 

the axle-box acceleration signal in Figure 27 with the track irregularity displacement exci-

tation in Figure 29, it is found that these two are similar in amplitude and frequency char-

acteristics, with a phase difference of π, proving the correctness of the above calculation 

method. 

 

Figure 29. The fluctuation term of track irregularity displacement excitation (down-process). 

6.2. Resampling of Time-Domain Displacement Excitation Signal 

Due to the vehicle running at variable speed, the time-domain signal in Figure 29 is 

non-stationary. However, the traditional signal processing method cannot quantitatively 

detect the wavelength and amplitude of track irregularities from it. According to the 

method proposed in Section 4, it is necessary to further resample the time-domain dis-

placement excitation non-uniformly in the equal-angle sample method based on the wheel 

angular velocity signal and finally achieve quantitative detection of track irregularity 

through order spectrum analysis. Hence, estimating the wheel angular velocity (rotational 

speed) signal is critical for equal angle resampling and subsequent order analysis. There 

are two methods proposed for obtaining wheel angular velocity signals: 

Based on vehicle running speed signal, rail vehicles usually have their own speed 

sensors, which can directly derive the real-time vehicle running speed signal from the 

control system. Then, the wheel angular velocity signals can be converted according to 

Equation (32), as shown in Figure 30. However, the vehicle running speed derived from 

the control system is essentially the overall operating speed of the vehicle. Due to the non-

rigid connection between vehicles, the overall speed of the vehicle may not represent the 

real-time angular velocity of a certain wheel, and minor differences may also lead to sig-

nificant estimation errors.  
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Figure 30. Vehicle running speed and wheel angular velocity (down-process). 

Based on key-phase signal, to actually obtain a more realistic real-time wheel rota-

tion angular velocity, the measurement of key-phase signals can be carried out. The key-

phase signal is a continuous pulse signal that occurs quantitatively with each wheel rev-

olution and is measured by using the direct beam photoelectric sensor, which is attached 

to the bottom of the axle-box and aligns the direction of the light source with the wheel as 

shown in Figure 31. We then attach a reflective plate to the outside of the wheel and align 

it with the light source emitted by the photoelectric sensor. Finally, we connect the data 

line of the photoelectric sensor to the signal acquisition box in Figure 26b to collect the 

continuous photoelectric pulse signal generated during wheel operation. 

 

Figure 31. Schematic diagram of the photoelectric sensor installation. 

The sampling frequency is essential for the collection of key phase signals. In this 

case study, the typical operating speed of the subway vehicle is 65 km/h, and the wheel 

diameter is 0.74 m. The time for the wheels to rotate once is 0.15 s. To ensure the photoe-

lectric sensor can clearly detect the key-phase signals, a higher sampling frequency must 

be satisfied, as shown in Equation (37). The sampling frequency should be at least 3420 

Hz. In this case study, the sampling frequency of the key-phase signal is set to 5120 Hz, 

which is consistent with the vibration acceleration sampling frequency. It is convenient 

for later signal processing. The collected key-phase signal is shown in Figure 32. 

minT

N
f s =  (37) 

where fs is the sampling frequency, Tmin is the minimum rotation period of the wheel, and 

N is the minimum number of sampling points for one cycle of wheel rotation. When N ≥ 

500, it can ensure that the signal is almost undistorted. 
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Figure 32. Field test key-phase signal (overall and partial, down-process). 

The key-phase signal is characterized as a rectangular waveform. The interval be-

tween two adjacent rising edges (or falling edges) represents one wheel rotation period, 

as T1 and T2, as shown in Figure 32. The pulse widths δ1 and δ2 represent the movement 

time length of the light point emitted by the photoelectric sensor on the reflective white 

plate. It can be found that the above two adjacent rotation periods T and pulse width δ are 

not equal, indicating that the rotation speed of this wheel is non-uniform. Therefore, the 

axle-box acceleration collected during this period is typically non-stationary.  

Then, using the time point of the rising edge, the wheel rotation speed can be calcu-

lated as follows: 

( )
rr

r
ttk

r
_1_2

_1

60

−
=  (38) 

where t1_r and t2_r represents the time point of two adjacent rising edges, T1 = t2_r-t1_r, k is 

the number of pulses per wheel revolution, k = 1; and r1_r is the wheel rotation speed at 

time t1_r. 

As shown in Equation (38), this calculation method takes the average speed within 

the time interval [t1_r, t2_r] as the instantaneous velocity at time t1_r. Similarly, the time point 

of the falling edge also can be used as follows: 

( )
ff

f
ttk

r
_1_2

_1

60

−
=  (39) 

Finally, we obtain the instantaneous wheel rotation speed at the time point (t1_r + t1_f)/2 

by calculating the average value of r1_r and r1_f. According to the conversion relationship 

between wheel rotation speed and wheel angular velocity in Equation (32), the real-time 

wheel rotation angular velocity signal calculated, as shown in Figure 33. 

 

Figure 33. Real-time wheel rotation angular velocity signal (down-process). 
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As shown in Figure 33, the calculated real-time wheel angular velocity based on the 

photoelectric key-phase signal is almost identical to that based on vehicle running speed 

with only some minor fluctuations, indicating the calculation method is theoretically 

wholly correct. 

Then, we perform the time-domain integration to the wheel rotation angular velocity 

signal (Figure 33) to calculate the phase angle time-domain signal, as shown in Figure 34. 

The accumulated phase angle of the wheel rotation gradually increases with time until the 

vehicle finally stops. Meanwhile, the phase angle curve does not increase uniformly, 

which is related to the frequent changes in the vehicle running speed. 

 

Figure 34. Cumulative phase angle signal of wheel rotation (down-process). 

According to the relationship between the order o, wheel circumference C, and track 

irregularity wavelength l (i.e., o = C/l), when the minimum wavelength of concern was 0.05 

m, the highest order should be omax = C/lmin = 46.5. As shown in Section 4.2, the order spec-

trum analysis must at least satisfy ΔO ≤ 0.01, M ≥ 2 × 46.5, i.e., P ≥ 50, M ≥ 93. Meanwhile, 

a larger M must be considered to avoid the signal aliasing phenomenon and let M = 240 ≥ 

5 × 46.5 here. Then, P is expressed as the number of wheel revolutions. Since the 

resampling process is necessarily performed on the entire sampled signal, the value of P 

essentially depends on the length of the original sampled signal. The longer the sampling 

time, the greater the number of wheel revolutions, the greater the value of P, which can 

be expressed as: 

( )








=

π2

max θ
P  (40) 

where  x represents the largest integer less than x, and θ is the phase angle, as the maxi-

mum value in Figure 34. 

In this case study, the phase angle of the wheel rotation until the vehicle finally stops 

is 57,931.05 rad. The P≈9220 indicates that the total wheel rotation during the time course 

in Figure 33 is approximately 9220 revolutions. Hence, the resolution of the order spec-

trum is ΔO = 1/P = 0.00010846 ≤ 0.01, which can satisfy the above estimation accuracy 

requirements. According to the resampling setting conditions above, the time-domain 

track irregularity displacement excitation in Figure 28 is resampled in the equal-angle 

sample method (Δθ = 2π/240). As shown in Figure 35, the equal-angle sample result is 

expressed as non-uniform sampling in the time domain. When the vehicle speed is low, 

the sampling points are sparse; otherwise, the sampling points are more intensive and can 

be expressed in the form of an angular domain signal, as shown in Figure 36. The hori-

zontal coordinate is the phase angle of the wheel, and the vertical coordinate is the vertical 

irregularity amplitude of the track. The fundamental difference between the two types of 

expression forms is that the track irregularity in the time domain is a non-stationary sig-

nal, while in the spatial domain, it is a stationary signal. 
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Figure 35. Equal angle resampling points (resampling points are shown at intervals) in the time 

domain. 

 

Figure 36. Track irregularity in the angular (spatial) domain. 

6.3. Order Spectrum Analysis and Quantitative Detection 

The track vertical irregularity in Figure 36 is a stationary signal in the spatial domain, 

whose wavelength and amplitude can be detected by discrete Fourier transform. But be-

fore that, to avoid the spectrum leakage problem caused by truncation error, refer to the 

traditional spectrum analysis method, add the Hanning window to it, and then perform 

spectrum value compensation correction (multiplied by 2.0) for the spectrum result after 

the discrete Fourier transform. The calculated order analysis spectrum is shown in Figure 

37. 

Based on the relationship between order, track vertical irregularity wavelength, and 

wheel circumference, these irregularities with a wavelength less than 116.25 mm corre-

spond to the order over 20th in Figure 37 and have minimal amplitude, indicating the 

track has a good condition in short-wavelength irregularity wear. The lower order region 

(less than 1) represents medium and long wave irregularities, whose wavelengths are 

greater than the wheel’s circumference, with relatively stable overall and no obvious pe-

riodic irregularity feature. Hence, this subway track line in service for about 2 years has 

good quality and is mainly characterized by random irregularity. 

 

Figure 37. Order spectrum analysis of track irregularity (down-process). 
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It is worth noting that, as shown in Figure 37, the amplitude of irregularities over the 

20th order is minimal and has almost no effect on the overall evaluation of track irregu-

larities. It is unnecessary to take M = 240 when resampling the time-domain displacement 

excitation. In the following analysis cases, compared with when M = 100, the number of 

sample points for one wheel revolution is reduced from 240 to 100, significantly improv-

ing the resampling efficiency and reducing the computation time from about 32 h to about 

16 h. 

To verify the accuracy of the quantitative detection method, another set of test data 

(up-process) was used to calculate the track vertical irregularity of the above subway line 

again. Due to the difference in operating speed, the axle-box vibration acceleration and 

key-phase signal generated by the same vehicle running on the same track will also be 

completely different from the above signals (Figures 27 and 32). If the estimated track 

irregularity results based on two completely different sets of test data do not differ signif-

icantly, it can prove the accuracy and reliability of the proposed method. As shown in 

Figure 38, the similarity between the estimation results of track irregularity based on the 

two test results is extremely high, especially the peaks at orders 6, 7, 8, 9, 10, 11, 12, 13, 

and 14 are almost identical, which fully proves the accuracy and reliability of the proposed 

method for identifying vertical periodic track irregularity in this paper. 

 

Figure 38. Comparative analysis of detection results for track irregularities. 

The reasons for the detection error in Figure 38 are as follows. ① During the testing 

process in this case study, the axle-box vibration signal in Figure 27 and the photoelectric 

key-phase signal in Figure 32 are collected separately, not absolutely synchronously. 

These signals are mainly processed manually to align the time starting points of the accel-

eration and key phase signals, whose errors present in these processes will affect the ac-

curacy of the subsequent resampling. ② The quality of the vibration data collected in this 

field test is not well. As shown in Figure 27, there was severe step-type zero drift. The 

introduction of human interference through the moving average processing of the signal 

will lead to signal distortion. ③ There are some differences in the testing interval. The 

upward process includes a transition section for exiting the station, which is not included 

in the downward process. Due to the collection without stopping throughout the process, 

it is difficult to remove this section accurately. However, overall, the detection results 

based on the two sets of test data have minimal differences, proving the proposed 

method’s reliability and accuracy. 

7. Conclusions 

Quantitative detection of track vertical irregularity directly affects the quality and 

safety of vehicle operation. In this paper, starting from the establishment of a simplified 

wheel–rail dynamics model, the quantitative relationship between track vertical irregu-

larity excitation and axle-box vertical vibration is theoretically derived in the whole pro-

cess, and the systematic estimation method and process of track vertical irregularity 

based on axle-box vertical vibration acceleration is proposed, which mainly involves the 
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following aspects. ① The double time-domain integration of axle-box vertical vibration 

acceleration by using Simpson’s time-domain integration method is proposed to obtain 

the axle-box vertical vibration displacement signal, and the calculation error of the 

method is optimized and improved. ② A method based on the Hodrick–Prescott decom-

position is proposed to eliminate the trend term generated in the time-domain integration 

process. Meanwhile, the optimal value of the smoothing factor λ is derived theoretically, 

and the determination process and the suggested value are proposed; ③ The method and 

principle of order ratio analysis are derived, analyzed and verified, and finally, the 

method of estimating the track vertical irregularity based on the axle-box non-stationary 

vibration signal under the vehicle variable speed operation condition is proposed, which 

solves the problems of signal non-stationarity, time-domain and space domain conver-

sion, equal angle resampling, and speed estimation based on the photoelectric key signal.  

But it is worth pointing out that: ① the effectiveness of the method proposed in this 

paper relies on the accurate acquisition of the frequency response function H(ω) in prac-

tice. For the different track types and vehicle system parameters, the frequency response 

function curves are quite different. ② There is a P2 resonance effect between the vehicle 

and the track system, indicating it is better to avoid the first wheel–rail resonance peak 

with low passing frequency to estimate the track vertical irregularity, especially when 

|H(ω)|≈1. ③ The lower the operating speed of the vehicle, the wider the wavelength 

range of track irregularity detection. However, a speed that is too low reduces the detec-

tion efficiency. This is a problem that needs to be considered as a compromise. ④ The 

effect of vehicle lateral motion on the detection results of vertical track irregularities is 

simplified without considering the weak coupling effect of vehicle lateral motion and ver-

tical motion. It has to be further optimized for practical applications. 
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