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Abstract: Laser-induced breakdown spectroscopy (LIBS) and visible near-infrared spectroscopy
(vis-NIRS) are spectroscopic techniques that offer promising alternatives to traditional laboratory
methods for the rapid and cost-effective determination of soil properties on a large scale. Despite
their individual limitations, combining LIBS and vis-NIRS has been shown to enhance the prediction
accuracy for the determination of soil properties compared to single-sensor approaches. In this
study, we used a comprehensive Danish national-scale soil dataset encompassing mostly sandy soils
collected from various land uses and soil depths to evaluate the performance of LIBS and vis-NIRS,
as well as their combined spectra, in predicting soil organic carbon (SOC) and texture. Firstly, partial
least squares regression (PLSR) models were developed to correlate both LIBS and vis-NIRS spectra
with the reference data. Subsequently, we merged LIBS and vis-NIRS data and developed PLSR
models for the combined spectra. Finally, interval partial least squares regression (iPLSR) models
were applied to assess the impact of variable selection on prediction accuracy for both LIBS and vis-
NIRS. Despite being fundamentally different techniques, LIBS and vis-NIRS displayed comparable
prediction performance for the investigated soil properties. LIBS achieved a root mean square error of
prediction (RMSEP) of <7% for texture and 0.5% for SOC, while vis-NIRS achieved an RMSEP of <8%
for texture and 0.5% for SOC. Combining LIBS and vis-NIRS spectra improved the prediction accuracy
by 16% for clay, 6% for silt and sand, and 2% for SOC compared to single-sensor LIBS predictions. On
the other hand, vis-NIRS single-sensor predictions were improved by 10% for clay, 17% for silt, 16%
for sand, and 4% for SOC. Furthermore, applying iPLSR for variable selection improved prediction
accuracy for both LIBS and vis-NIRS. Compared to LIBS PLSR predictions, iPLSR achieved reductions
of 27% and 17% in RMSEP for clay and sand prediction, respectively, and an 8% reduction for silt and
SOC prediction. Similarly, vis-NIRS iPLSR models demonstrated reductions of 6% and 4% in RMSEP
for clay and SOC, respectively, and a 3% reduction for silt and sand. Interestingly, LIBS iPLSR models
outperformed combined LIBS-vis-NIRS models in terms of prediction accuracy. Although combining
LIBS and vis-NIRS improved the prediction accuracy of texture and SOC, LIBS coupled with variable
selection had a greater benefit in terms of prediction accuracy. Future studies should investigate the
influence of reference method uncertainty on prediction accuracy.

Keywords: soil organic carbon; texture; PLSR; iPLSR; data fusion; variable selection

1. Introduction

Soil quality assessments are an important step in determining the ability of a soil to
support crop development. Soil quality indicators, which include physical, chemical, and
biological attributes, interact in a complex way, influencing the overall soil function. Soil
organic carbon (SOC) cuts across the physical, chemical, and biological attributes, while soil
texture (i.e., the percentage of clay, silt, and sand content) is a physical parameter [1]. The

Sensors 2024, 24, 4464. https://doi.org/10.3390/s24144464 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24144464
https://doi.org/10.3390/s24144464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3588-6652
https://doi.org/10.3390/s24144464
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24144464?type=check_update&version=3


Sensors 2024, 24, 4464 2 of 18

continuous monitoring of these soil quality indicators has become a necessity to guarantee
optimal productivity and sustainability. Indeed, notable efforts to promote soil health
have been made by the European Union. For instance, a soil monitoring law was recently
proposed to harmonize the definition of soil health, therefore enabling sustainable soil
management and remediation of contaminated sites [2]. In this law, SOC and texture,
among other soil properties, have been listed as estimators of soil descriptor values.

The steady development of spectroscopic techniques as alternatives to wet chemistry
methods has led to improved, cheaper, and faster analyses in the laboratory and in the
field. More importantly, their application in agriculture, such as in the determination of soil
properties, has enabled faster decision making, and thus, timely agronomic interventions.
Laser-induced breakdown spectroscopy (LIBS) and visible near-infrared spectroscopy (vis-
NIRS) stand out as potential candidates poised to revolutionize soil analysis. Despite the
fact that the vis-NIRS technique is already an established method for soil analysis, LIBS for
soil applications is still in its infancy. Nonetheless, there are several studies that used both
techniques for the determination of different soil properties [3–6].

LIBS is an elemental technique suitable for determining elemental composition in a
sample. For instance, in soil analysis, phosphorus, cadmium, or lead can be determined
through a direct relationship with the emission lines related to the three elements. On the
other hand, for the determination of properties like SOC and texture, an indirect association
with multiple emission lines related to the investigated properties, such as the C emission
lines, as well as emission lines linked to clay and sand minerals [3,7], can be used for
the quantitative analysis of SOC. The texture content can be associated with the relative
abundance of Si, Al, Mg, and Fe emission lines to sand, silt, and clay mineralogy [8]. The
ability of LIBS to distinguish distinct elemental emission lines could potentially enable the
generalization of prediction models covering vast geographical distributions. However,
the elemental complexity of soil presents the challenge of resolving the emission lines of
elements occupying the same wavelength range. This challenge necessitates the use of
higher-resolution spectrometers, leading to a compromise between spectral resolution and
wavelength range. As a result, LIBS has become a more complex and expensive system
compared to vis-NIRS [9].

On the other hand, vis-NIRS is a molecular technique suitable for determining spec-
trally active compounds in a sample. For soil analysis, spectrally active compounds include
clay mineralogy, water, and organic matter (OM) [10]. The difference in the size of soil parti-
cles can influence light scattering, thus complementing the spectrally active clay mineralogy
to accurately determine soil texture [11,12]. SOC is related to SOM, thus the absorbance
peaks in the visible regions associated with OM [13] can be used for the determination
of SOC. Vis-NIRS is characterized by weak peaks originating from overtones and combi-
nations of fundamental vibrations, a challenge compounded by absorption features that
are not unique to specific soil properties which often overlap [14,15]. This could, in turn,
negatively impact the prediction of soil properties, especially for different types of soils
from different geological origins.

Various studies have used LIBS and vis-NIRS, separately and in combination, to
determine SOC and texture. Notably, SOC has received special attention, as demonstrated
by the numerous studies focusing on predicting SOC using LIBS and/or vis-NIRS [14,16,17].
On the other hand, soil texture has not received as much attention, especially for the newer
LIBS technique. Although texture is a relatively stable soil property that is not bound
to drastically change over time, improving the predictions using proximal sensors is
necessary, especially because the alternative wet chemistry methods (e.g., pipette and
hydrometer methods) are extremely long and tedious. A promising strategy to improve
the prediction accuracy of soil properties is the combination of two or more spectroscopic
techniques. Already, there have been improved predictions for various soil properties
reported when LIBS and vis-NIRS measurements were combined [9,14,18]. For instance,
Bricklemyer, Brown, Turk and Clegg [14] reported improved total carbon predictions
for combined LIBS-vis-NIRS predictions as compared to predictions from single sensors.
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However, the authors noted that SOC and inorganic C did not benefit from the data fusion
technique. Instead, there was a higher vis-NIRS prediction accuracy for SOC and higher
prediction accuracy for LIBS inorganic C. The challenge of the availability of a large dataset
covering greater variability in terms of the range of the investigated soil properties has
been previously reported by several studies where LIBS and vis-NIRS were combined
for predicting soil properties [9,14,18]. In all of the above-mentioned studies, there was a
convergent agreement on the need to investigate the benefit of data fusion on a large-scale
dataset covering a wide range of soil properties.

Nonetheless, it is also important to evaluate the benefit of combining the two spectro-
scopic techniques by comparing the relative improvement in contrast to the single-sensor
technique. This can also be assessed by exploring improved data analysis techniques, such
as variable selection, to reduce the number of input variables used for developing the
prediction models. Several studies have demonstrated the added benefit of using variable
selection for predicting SOC and/or texture for LIBS [14,19] and vis-NIRS [20–22]. How-
ever, it has also been reported that variable selection does not always improve prediction
accuracy when compared to prediction models developed using the full spectrum. For
instance, when applying LIBS for predicting texture, an overall higher accuracy of PLSR
was reported as compared to variable selection using an elastic net [19]. In another study,
similar or only slight improvements were obtained when feature selection algorithms were
used for estimating SOC using vis-NIRS [23].

In this study, samples covering a national scale were used to assess the effect of
combining LIBS and vis-NIRS for predicting SOC and texture. The dataset accounts for
different soil types, textural classes, high concentration range of SOC and other properties,
different land use practices, and soil profiles. Prediction models from a combination
of both techniques were developed and compared, based on prediction accuracy, with
the individual sensor techniques. Finally, PLSR (with variable selection) models were
developed and compared with the individual and combined LIBS-vis-NIRS models.

2. Materials and Methods
2.1. Soil Samples and Analysis

A total of 1110 samples collected from Denmark were used for this study. The dataset
comprised topsoil (0–20 cm) and subsoil (20–30, and all the way to 200 cm at 10 cm thickness
intervals) samples representing both agricultural and nonagricultural land uses. The land
use was defined based on the vegetation cover recorded during sampling. Approximately
30% of the dataset comprised topsoils, while 63% were soils collected from agricultural sites.
The soil types represented include Alisols, Anthrosols, Arenosols, Cambisols, Fluvisols,
Gleysols, Histosols, Luvisols, Phaeozems, Podzols, and Regosols [24–26].

The samples were air-dried and sieved to <2 mm and stored under cool and dark
conditions to mitigate against any physical or chemical changes that could occur over time.

The soil texture (clay, silt, and sand content) was determined via a combination of
wet sieving and hydrometer methods [27], while the SOC content was determined via dry
combustion using a LECO CN-2000 instrument (LECO Corp., St. Joseph, MI, USA) after
the subtraction of carbonates, where present.

The dataset was manually split into calibration and validation samples. Here, every
third sample was included in the validation set, and the remaining samples were designated
the calibration set. This resulted in a total of 739 calibration and 371 validation samples
that covered the entire of Denmark (Figure 1).
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2.2. LIBS Measurement

The LIBS system used was a commercial LIBS instrument, MicralTM (FOSS, Hillerød,
Denmark). A detailed description of the setup is available in Wangeci, Adén, Greve
and Knadel [7]. Briefly, the system consists of a microchip neodymium-doped yttrium
aluminum garnet (Nd: YAG) laser operating at a wavelength of 1064 nm with a pulse
energy of 0.15 mJ, a pulse duration of 1.5 ns, and a repetition rate of 200 Hz. The laser beam
was focused through a lens to minimize spot size and increase the irradiance (which was
approximately 1.3 × 1011 W/cm2). The focusing lens was an anti-reflective (AR)-coated
achromatic doublet and a 40 ± 0.4 mm focal length, which yielded a root mean square
(RMS) spot diameter of approximately 10 µm. The integration time was 6.7 ms, starting
simultaneously with the laser pulse. Thus, at a 200 Hz repetition rate, each sub-spectrum
covered two full plasma lifetimes.

The LIBS spectrum was acquired in the wavelength range between 174 and 427 nm
at a spectral resolution of 0.1 nm, resulting in 2491 variables. For soil measurements,
approximately 1 g of the soil sample was placed into a 14 mm diameter sample cup and
pelletized using an automatic press (FOSS, Hillerød, Denmark) at 1948 kg cm−2 for 30 s.
This resulted in a flat-surface sample pellet that was then presented for LIBS measurement.
The sample pellet was rotated in a spiral movement during measurement, providing a fresh
sample surface for each laser pulse. A total of 3000 spectra were averaged for each sample
measurement. This mitigated the effect of pellet surface heterogeneity that could influence
the LIBS signal due to shot-to-shot variability [28]. To enable the study of LIBS signal for
wavelengths shorter than approximately 190 nm, the full optical path was continuously
purged using nitrogen gas during the measurements.

2.3. Vis-NIRS Measurement

The vis-NIRS system used was a commercial vis-NIRS instrument, NIRSTM DS2500
(FOSS, Hillerød, Denmark). The instrument covered a spectral range from 400 to 2500 nm
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and a spectral resolution of 0.5 nm. Approximately 50 g of the soil sample was placed
into a 7 cm sample cup that has a 6 cm quartz window mounted at the bottom (approxi-
mately 28 cm2 sampling area). The average of the spectra collected from seven different
spots was used for subsequent spectral analysis. In this case, the absorbance, defined as
A = [log(1/R)], where R is the reflectance, was used.

2.4. Data Analysis
2.4.1. Partial Least Square Regression

All multivariate data analyses were carried out in MatLab R2021a (MathWorks, Inc.,
Natick, MA, USA) and PLS Toolbox 8.7 software (Eigenvector Research Inc., Manson,
WA, USA).

We used partial least square regression (PLSR) to develop prediction models for each
of the investigated soil properties. PLSR is a multivariate data analysis method that aims to
predict Y from X and to describe their common structure, where Y is an n observation by m
variables response, and X is an n observation by p variables predictor [29].

Before PLSR, the Automatic Whittaker Filter baseline correction method [30] and
mean-centering were selected for LIBS spectral preprocessing, while standard normal
variate (SNV) and mean-centering were selected for vis-NIRS.

For each model, the optimal number of latent variables (LVs) was selected to minimize
the risk of overfitting. The selection of optimal LVs was determined by inspecting the plot
of root mean square error (RMSE) versus the number of latent variables, then selecting the
number of latent variables where the minimum RMSE was achieved without increasing
the distance between the RMSE of calibration (RMSEC) and the RMSE of cross-validation
(RMSECV) [31].

We used the ratio of performance to interquartile distance (RPIQ) to compare the
performance of the prediction models for each of the investigated soil properties. The RPIQ
is a dimensionless measure that takes the interquartile range into account, thus enabling
a comparison of performance across soil properties. The higher the RPIQ, the better the
prediction model.

RMSE =

√
∑N

i=1(yi − ŷi)
2

N
(1)

where yi and ŷi is the ith measured value and corresponding predicted value of the soil
property, respectively, and N is the total number of samples.

RPIQ =
(Q3 − Q1)

RMSEP
(2)

where Q1 and Q3 are the first and third quartiles, respectively. The difference between the
two represents the interquartile range.

2.4.2. Variable Selection

To reduce the number of variables and simplify the model, a variable selection al-
gorithm method that applies interval partial least square regression (iPLSR) was used to
select important regions in the soil spectra. Briefly, the iPLSR algorithm divides the entire
emission spectral data into a few intervals and then applies the PLSR model separately to
each model [32]. Ideally, iPLSR identifies important intervals that result in better models
when applied in the PLSR (as compared to using the full wavelength range). Since the
interval size can influence the accuracy of the calibration model [20], we tested different
interval sizes (8, 10, 20, 30, 40, and 50). We then used the full cross-validation model results
to select the interval size that produced the best model (lowest RMSECV).

2.4.3. Data Fusion

LIBS and vis-NIRS are two different techniques whose signal outputs differ in terms of
scale. LIBS spectral output (photons) is expressed as counts at the respective wavelengths.
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On the other hand, vis-NIRS measures reflectance, which is often converted to absorbance.
The absorbance scale ranges from 0 to 1. Therefore, to combine the two techniques, the
spectra from LIBS and vis-NIRS were independently preprocessed. Automatic Whittaker
Filter baseline correction method was applied to the LIBS spectra, while SNV was applied
to the vis-NIRS spectra. Next, the spectra from each technique were decomposed using
principal component analysis (PCA), and the PC scores were mean-centered and variance-
scaled before merging into a single combined LIBS-vis–NIRS predictor dataset [33]. For
both LIBS and vis-NIRS, 20 PCs were used, for a total of 40 input variables.

2.4.4. Correlation between LIBS and vis-NIRS Models

The PLSR models for LIBS and vis-NIRS prediction were used to evaluate the cor-
relation between the two techniques. Using the validation results, the predicted values
for LIBS and vis-NIRS were plotted against each other for clay, silt, sand, and SOC. The
calculated coefficient of determination (R2) was used to compare and determine the extent
of the relationship between LIBS and vis-NIRS.

2.4.5. Regression Vector Analysis

To understand the emission lines (for LIBS) and absorption bands (for vis-NIRS)
explaining most of the variability of the soil properties, we performed a regression vector
analysis. The regression vector analysis involves examining the scores assigned to the
original input variables, thus deducing their influence on the model.

3. Results and Discussion
3.1. Exploratory Data Analysis

There was a high variability in terms of the content of the investigated soil properties.
The clay content ranged from 1 to 59%, silt 0 to 46%, sand 12 to 98%, and SOC 0.01 to
5.92%. Most Danish soils are generally sandy [24], and this was also visible in our dataset
(Figure 2). As the variability of soil properties influences model performance [13,34], we
used the coefficient of variation (CV) to verify that the same variability was represented in
both the calibration and validation set. The overall CV ranged from 128% to 133% (Table 1).
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Table 1. Descriptive statistics for clay, silt, sand, and SOC in %.

Soil Property Dataset Average Min Max SD c CV d Q1 e Q3 f

Clay Full (n = 1110) 6 1 59 8.38 133 6 17
Cal a (n = 739) 6 1 59 8.41 133 6 17
Val b (n = 371) 6 2 54 8.31 132 6 17

Silt Full 5 0 46 6.46 131 6 14
Cal 5 0 46 6.44 133 6 14
Val 5 0 40 6.50 129 6 14

Sand Full 10 12 98 13.63 133 69 85
Cal 10 12 98 13.61 134 70 86
Val 10 12 98 13.67 132 68 85

SOC Full 0.79 0.01 5.92 1.02 128 0.17 1.51
Cal 0.80 0.01 5.92 1.03 128 0.17 1.51
Val 0.78 0.02 5.68 1.01 130 0.17 1.45

a Calibration dataset; b validation dataset; c standard deviation; d coefficient of variation; e first quartile;
f third quartile.

Figure 3 shows a typical LIBS spectrum and a typical vis-NIRS soil spectrum. Common
emission lines (LIBS) and absorption bands (vis-NIRS) are indicated.
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3.2. Prediction Models

PLSR models were developed for LIBS, vis-NIRS, and combined LIBS-vis-NIRS to
correlate the spectra and the measured soil property content. We used the RPIQ to compare
the performance of the prediction models across the investigated soil properties for the
single-sensor and combined predictions (Table 2). The RMSECVs and RMSEPs for texture
were rounded off to the nearest integer since data from wet chemistry are usually presented
without the fractional part.
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Table 2. PLSR cross-validation and prediction results for clay, silt, sand, and SOC.

Property RMSECV a % R2 cv b RMSEP c (%) R2 pred d LV e RPIQ f

LIBS

Clay 5 0.71 4 0.74 7 2.6
Silt 4 0.67 4 0.67 10 2.3

Sand 7 0.73 7 0.75 10 2.5
SOC 0.53 0.73 0.52 0.73 7 2.5

vis-NIRS

Clay 4 0.74 4 0.77 10 2.8
Silt 4 0.56 4 0.58 7 2.0

Sand 8 0.67 8 0.69 10 2.3
SOC 0.49 0.77 0.53 0.73 13 2.4

LIBS-vis-NIRS

Clay 4 0.79 4 0.81 4 3.1
Silt 4 0.70 4 0.71 7 2.4

Sand 7 0.77 6 0.78 7 2.7
SOC 0.47 0.79 0.51 0.75 10 2.5

a root mean square error of cross-validation; b R2 cross-validation; c root mean square error of prediction; d R2

prediction; e number of latent variables used for the model; f ratio of performance to interquartile distance.

3.2.1. Single-Sensor Predictions

For LIBS, the clay prediction model showed the highest accuracy (RPIQ = 2.6), followed
by sand and SOC, which were comparable (RPIQ = 2.5), and silt (RPIQ = 2.3). Likewise, for
the vis-NIRS prediction models, clay had the highest accuracy (RPIQ = 2.8), followed by
SOC (RPIQ = 2.4), sand (RPIQ = 2.3), and silt prediction models (RPIQ = 2.0).

The regression model plots for LIBS and vis-NIRS were largely similar (Figure 4). There
was a slightly higher number of samples underpredicted for the LIBS model, notably for the
low and high-silt-content samples (Figure 4b). There was also a notable underprediction
for higher clay (>30%) and SOC (>3.5%) samples by both LIBS and vis-NIRS prediction
models. On the other hand, lower-sand-content samples (<50%) were overpredicted by
both techniques (Figure 4c).
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3.2.1. Single-Sensor Predictions 
For LIBS, the clay prediction model showed the highest accuracy (RPIQ = 2.6), fol-

lowed by sand and SOC, which were comparable (RPIQ = 2.5), and silt (RPIQ = 2.3). Like-
wise, for the vis-NIRS prediction models, clay had the highest accuracy (RPIQ = 2.8), fol-
lowed by SOC (RPIQ = 2.4), sand (RPIQ = 2.3), and silt prediction models (RPIQ = 2.0). 

The regression model plots for LIBS and vis-NIRS were largely similar (Figure 4). 
There was a slightly higher number of samples underpredicted for the LIBS model, nota-
bly for the low and high-silt-content samples (Figure 4b). There was also a notable under-
prediction for higher clay (>30%) and SOC (>3.5%) samples by both LIBS and vis-NIRS 
prediction models. On the other hand, lower-sand-content samples (<50%) were overpre-
dicted by both techniques (Figure 4c). 

Pr
ed

ic
te

d 
(%

) 

  
Figure 4. Cont.



Sensors 2024, 24, 4464 9 of 18
Sensors 2024, 24, x FOR PEER REVIEW 9 of 19 
 

 

  
 Reference (%) 

Figure 4. Regression plots for LIBS and vis-NIRS validation models for clay (a), silt (b), sand (c), and 
SOC (d). 

3.2.2. Combined LIBS-vis-NIRS Models 
There was a higher prediction accuracy for clay content (RPIQ = 3.1), followed by 

sand (RPIQ = 2.7), SOC (RPIQ = 2.5), and silt content (RPIQ = 2.4), resulting from the fusion 
of the two spectral techniques. The underprediction of very-low and high-clay and SOC-
content samples, as well as overpredicted low-content sand samples, was also observed 
in the combined regression plots (Figure 5). 

Pr
ed

ic
te

d 
(%

) 

  

Figure 4. Regression plots for LIBS and vis-NIRS validation models for clay (a), silt (b), sand (c), and
SOC (d).

3.2.2. Combined LIBS-vis-NIRS Models

There was a higher prediction accuracy for clay content (RPIQ = 3.1), followed by sand
(RPIQ = 2.7), SOC (RPIQ = 2.5), and silt content (RPIQ = 2.4), resulting from the fusion of the
two spectral techniques. The underprediction of very-low and high-clay and SOC-content
samples, as well as overpredicted low-content sand samples, was also observed in the
combined regression plots (Figure 5).

Specifically, following the combination of LIBS-vis-NIRS spectra, the RMSEP for clay
was reduced by 16% and 10% for LIBS and vis-NIRS, respectively, while the RMSEP for
silt was reduced by 6% and 17% for LIBS and vis-NIRS, respectively. There was a 6% and
16% reduction in the RMSEP for sand for LIBS and vis-NIRS, respectively. Finally, a 2%
and 4% reduction in RMSEP for SOC was recorded for LIBS and vis-NIRS, respectively.
From these results, it was evident that data fusion benefited the prediction of texture more
as compared to SOC. In another study where LIBS and vis-NIRS were compared, as well
as the combined techniques, the authors noted that combining the two techniques did not
consistently improve the prediction of total carbon. Instead, LIBS was better at predicting
inorganic carbon, while vis-NIRS was better at predicting SOC. The combined technique
only improved the prediction of SOC over LIBS and inorganic carbon over vis-NIRS [14].
In a study by Tavares, et al. [35], it was observed that the performance of sensor fusion
techniques was dependent on the soil property under investigation. In both of the above-
mentioned studies by Bricklemyer, Brown, Turk and Clegg [14] and Tavares, Molin, Nunes,
Wei, Krug, de Carvalho and Mouazen [35], 60 soils collected from six fields in Montana,
USA, and 102 soils collected from two agricultural fields in Brazil, respectively, were used.
Therefore, both datasets covered a smaller scale, in terms of geographical distribution, than
in our study. Nonetheless, we still observed varying prediction accuracy depending on the
soil property.
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3.2.3. Correlation between LIBS and vis-NIRS Predictions

A correlation between LIBS and vis-NIRS predicted values for clay, silt, sand, and SOC
was performed to evaluate the degree of the relationship between the prediction models
developed for the two techniques.

The strongest correlation was observed for the predicted SOC content (R2 = 0.81),
followed by clay (R2 = 0.71), sand (R2 = 0.68), and silt (R2 = 0.59) (Figure 6). The varying
strength of correlation between LIBS and vis-NIRS could be attributed to the performance of
the individual single-sensor models, where the more accurate clay, SOC, and sand models
exhibited a stronger correlation compared to silt, which had the lowest RPIQ among all
the soil properties. The moderate-to-strong correlations also underscore the similarity in
terms of the predictive ability of LIBS and vis-NIRS for predicting soil properties [16,36].
Although the techniques are fundamentally different, there could be interrelationships
between the variations in soil properties. For instance, clay mineralogy could be a key
feature for both LIBS and vis-NIRS prediction models. Additionally, as shown in the
regression vector plots (Figure 7), most of the variability of the investigated soil properties
is commonly explained by the same features for both techniques, i.e., clay mineralogy,
parent rock material, and carbon (or organic matter).
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Figure 6. Correlation between LIBS and vis-NIRS predicted values (validation results) for clay (a), silt
(b), sand (c), and SOC (d).

However, as noted by Wangeci, Adén, Nikolajsen, Greve and Knadel [36], the uncer-
tainty of the reference method can influence the prediction accuracy, especially when the
reference error is significant. The comparable predictions exhibited by LIBS and vis-NIRS
could suggest the high repeatability of the two spectroscopic techniques for predicting
soil properties. In other words, the relationship between specific element emission ratios
(for LIBS) or absorption bands (vis-NIRS) could provide a more stable measure of the
concentration of soil properties in the absence of error-prone reference values. Paradoxi-
cally, in addition to soil heterogeneity, the accurate prediction of soil properties could be
hampered by the uncertainty of the applied reference method. It remains unclear whether
the sample subjected to reference method analysis accurately represents the sample sub-
jected to spectral measurements. This is more of a practical challenge since reference
analyses are commonly carried out before spectral measurements. Assuming the sample
surface presented for spectral measurements is homogeneous, we still do not guarantee the
overall sample homogeneity. This means that, in practice, the sample presented for refer-
ence analyses and the sample presented for spectral measurements could be two different
samples [37].
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3.2.4. Regression Vector Analysis

We referred to the NIST database (for the case of LIBS) on the basis of previous studies
(for LIBS and vis-NIRS) to interpret the regression vector plots. For LIBS, the common
emission lines identified were related to C, Mg, Si, Al, Ti, and Ca [38]. The Ti 323 and
334 nm emission lines were also identified by Knadel, Gislum, Hermansen, Peng, Moldrup,
de Jonge and Greve [16] in a Danish study and could be attributed to the parent rock
material for most soils from Denmark (Figure 7).

For vis-NIRS, common absorption bands characteristic to all the investigated soil
properties were associated with iron oxides, water molecules, clay minerals, and C-H
bonds [11,39–41] (Figure 7).

LIBS

The prediction of clay was influenced by high positive Ti 323 and 334 nm regression
vector scores and positive C 193 nm, C 229 nm, and Mg 279 nm scores. There were also
negative Al 185.5 nm and 309 nm, Si 288 nm, and Ca 396 nm regression vector scores. Lastly,
there was a less-prominent positive regression vector score associated with C 247 nm.

Silt variability was influenced by prominent positive C 193 nm, Ti 323 and 334 nm
regression vector scores, positive Mg 279 nm, Si 288 nm, Al 309 nm, and Ca 396 nm scores,
and negative C 229 nm and Si 251 nm scores. As was the case for clay, silt variability was
influenced by a less-prominent positive regression vector score associated with C 247 nm.
The influence of similar emission lines on clay and silt variability was also shown by the
moderate positive correlation between the two soil properties (Figure 8).

The variability of sand was influenced by high positive Al 309 nm and Ca 396 nm
regression vector scores, high negative Ti 323 and 334 nm scores, positive Al 185.5 nm, Si
251 nm and Si 288 nm, and negative C 193 nm and Mg 279 nm regression vector scores.
Lastly, there was a less-prominent positive regression vector score associated with C 247 nm.
The sand regression vector plot mirrored the clay and silt regression vector plots, as shown
by the inverted C 193 nm, Ti 323 and 334 nm, and Ca 396 nm regression vector scores. This
was also evident by the strong negative correlation between clay and sand, and clay and
silt (Figure 8).

Finally, SOC variability was influenced by prominent positive C 193 nm and C 229 nm
regression vector scores, prominent negative Al 185.5 nm, positive C 247 nm, Mg 279 nm,
and Ti 323 and 334 nm scores, and negative Al 309 nm, and Ca 396 nm scores. A less-
prominent positive C 247 nm regression vector score was also observed in the SOC regres-
sion vector plot.
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Vis-NIRS

The clay variability was influenced by high negative regression vector scores at around
1400 nm and 1900 nm associated with the OH bond, at 2200 nm associated with Al-OH (clay
mineralogy), and at 2300 nm related to C-H bonds. Another high positive regression vector
score at 2460 nm was visible, which could be related to the C-H band in the functional
groups of OM. There were multiple peaks between 470 and 650 nm related to Fe-oxides
and OC.

The silt regression vector plot was characterized by a high positive score at 2455 nm
and a high negative score at 2300 nm (both associated with the C-H band), negative scores at
around 1400 nm and 1900 nm associated with OH, multiple peaks between 470 and 650 nm
related to Fe-oxides and OC, and a less-prominent negative score at 2200 nm associated
with Al-OH.

The sand regression vector plot reflected the clay and silt plots. The inverse relation-
ship of the properties was also evident in the correlation matrix (Figure 8). There was a
prominent positive regression vector score at 2300 nm and another prominent negative
score at 2460 nm related to the C-H band. Additionally, there were positive regression
vector scores at 1400 nm and 1900 nm associated with OH, at 2200 nm related to Al-OH,
and multiple peaks between 470 and 730 related to Fe-oxides and OC.

Finally, the SOC regression vector plot was characterized by high positive and negative
regression vector scores between 2300 nm and 2350 nm associated with the C-H band in
functional groups of OM and indicative of clay mineralogy. There were positive regression
vector scores at 1700 nm associated with C-H, at 2100 nm related to N-H, and at 2200 nm
(Al-OH). The multiple peaks occurring between 470 and 750 nm linked to Fe-oxides and
OC were also visible. Lastly, there were less-prominent regression vector scores at 1400 nm
and 1900 nm associated with OH bonds from water molecules.

3.2.5. Variable Selection

Variable selection using iPLSR was applied to develop independent prediction models
for LIBS and vis-NIRS. The results for the investigated soil properties are presented in
Table 3. The results obtained after variable selection were also compared based on pre-
diction accuracy with the single-sensor and combined LIBS-vis-NIRS predictions. The
RMSECVs and RMSEPs for texture were rounded off to the nearest integer.

Table 3. Interval partial least square regression cross-validation and prediction results for clay, silt,
sand, and SOC.

Property NV a RMSECV b % R2 cv c RMSEP d % R2 pred e LV f RPIQ g

LIBS

Clay 200 4 0.81 3 0.86 14 3.5
Silt 210 3 0.73 3 0.72 13 2.4

Sand 80 6 0.81 6 0.83 13 3.1
SOC 50 0.53 0.74 0.48 0.77 12 2.7

Vis-NIRS

Clay 330 4 0.77 4 0.8 12 2.9
Silt 360 4 0.63 4 0.61 11 2.1

Sand 130 8 0.69 7 0.71 11 2.4
SOC 420 0.48 0.78 0.51 0.75 11 2.5

a number of variables chosen by iPLS; b root mean square error of cross-validation; c R2 cross-validation; d root
mean square error of prediction; e R2 prediction; f number of latent variables used for the model; g ratio of
performance to interquartile distance.

The order of performance for the investigated soil properties was largely similar for
both techniques, except for vis-NIRS SOC prediction, which performed slightly better
than sand. We also noted that for LIBS, iPLSR selected the least number of variables for
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the prediction of SOC (50 variables), while for vis-NIRS, SOC had the highest number
of variables (420 variables) among the investigated soil properties. Variable selection is
adopted to exclude wavelength regions that do not describe the variance in the reference
data, thereby lowering the interference of noise. While LIBS and vis-NIRS are different
techniques, there is a likelihood that the vis-NIRS SOC model had a higher influence of
noise as compared to LIBS.

Compared to the PLSR (full spectrum) LIBS predictions, there was a 27% and 17%
reduction in the RMSEP when variable selection was used for clay and sand, respectively,
and a 8% reduction in RMSEP for silt and SOC. For vis-NIRS, there was a 6% and 4%
reduction in RMSEP for clay and SOC, respectively, and a 3% reduction in RMSEP for
silt and sand. Overall, there was a greater benefit to using variable selection to develop
the LIBS prediction models for texture and SOC than vis-NIRS. It was also evident that
LIBS performed better (higher RPIQ) than vis-NIRS for all the investigated soil properties
(Figure 9).

An additional comparison of the prediction models between variable selection (using
iPLSR) and combined LIBS-vis-NIRS showed that independent LIBS models (variable
selection) performed better than the combined LIBS-vis-NIRS. In contrast, vis-NIRS (vari-
able selection) models had slightly higher prediction errors compared to the combined
LIBS-vis-NIRS models, except for SOC, which had a similar RPIQ (Figure 9).

When applying variable selection algorithms such as iPLSR, there is a risk of selecting
wavelength regions that may not be associated with the modeled soil property (noise).
For instance, when the number of selected wavelength regions is selected automatically
after specifying the interval size, the relevant emission peaks (for LIBS) may be too narrow,
or the absorption bands (for vis-NIRS) may be too wide to coincide with the selected
interval size, the vice versa is also true. To mitigate this mismatch, various interval sizes
are attempted, and the best interval size (lowest RMSECV) is selected. However, this is
simply an estimation, which is limited to the number of attempted interval sizes and not
necessarily the optimal model.
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Figure 9. Comparison of performance of the different regression approaches, as assessed using
the RPIQ.

4. Conclusions

In this study, a national-scale dataset was used to compare two spectroscopic methods,
LIBS and vis-NIRS, in terms of prediction accuracy. The spectral data from the two tech-
niques were also combined, and prediction models were developed for texture and SOC.



Sensors 2024, 24, 4464 16 of 18

For the single-sensor models, LIBS had a higher accuracy for the prediction of silt, sand,
and SOC content, while vis-NIRS had a higher accuracy for the prediction of clay content.
Nonetheless, when considering the RMSEP and the predicted values from the individual
sensors, the performance of both techniques was largely similar. Combining the two tech-
niques improved the prediction accuracy for all the investigated soil properties (except for
the LIBS SOC model, which was comparable) as compared to the single-sensor models.
Prediction models developed using iPLSR (variable selection) improved the prediction
performance of the investigated soil properties for both LIBS and vis-NIRS. There was a
notably better performance for the LIBS iPLSR prediction models as compared to both
single-sensor and the combined LIBS-vis-NIRS prediction models. This suggests that it
could be more beneficial to apply variable selection for LIBS models as compared to cou-
pling with vis-NIRS. Overall, these results demonstrate the capability of both LIBS and
vis-NIRS to predict texture and SOC from soils covering different land uses and soil depths
with the potential to improve prediction accuracy by combining spectra obtained from both
techniques. However, when presented with a choice of the best technique for soil applica-
tion, other factors, such as the required sample preparation, measurement time, cost, and
the accessibility of the instrumentation, should be considered. To enable a fair comparison,
future studies should focus on the costs and accuracies associated with different sensor
techniques for estimating soil properties. Finally, it is not yet clear why two fundamentally
different techniques, LIBS and vis-NIRS, end up with comparable prediction performance.
The principal components-based data fusion produced improved prediction results for
different soil types of samples containing high sand content applied in this study. Future
studies should investigate the effect of the reference method uncertainty on the accuracy of
the developed prediction models.
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