
Citation: Ojala, T.; Punkki, J.

Estimating the Workability of

Concrete with a Stereovision Camera

during Mixing. Sensors 2024, 24, 4472.

https://doi.org/10.3390/s24144472

Academic Editors: Antonio

Fernández-Caballero and Marco Leo

Received: 30 April 2024

Revised: 7 July 2024

Accepted: 9 July 2024

Published: 10 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Estimating the Workability of Concrete with a Stereovision
Camera during Mixing
Teemu Ojala * and Jouni Punkki

Department of Civil Engineering, School of Engineering, Aalto University, 02150 Espoo, Finland;
jouni.punkki@aalto.fi
* Correspondence: teemu.ojala@aalto.fi

Abstract: The correct workability of concrete is an essential parameter for its placement and com-
paction. However, an absence of automatic and transparent measurement methods to estimate the
workability of concrete hinders the adaptation from laborious traditional methods such as the slump
test. In this paper, we developed a machine-learning framework for estimating the slump class of
concrete in the mixer using a stereovision camera. Depth data from five different slump classes
was transformed into Haralick texture features to train several machine-learning classifiers. The
best-performing classifier achieved a multiclass classification accuracy of 0.8179 with the XGBoost
algorithm. Furthermore, we found through statistical analysis that while the denoising of depth
data has little effect on the accuracy, the feature extraction of mixer blades and the choice of region
of interest significantly increase the accuracy and the efficiency of the classifiers. The proposed
framework shows robust results, indicating that stereovision is a competitive solution to estimate the
workability of concrete during concrete production.
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1. Introduction

Concrete has various advantages over other construction materials, such as high
compressive strength, excellent durability, high fire resistance, and a high level of local
manufacturing. After mixing in a concrete plant, ready-mix concrete is transported to the
construction site and compacted into various shapes and types of concrete structures. One
critical property of fresh concrete is workability, which describes how easy the concrete is
to place and compact [1]. Concretes that do not meet the workability requirements can be
rejected during the on-site inspection, causing extra waste and expenses [2] and delaying
the casting process. It has also been demonstrated that the risk of segregation significantly
increases during compaction when more fluid concretes are used [3]. Consequently, varia-
tion in concrete workability can have harmful effects on the quality of the concrete structure.
Therefore, measurement systems must be developed for the fresh concrete, ensuring that
the concrete conforms to the set requirements.

Concrete comprises constituents whose natural variation causes changes in fresh
concrete properties. Since a significant part of the concrete consists of low-processed
natural aggregates, grading and moisture content of aggregate vary and cause variations in
the workability during the batching process [4–7]. The grading and moisture content of the
aggregate is measured in the mixing station to adjust the mix composition to compensate
for this natural variation. However, significant fluctuation in workability may remain even
with successive concrete batches proportioned with the same recipe. Moreover, increasingly
more complex mix compositions are required to satisfy the future requirements of high-
performing green concretes [8,9]. These more demanding mix compositions can create
challenges in reaching the desired properties for fresh concrete. Continuous measurement
systems could detect defective concrete in real time, decreasing the safety margins in
concrete production and reducing costs and emissions.
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Rheological properties have been used to describe the workability of concrete [1,10]
and to estimate concrete behavior during its placement into the formwork [11]. The fluid
behavior of concrete is often described using the Bingham model [12], where parameters
plastic viscosity µ (in Pa·s) and yield stress τ0 (in Pa) depict the flow characteristics. As such,
Bingham fluids should be characterized using two-point tests [1], where the relationship
between the viscosity and yield stress are determined at least in two points. Because
rheological testing requires special equipment, it has been used only as a measurement
method in concrete research. Consequently, the correct workability is verified using a
one-point test called the slump test [13], which describes how concrete behaves under
gravitational force [1]. Thus, the slump test does not sufficiently describe the behavior of
concrete, as concretes with the same slump value can have different rheological properties.
While the testing equipment is lightweight and technically rudimental, only a fraction of
the concrete batches are tested due to the high cost of labor and time. Moreover, the test is
susceptible to incorrect execution and reporting. Therefore, new approaches are needed to
improve concrete production quality control and safety assurance [9,14]. These techniques
should overcome the limitations of one-point tests and allow continuous and real time
measurement possibilities.

Various machine learning (ML) methods have been used to characterize concrete,
optimize mix designs, estimate fresh and hardened concrete properties, and investigate
concrete durability and cracks, as summarized exhaustively in [15,16]. In addition, the
application of ensemble ML models has improved the accuracy and robustness of these
models, such as eXtreme Gradient Boosting (XGBoost) which leverages tree boosting [17,18].
Consequently, the scalability and superior performance of these models have proved their
capabilities in the field of engineering [17–22]. The high performance of XGBoost can be
explained by its efficiency in tree pruning, regularization, and parallel task processing [18].
To predict the workability of concrete, the ML models have relied on numerical data,
such as tabular information about concrete composition [23–27]. However, predicting the
workability of concrete based on the concrete composition is always vulnerable to errors
caused by the natural variability in constituents. Consequently, the variability should
be minimized during the mixing process, which cannot be achieved by monitoring the
numerical data alone.

A few computer-vision (CV) techniques have emerged to estimate concrete workability
based on digital images. Li and An [28] first used CV to predict the workability of self-
compacting concrete (SCC) using images captured from a single-shaft laboratory mixer.
By analyzing these images, they quantified the shape of the concrete on the mixing blade,
which correlated with the slump-flow test results. While converting the visual information
into features demonstrated promising results, the extraction procedure required significant
effort. Similarly, Ding and An [29] used the same visual information to estimate the
moisture content of SCC concrete during the mixing process. This method relied on the
linear correlation between the slump-flow test and the water-to-powder ratio when the
amount of superplasticizer is constant. The study demonstrated how CV techniques can be
used to optimize the mix compositions if the other parameters are known.

Deep learning (DL) models can be used to predict the workability of SCC, as discov-
ered by Ding and An [30,31]. In addition, sequential image information can be fed to the
convolutional neural network (CNN) model when long-short-term memory (LSTM) [32]
units pass the temporal information forward in the network. The framework involved
recording videos during the mixing process and pre-processing them into short sequences
before the model training. Alternatively, Yang et al. [25] used CNNs to identify multiple
characteristics of the mix composition from digital images. The images depicted different
concrete batches placed on a large tray after mixing. Unfortunately, the DL models are chal-
lenging to interpret, making identifying the essential features for good estimation difficult.

Coenen et al. [33,34] developed a new framework that enables the estimation of
concrete workability from the concrete truck during the discharge process. In their research,
the flow characteristics were predicted from observing sequences of images of flowing
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concrete in open-channel geometry, representing a chute of a concrete truck. The images
were converted into spatio-temporal flow fields that were used as input for the CNN
model. The model estimated both the consistency and rheological parameters of the
concrete. As noted by the authors, the flow field of the concrete mixer is more erratic,
making the framework less likely to function in the concrete mixer. Moreover, predicting
the workability of stiff concretes may be more difficult since the surface of the concrete
flows more uniformly. In these DL approaches to estimate the workability in the mixer, the
models see only a two-dimensional presentation of the concrete.

A key component of human visual estimation of workability is the perception of depth.
Tuan et al. [35] proposed a stereovision system to identify the slump value after lifting the
cone in the standardized slump test. The computed depth maps provided the slump of
the concrete. In addition, they used the DL model to classify concrete slumps so that only
valid test results were measured. Yoon et al. [36] combined point cloud analysis extracted
from the standardized mini-slump flow test using a depth camera and an artificial neural
network (ANN) to estimate fresh concrete properties directly from the concrete sample’s
diameter, height, and curvature after the slump cone has been lifted. While this approach
does allow automatic logging of the results, removing the user error when reading the
slump value, it does not remove the tedious setup of the testing process. Ponick et al. [37]
have also used stereovision to determine the rheology of ultrasonic gel through a mixing
paddle. Their work established a convincing correlation between rheological parameters
and stereo images using a flow curve. This curve was obtained through the training of
the CNN model based on the 3D reconstruction of the substrate’s surface. The study
demonstrated the potential of depth measurement and the possible relationship between
the substrate and rheological parameters, which can be used to relate depth information to
rheological parameters if required.

In this paper, we propose a novel framework to estimate the concrete slump using a
stereovision camera during the mixing process. Unlike previous studies on workability
estimation, this research utilizes depth data collected during the mixing process to train
several ML classifiers while maintaining a high level of transparency across the whole
pipeline. Furthermore, the depth data are feature-engineered to improve the efficiency
of the framework, focusing on the intrinsic features of the concrete mixer. The proposed
framework consists of data collection, data preparation pipeline, training, and prediction
of the ML models, and finally, model selection based on the performance. The main
contributions of this study are:

• We designed an ML framework to estimate the slump of concrete using a stereovision
camera during the mixing process.

• We established a transparent and lightweight ML pipeline to convert the depth infor-
mation to suit the ML algorithms while preserving the core features for estimation
of workability.

• We investigated the robustness and sensitivity of the framework through comparative
and statistical analysis between different data preparation methods.

2. Materials and Methods
2.1. Materials and Mix Composition

A concrete mixture composition was batched in laboratory conditions where the
temperature of the materials and the laboratory was 20 ◦C ± 2 ◦C. The mix composition of
the concrete was designed so that only a part of the water of the mix composition could
be added during the initial mixing to produce stiff concrete with a slump class of S1. The
remaining water was added in multiple steps during the experiment without introducing
segregation effects to the concrete. It was experimented that adding 0.341 kg of water in
each mixing cycle increased the slump class from S1 to S5, increasing the water-to-cement
ratio from 0.40 to 0.55. Thus, a mix composition with the final water-to-cement ratio of
0.55 was designed, consisting of 390 kg/m3 of cement, 1698 kg/m3 of aggregates, 215 kg/m3

of effective water, and 3.9 kg/m3 of superplasticizer (MastersBuilders, MasterGlenium
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Sky 600, Riihimäki, Finland). A common cement type CEM II/B-M S-LL 42.5 N was used
in the mixture, produced by Finnsementti (Parainen, Finland). Seven aggregate fractions
were used, which were washed and sieved and had a maximum aggregate size of 16 mm.

2.2. Experimental Setup

A planetary laboratory mixer (MP 75/50, Sicoma, Perugia, Italy) was used to mix the
concrete batch, as shown in Figure 1a. The volume of the batch was 35 L, which is the
maximum volume recommended by the manufacturer. The forced mixing system of the
mixer consists of two blades; an arm-bearing mixing spider blade that rotates around its
axis as well as the axis of the mixing tank and a second arm blade on the opposite side of
the spider, which scoops the concrete towards the center of the mixing tank. The rotation
speed of the main shaft was set to 44 rounds per minute.
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applied grayscale color map. 

Figure 1. (a) An overview image of the planetary mixer and location of the stereovision camera.
(b) RGB color view from the stereovision camera (c) Depth view from the stereovision camera with
an applied grayscale color map.

Six mixing cycles were performed to collect the required slump classes. The dry
constituents were mixed for 30 s during the first mixing cycle. The water was poured into
the mixer within 30 s without stopping the mixer. Similarly, a superplasticizer dosage was
added to achieve the initial slump target within the next 30 s and finally mixed for another
two minutes. The slump test was performed immediately after each mixing cycle. A new
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mixing cycle was started every 15 min by adding the additional water dosage into the
mixer. The mixture was mixed in the following cycles for two minutes to allow the concrete
to become homogenous first and then to collect a sufficient amount of depth data. Because
the slump class did not increase during the fifth mixing cycle, an additional mixing cycle
was added to achieve the slump class of S5.

An active stereovision camera (RealSense™ Depth Camera D455, manufactured by
Intel, Santa Clara, CA, USA) was used to collect the depth data, as shown in Figure 1a. The
stereovision camera was placed on a standalone support, isolated from the vibrations of
the mixer. This camera uses an additional infrared light source between the two cameras to
assist the camera in computing the depth without a visible light source, making the camera
less sensitive to external lights and the angle of incidence. Furthermore, the camera has a
global shutter to minimize the effect of a rolling shutter when recording high-speed motion,
such as rotating mixer blades. The stereovision camera uses parallax and triangulation to
estimate the depth [38]. A small distance between the cameras allows the triangulation of
the object’s position and translates that into distances between the camera and the subject.
A stereovision system typically has two parallel cameras with the same focal length (f ).
The distance between the cameras is called the baseline (b). The difference in the position
between left (xl) and right (xr) frames for an object is called disparity (d). Hence, the distance
to the object (Z) from the camera is calculated using Equation (1):

Z =
b f
d

=
b f

xl − xr
. (1)

In our experiment setup, the stereovision camera was placed on an arm connected to a
separate column to isolate it from the vibrations of the mixer, as seen in Figure 1a. With
a fixed field of view of 87◦ × 58◦, the camera could cover approximately one-third of the
mixer floor area, as seen in Figure 1b. A pre-calibrated accuracy of the depth camera was
reported to be <2% at four meters. During the experiment, the camera was tethered to
a laptop where Intel RealSense™ Viewer software (2.43.0) was used to select the camera
settings and to record the depth data via a high-speed USB cable. The preview of the depth
data can be seen in Figure 1c, where objects closer to the camera are rendered with white
pixels, and objects further away are rendered with darker pixels.

2.3. Data Preparation

The depth data was prepared for machine learning using the developed processing
pipeline, as summarized in Figure 2. The pipeline was divided into three main phases:
(1) denoising of the depth data, (2) feature extraction, and (3) preparation of datasets.
The depth data was stored as one unsigned 16-bit integer per pixel (Z16) format and
cannot be viewed without conversion to a standard video format such as MP4 file format.
Many filtering methods have been developed to denoise the depth data from artifacts,
triangulation errors, and temporal noise. The authors experimented with various denoising
methods integrated into the Intel RealSense ROS wrapper. These methods are also available
in the Intel RealSense Viewer software. The authors followed the recommended scheme for
the processing pipeline and its RealSense tools, which the manufacturer presented. The
code was implemented in Python 3.7 and is available upon request. The data preparation
phases are described in more detail in Sections 2.3.1–2.3.3.
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2.3.1. Phase 1: Denoising of the Depth Data

Two denoising methods (DM 1 and DM 2) were applied to process the depth data in
the first phase. While DM 1 represents minimal denoising (Figure 3a), DM 2 represents
substantial denoising of the depth data (Figure 3b). Figure 3c shows the denoising process
where depth frames are denoised using various filters, resulting in filtered depth frames.
It can be seen in the figure that DM 1 skips the denoising filters, only applying a custom
color map. On the other hand, the denoising techniques in DM 2 consisted of decimation,
threshold, spatial, and temporal filters. The most prominent denoising filter in DM 2 is a
hole-filling filter, which fills the areas where the triangulation failed, shown as black pixels
in Figure 3a. This morphological filtering has been used to remove noise caused by the
camouflage and lighting effects [39]. The filtered depth data were saved as grayscale videos,
consisting of frames where the depth measurements are seen as pixel intensity values in a
range between (0 and 255), depending on the distance to the camera as set by the threshold
filter. By selecting a low limit of 45 cm and a high limit of 90 cm, the mixer floor was seen
in near black and the blades in near white pixels in the resulting videos.

2.3.2. Phase 2: Feature Extraction

In the second phase, feature extraction techniques were applied to the grayscale videos.
The feature extraction aimed to potentially improve the performance of the models as well
as investigate the robustness and sensitivity of the ML classifiers. As shown in Figure 2,
the extraction phase was divided into three steps, where the videos were processed to find
ideal features for the ML models. The extraction started with a selection of three different
regions of interests (ROIs), which were 150 × 150 px2, 100 × 100 px2, and 50 × 50 px2. The
resulting images are visualized in Figure 4, where an example frame was cropped based on
the three ROIs. The figure illustrates how the largest ROI maximized the visible surface
area, while the smaller ROIs focused on the small area where the mixer blades interacted
with the concrete.
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Figure 4. Each frame was cropped to a square based on the region of interest (ROI) size. While the
largest ROI barely covered the opening of the mixer, the smallest ROI focused on the view of the trail
of the mixer blades.

In the next step, four filtering methods (FMs) were applied to highlight the features
of the mixer: FM 0 was a reference method without denoising, FM 1 removed the frames
with mixer blades visible, FM 2 kept the frames with the scoop visible, and FM 3 kept the
frames with the spider blade visible. Before the denoising, the frames were divided into
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rotation cycles based on the visibility of the yellow mixer blades by monitoring the number
of yellow pixels in each frame.

Haralick texture features (HTFs) have been used to convert visual data into numerical
values in increasing numbers in various fields, as summarized by Löfstedt et al. [40].
These features were first used by Haralick et al. [41], who proposed using a gray-level
co-occurrence matrix (GLCM) to compute statistical features. HTFs represent statistical
properties such as contrast and entropy [41] and are known for their simplicity and intuitive
interpretation [40]. They are also believed to be robust against noisy images [42]. This study
used the Mahotas library for Python (Mahotas 1.4.13) to compute HTFs for each frame.
The GLCM and Haralick texture features can be computed using definitions in Table 1, as
described in [40,41]. In the table, the P(i, j) describes the elements i, j in the unnormalized
GLCM, and the Ng represents the number of grey levels in the quantized image [40,41].

Table 1. The description and definition of the gray-level co-occurrence matrix (GLCM) and its
variables 1–4 and the descriptions and definitions to compute the 13 Haralick texture features with
its required variables 5–6 based on [40,41].

Description Definition

Normalized GLCM p(i, j) = P(i,j)

∑
Ng
i=1 ∑

Ng
j=1 P(i,j)

(2)

Variable 1 px(i) =
Ng

∑
j=1

p(i, j) (3)

Variable 2 py(j) =
Ng

∑
i=1

p(i, j) (4)

Variable 3 px+y(k) =
Ng

∑
i=1

Ng

∑
j=1

P(i, j), k = 2, 3, . . . , 2Ng
(5)

Variable 4 px−y(k) =
Ng

∑
i=1

Ng

∑
j=1

P(i, j), k = 0, 1 . . . Ng − 1 (6)

(1) Angular Second Moment f1 =
Ng

∑
i=1

Ng

∑
j=1

{p(i, j)}2 (7)

(2) Contrast f2 =
Ng−1

∑
k=0

k2 px−yk (8)

(3) Correlation f3 =
∑

Ng
i=1 ∑

Ng
j=1 (ij)p(i,j)−µxµy

σxσy
(9)

where µx, µy, σx, and σy represent the means and
standard deviation of px and py.

(4) Sum of Squares: Variance f4 =
Ng

∑
i=1

Ng

∑
j=1

(i − µ)2 p(i, j) (10)

(5) Inverse Difference Moment f5 =
Ng

∑
i=1

Ng

∑
j=1

1

1 + (i − j)2 p(i, j) (11)

(6) Sum Average f6 =
2Ng

∑
i=2

ipx+y(i) (12)

(7) Sum Variance f7 =
2Ng

∑
i=2

(i − f8)
2 px+y(i)

(13)

(8) Sum entropy f8 = −
2Ng

∑
i=2

px+y(i)log
(

px+y(i)
) (14)

(9) Entropy f9 = −
Ng

∑
i=1

Ng

∑
j=1

p(i, j)log(p(i, j)) (15)

(10) Difference Variance f10 = variance o f px−y (16)

(11) Difference Entropy f11 = −
Ng−1

∑
i=0

px−y(i)log
(

px−y(i)
) (17)

(12) Information Measure
of Correlations f12 =

f9−HXY1
max{HX,HY} (18)
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Table 1. Cont.

Description Definition

(13) Information Measure
of Correlations f13 =

(
1 − e(−2.0(HXY2−HXY)

)1/2 (19)

where HX and HY are entropies of px and py.

Variable 5 HXY1 = −
Ng

∑
i=1

Ng

∑
j=1

p(i, j)log
(

px(i)py(j)
) (20)

Variable 6 HXY2 = −
Ng

∑
i=1

Ng

∑
j=1

px(i)py(j)log
(

px(i)py(j)
) (21)

2.3.3. Phase 3: Preparation of Datasets

The datasets were generated for each DM, ROI, and FM combination. Thus, 24 unique
datasets were created for the training and evaluation of the ML models, as shown in Table 2.
Only the last 40 s of each mixing cycle was used to ensure a sufficient representation of data,
which resulted in an unfiltered number of 2400 frames for each slump class. Consequently,
the reference filtering method (FM 0) dataset consisted of 12,000 frames, or observation points
after the conversion to HTFs, for all five slump classes. For the remaining FMs, the number of
observation points varied between 2854 and 8117 in the datasets, depending on the amount of
filtration. The observation points were divided into training and testing datasets by selecting
the last 20% of the frames for the testing. While the training dataset was used to train and
validate the ML classifiers in the training process, the testing dataset was only used in model
selection. Since the ML classifiers required the output labels in numerical format, the slump
classes were numerically hot encoded as follows: S1: 0, S2: 1, S3: 2, S4: 3, S5: 4.

Table 2. Parameters of the dataset preparation and the number of observation points in each dataset.

Denoising
Method Region of Interest Filtering

Method
Total Number of

Observation Points
Number of Training
Observation Points

Number of Testing
Observation Points

DM 1

ROI BIG

FM 0 12,000 9600 2400
FM 1 2854 2283 571
FM 2 6939 5551 1388
FM 3 6416 5132 1284

ROI MED

FM 0 12,000 9600 2400
FM 1 4412 3529 883
FM 2 6939 5551 1388
FM 3 6416 5132 1284

ROI SMALL

FM 0 12,000 9600 2400
FM 1 5052 4041 1011
FM 2 6939 5551 1388
FM 3 6416 5132 1284

DM 2

ROI BIG

FM 0 12,000 9600 2400
FM 1 6339 5071 1268
FM 2 6978 5582 1396
FM 3 6382 5105 1277

ROI MED

FM 0 12,000 9600 2400
FM 1 7382 5905 1477
FM 2 6978 5582 1396
FM 3 6382 5105 1277

ROI SMALL

FM 0 12,000 9600 2400
FM 1 8117 6493 1624
FM 2 6978 5582 1396
FM 3 6382 5105 1277

2.4. Training of Machine Learning Classifiers
2.4.1. Selection of ML Classifiers

The investigated ML classifiers are summarized in Table 3, but more detailed infor-
mation about these classifiers can be found in [43]. The table shows the abbreviations
and working principles of the nine selected ML classifier algorithms: decision tree (DT),
gradient boosting (GBoost), k-nearest neighbor (KNN), logistic regression (LR), multi-layer
perceptron (MLP), naïve bayes (NB), random forest (RF), and support vector machine (SVM)
and extreme gradient boosting (XGBoost), from which GBoost and XGBoost algorithms
were so-called ensemble algorithms. The Python library Scikit-learn (0.24.2) was used to ini-
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tiate these algorithms in the training process, except for the XGBoost model, the employed
Python library XGBoost (2.0.3). The performance of the ML model is highly influenced
by a combination of hyperparameters [19,44]. As such, applicable hyperparameters were
investigated extensively to find the best-performing configuration for each classifier. As a
result, the best 216 models were selected from a total of 9778 trained models, each selected
model representing the unique combination of dataset and ML classifier.

Table 3. Selected machine learning classifiers and their working principles.

ML Classifier Abbreviation Working Principle

Decision Tree DT It is a set of hierarchical tests where the final decision
or outcome is drawn from the terminal node [45].

Gradient Boosting GBoost
Combines multiple weak models (usually decision
trees) to create a strong predictive model that does

not use regularization [46].

K-Nearest Neighbor KNN
Predicts the class of an unseen point by voting by
finding the k-nearest neighbors and assigning the
point the same label as the most voted label [47].

Logistic Regression LR
Finds the linear decision boundaries that separate

the differing classes [48,49]. A ℓ2-regularization [50]
technique was applied automatically.

Multi-layer Perceptron MLP A feedforwarding artificial neural network that is
comprised of fully connected neurons [51].

Naïve Bayes NB
Information in the dataset is used to estimate the

posterior probability of each class y given object x,
which is then used for classification purposes [52,53].

Random Forest RF Instead of a single decision tree, an ensemble of
multiple trees is trained on the dataset [45,54],

Support Vector Machine SVM establishing optimal hyperplanes to differentiate
classes in data using linear algebra [55].

eXtreme Gradient Boosting XGBoost

Develops a series of weak learners by aggregating
the predictions of several weak models, such as

decision trees [56] that regarded as optimized and
scalable version of GBoost with regularization [17].

2.4.2. Evaluation Approach

Various evaluation approaches were employed to assess the framework presented in
this paper. For the training process of the ML classifiers, the datasets were divided into
training and testing datasets. The training dataset was used with cross-validation (CV) to
train and validate the models. The CV allows a more generalized evaluation of the model’s
performance when the dataset is limited [57]. As such, CV has been used a lot in concrete
sciences [58,59]. The most used technique, k-fold CV, runs multiple iterations for model
validation, resulting in a more robust estimation [15]. For the paper, a k-fold inner CV was
selected (see Section 2.3.3) with five splits (k = 5). It must be noted that k-fold CV can still
introduce a bias with smaller datasets, which is often the case with concrete studies [57].

After the training, the model performance was investigated by computing the eval-
uation metrics that are commonly used to assess the performance of the ML classifiers.
They provide quantitative insight for hyperparameter tuning and model selection. The
Python library Scikit-learn (0.24.2) was used to compute the PCA and performance metrics.
Before this, each instance is classified as true positive (TP), true negative (TN), false positive
(FP), and finally false negative (FN), as listed in [60]. The principles of calculating accuracy,
precision, recall, and F1 score are shown in Equations (22)–(25). The authors suggest a
paper by Hossin and Sulaiman [61] for a more complete review of evaluation metrics for
classification purposes. In addition, a quadratic weight kappa (QWK) [62] was computed
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to analyze the agreement between the instances using Equation (26). The accuracy is
calculated using the equation:

Accuracy =
TP + TN

TP + FP + TN + FN
(22)

where the accuracy represents the ratio of correctly predicted instances to all evaluated
instances. In the equation:

Precision =
TP

TP + FP
, (23)

where the precision represents the ratio of correctly predicted positive instances to all
predicted positive instances. The recall presents the ratio of correctly predicted positive
instances to all actual positive instances in the equation:

Recall =
TP

TP + FN
. (24)

The precision and recall metrics can be described with the F1 score that represents the
harmonic mean between the precision and recall with the equation:

F1 score = 2· Precision ·Recall
Precision + Recall

(25)

To analyze the agreement between a set of predictions and a set of multi-class labels,
QWK was computed using the equation:

QWK =
p0 − pe

1 − pe
(26)

where p0 represents the observed agreement ratio, pe represents the expected agreement of
randomly assigned labels.

In addition to the evaluation metrics, the performance was visualized with computing
confusion matrices, which reveal the disposition of the predicted and actual instances [60].
In other words, the confusion matrix provides information on how all the predicted in-
stances are compared to the ground truth values, e.g., measured slump classes. As noted
by Fawcett [60], the values along the diagonal line of the confusion matrix show the correct
predictions made by the classifier, and the values of this diagonal reveal the mispredictions
between the various classes.

A principal components analysis (PCA) statistical technique was performed on the
dataset with the best-performing dataset (DM 1, ROI BIG, FM 0) to uncover the patterns in
high-dimensional data. The PCA technique aims to reduce the dimensions of the dataset
while maintaining as much variability as possible, making the structure of high-dimensional
data more interpretable with minimal information loss [63]. This reduction is achieved by
finding new uncorrelated variables, e.g., principal components (PCs), that consecutively
maximize variance for the given dataset. In addition, a biplot was drawn to display both
the transformed values of the HTFs and the loadings for the PCs. The biplot helps to
explain how HTFs contribute to the variation captured by the PCs and how they are related
to these components. In the biplot, the HTF vectors point in the direction of the maximum
variance, revealing how a particular feature influences the PCs. The arrow length reflects
the importance of a feature in explaining the variance captured by the PCA. As such, a
longer arrow means that the feature plays a more significant role in the data variance along
the direction of a principal component. Vectors pointing in the same direction indicate a
strong correlation between the features, and vectors aligning with the PC axis are highly
influential to that component.

Finally, the impact of the data preparation was analyzed by assessing the performance
of the ML classifiers with different parameters through visual comparison and statisti-
cal analysis. The three data preparation parameters were selected for this analysis: DM,
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ROI, and FM. The testing results were grouped based on the nine selected ML classifiers.
A Shapiro–Wilk test [64] was first conducted to confirm the normal distribution of the
data. Since the normality assumption was violated (p-value < 0.05 with α = 0.05), the
null hypothesis was rejected, and non-parametric tests were executed, which do not re-
quire the assumption of normal distribution across the independent groups. While the
Mann–Whitney U test [65] was performed to compare DM, the Kruskal–Wallis test [66]
was carried out to compare groups within the ROI and FM. The tests produce a statistic
from which a p-value can be derived. A low p-value indicates a statistically significant
difference between the medians of the groups. Additionally, Dunn’s Multiple Comparison
test [67] was carried out to indicate the specific groups causing the difference if a statistical
difference was found between three or more groups. The tests were computed using a
Python library, SciPy (1.7.1).

3. Results and Analysis
3.1. Fresh Concrete Results

The slump test was performed after each mixing cycle. Table 4 shows the measured
slumps and their corresponding slump classes. In addition, the table notes the range of
slump values allowed within each slump class as presented in SFS-EN 206 [68]. The fifth
mixing cycle was repeated, as the water addition did not increase the slump class to S5.

Table 4. The results of slump measurements and their corresponding slump classes. The allowed
slump within slump class represents the range of slump values used to categorize the slump into
slump classes S1 to S5.

Cycle No. Slump [mm] Slump Class [-] Allowed Slump
within the Slump Class [mm]

1 30 S1 10–40
2 70 S2 50–90
3 150 S3 100–150
4 170 S4 160–210
5 200 S4 160–210
6 230 S5 ≥220

3.2. Model Selection by Performance
3.2.1. Performance Metrics

The evaluation results of the nine ML classifier algorithms are shown in Table 5.
The most accurate model across all the metrics was trained with the XGBoost algorithm,
reaching a testing accuracy of 0.8179. The table shows that the model was trained with
dataset parameters of DM 1, ROI BIG, and FM 2. Furthermore, models trained with
algorithms MLP (0.8078), GBoost (0.7991), and RF (0.7855) achieved reasonable testing
accuracies. The lack of differences between the calculated evaluation metrics such as
testing precision, recall, and thus F1 score, suggests that models have consistent model
performance, such as predicting false positives and negatives, implying that models do
not favor certain classes. A higher QWK was consistent across all classifiers, revealing
that the multi-classification problem contains ordinal classes where the models tend to
confuse neighboring classes from the true class. By penalizing these misclassifications less,
the QWK score of 0.9156 was reached with XGBoost. In addition, a similar performance
indicates that models are robust in generalizing the training data to the unseen test data.
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Table 5. Evaluation results based on the testing dataset. The following columns are represented:
Classifier denotes the used ML classifier algorithm, DM denotes the denoising method, ROI denotes
the region of interest, FM denotes the filtering method and QWK denotes quadratic weight kappa.

Classifier DM ROI FM Testing Accuracy Testing Precision Testing Recall Testing F1 Score Testing QWK

DT 1 BIG 2 0.6911 0.6945 0.6911 0.6916 0.8000
GBoost 1 BIG 2 0.7991 0.8002 0.7991 0.7994 0.9017
KNN 1 BIG 2 0.7387 0.7405 0.7387 0.7391 0.8529

LR 2 BIG 1 0.6145 0.6093 0.6145 0.6104 0.8458
MLP 2 BIG 1 0.8078 0.8110 0.8078 0.8081 0.9122
NB 1 BIG 1 0.4049 0.4132 0.4049 0.4019 0.6246
RF 1 BIG 2 0.7855 0.7951 0.7955 0.7951 0.8787

SVM 2 BIG 1 0.7467 0.7455 0.7467 0.7456 0.8963
XGBoost 1 BIG 2 0.8179 0.8184 0.8179 0.8179 0.9156

3.2.2. Confusion Matrices

The confusion matrices for each best classifier are visualized in Figure 5. The confusion
matrices reveal that the predictions are mainly located along the diagonal line with all
classifiers, and only a fraction of the predictions were mislabeled with algorithms such as
XGBoost, MLP, and GBoost. It can be observed that the models are misclassified more with
stiff concrete, indicating that the models perform better with medium to high workability
concretes. This phenomenon is more pronounced with worse-performing classifiers such
as LR and SVM in the figure. The authors believe this could be linked to a lack of defor-
mation with stiff concrete caused by the higher yield strength. When the yield strength is
sufficiently low, the concrete starts to move without restrictions governed by its viscosity.
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Figure 5. Confusion matrices of nine ML classifiers. The horizontal and vertical axes represent
the predicted and actual (measured) classes, respectively. ML classifiers where: (a) DT = decision
tree; (b) gradient boosting = GBoost; (c) KNN = k-nearest neighbor; (d) LR = logistic regression;
(e) MLP = multi-layer perceptron; (f) NB = naïve bayes; (g) RF = random forest; (h) SVM = support
vector machine; and (i) extreme gradient boosting (XGBoost). The dataset preparation parameters
were DM: denoising method, ROI: region of interest, and FM: filtering method.

Figure 5 further reveals that the incorrect predictions seem to be located in the neigh-
boring slump classes, indicating that the classifiers have more difficulties distinguishing
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similar workabilities. This phenomenon is probably caused by discretizing the slump
values into slump classes. There is also a possibility that the shape of the concrete surface
resembles frames collected with different slumps at specific moments during the mixing
cycle, causing greater misclassifications. However, the number of incorrect predictions
outside the neighboring classes is negligible with the best-performing models. A regression-
based prediction model would better reflect the nature of consistency without having hard
limits between the slump classes.

3.3. Principal Component Analysis of the Haralick Texture Features

The PCA technique was performed to inspect how the HTFs relate to the slump classes.
The dataset (DM 1, ROI BIG, and FM 2) for the best-performing model was selected for the
analysis, consisting of 6939 computed Haralick features as observation points. The number of
PCs was selected based on Kaiser’s rule, stating that the principal components (PCs) should
have greater than or equal power to explain the variance in the data [69]. Thus, two PCs were
retained with an eigenvalue less or equal to one, according to the scree plot in Figure 6a.
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Figure 6. (a) The scree plot showing eigenvalues of the 13 principal components. (b) A biplot showing
the influence of the computed Haralick texture features on the two principal components with the
five slump classes.

The values of the two main PCs are plotted in Figure 6b, where they are color-coded
according to the measured slump classes, each representing an individual frame. From the
figure, different slump classes can be distinguished as overlapping clusters concentrated in
different locations. In more detail, fluid concrete tends to have lower PC 1 values, whereas
stiffer concrete occupies higher values of PC 1. The values of the PC 2 seem to increase as
the concrete becomes more fluid. Interestingly, the variability in PC 2 appears to decrease
with the fluid concrete, which might be correlated to a less complex but more repeatable
concrete appearance.

The relationship between the HTF vectors and PCs can further reveal how well the
PCs can describe the collected depth data. In Figure 6b, the vectors representing HTFs
from f1 to f13 (presented in Section 2.3.2) indicate that all HTFs contribute to the variance in
the data since all the vectors, except vector f3, are similar in magnitude. Furthermore, the
direction of the vectors seems to follow the axis of the PCs, except with the vectors f9 and
f13, suggesting a high correlation between PCs and the HTFs. Haralick et al. [34] speculated
that some visual properties can be expected from certain textural features. For example,
the level of entropy in an image may increase as the complexity of the image increases.
The loss of entropy (f8, f9, and f11) with fluid concretes can be explained by the smoother
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appearance caused by their tendency to self-level under the gravitational force. In contrast,
stiff concrete with higher yield strength causes more exaggerated depth differences that
increase the perceived entropy. The values with stiff concrete were more scattered along
the PC 2 and the HTF vectors representing the contrast (f2) and the variances (f4 and f7). A
wide separation between dark and light pixels is intrinsic to high-contrast images, leading
to a high variation in the grey-level values. Hence, these vectors indicate that contrast
decreases when the concrete becomes more fluid. This minor variation with fluid concretes
can be explained by the low plastic viscosity, which allows the surface to deform during
the mixing process.

3.4. Impact of Data Preparation

To investigate the impact of the data preparation on the performance of the classifiers,
comparative and statistical analysis was performed on the trained models. The dataset
preparation parameters (DM, ROI, and FM) were investigated separately in three steps. For
each preparation parameter, all the models were divided into groups determined by the
number of methods in each preparation parameter.

Figure 7 compares how each classifier performs under the different DMs. Based on
the figure, there are no apparent differences between DMs. Correspondingly, the Mann–
Whitney U test confirmed an insignificant difference (p = 0.5750) between the medians
of the groups (Shapiro–Wilk test, p < 0.05). However, a slightly higher variation in the
testing accuracies with DM 1 suggests that applying DM 2 might improve the quality of
the data and assist in generalizing the models by reducing the number of errors in the
depth images. Therefore, the DM might positively affect the performance of the models for
specific scenarios where the number of artifacts is substantial.
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Figure 7. The effect of the denoising method on the accuracy of nine ML classifiers where
DT = decision tree, GBoost = gradient boosting, KNN = k-nearest neighbor, LR = logistic regres-
sion, MLP = multi-layer perceptron, NB = naïve bayes, RF = random forest, SVM = support vector
machine, and XGBoost = extreme gradient boosting. The outliers are marked with a diamond symbol.

Figure 8 displays the testing accuracies across the FMs for each classifier. Based
on the results, the FMs significantly affected the average performance of the classifiers
(Kruskal–Wallis test, p = 0.0046). The reference method (FM 0) demonstrated the poorest
average performance within most classifiers, indicating that feature extraction, by removing
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certain frames, improves the ML model performance. When the models were presented
with frames with the scoop blade (FM 2), the testing accuracy increased with all the
better-performing models, especially when compared to the reference method (Dunn’s
test, p = 0.0049). Interestingly, focusing on the spider blade (FM 3) instead of the scoop
blade negatively affected the performance of these classifiers (Dunn’s test, p = 0.0290). The
authors believe that the movement caused by the spider blade might be too complex or
erratic to collect core features for prediction, limited by the accuracy and resolution of the
depth data. Consequently, the movement of the concrete when the scoop blade sweeps the
concrete is more suitable for predicting slump using the stereovision camera.
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Figure 9 shows the testing accuracies for each classifier with the three ROI sizes. Based
on the figure, the classifiers performed best with ROI BIG, which limited the view on
the edges of the mixer. Kruskal–Wallis test confirmed significant differences between the
groups (p < 0.05). Based on the results, larger ROIs have a positive effect on the performance
of the models where ROI BIG and ROI MED showed similar results when compared to
each other (Dunn’s test, p = 0.1297). However, the best-performing models were achieved
using the ROI BIG that is also observed in Table 5. In contrast, ROI SMALL has a clear
negative impact on the average performance of the models when compared to the larger
ROIs (Dunn’s test, p < 0.05). The results imply that estimation of workability requires a
wider view of the concrete surface where the motion and interaction with the mixer can be
captured. Hence, a more complex motion of the concrete surface should be captured with
the depth camera.
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4. Discussion

The traditional methods for assessing concrete workability are labor-intensive and
time-consuming. Automated measurement systems utilizing ML present an opportunity for
real-time monitoring, enabling the assessment of all batched concrete. Recent investigations
have focused on novel CV techniques for evaluating fresh concrete, often employing
complex, computationally demanding deep-learning models with limited transparency.
In contrast, our study introduces a transparent and lightweight framework that leverages
depth data captured in concrete mixers to estimate slump class. Our approach not only
simplifies the estimation process but also provides insight into the visual and rheological
characteristics reflected in the data.

Our framework offers several advantages over both conventional methods and CV
techniques employing visible light. These systems require adequate lighting and are
sensitive to shadows cast on the concrete surface, which complicates model performance
and demands precise light source placement. Low illumination levels can fail to freeze the
motion of the mixer, resulting in blurred images. Furthermore, they capture fine textural
details that vary with concrete quality, posing a risk of model overfitting. In contrast, our
stereovision camera framework, which uses internal IR projection, eliminates the need for
external lighting. Since the IR source is located next to the camera lenses, it minimizes the
variation caused by the lighting conditions and placement of the lights and the camera.
However, it must be noted that infrared technology can be less effective in environments
with high ambient infrared light, such as direct sunlight.

Based on the investigation, depth data contains essential information to predict the
workability of the mixer. The trained ML classifiers predicted the broad range of slump
classes, covering very stiff (S1) to very fluid concrete (S5). The ML classifiers trained
with XGBoost and MPL algorithms achieved good testing accuracies of 0.8179 and 0.8078,
respectively. Notably, most misclassifications occurred between adjacent slump classes,
caused by the ordinal nature of the slump classes. This phenomenon can also be observed
from the testing metric of QWKs, showing higher values of 0.9156 and 0.9122 for the
models XGBoost and MPL, respectively. In operational settings, continuous depth data
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streams would mitigate the impact of misclassifications with single frames, enhancing the
prediction precision, whether it involves classification or regression.

Data collection and preparation cause risks during the development of new ML
frameworks. Hence, the collected data and its preparation pipeline were first investigated
using PCA. Our initial analysis with PCA affirmed that the HTFs captured essential variance
within the data, with most HTFs substantially contributing to this variance. By examining
the directions and magnitudes of the HTFs, we established a connection between the
visual characteristics of concrete and its HTFs, observing changes in entropy and contrast
corresponding to the fluidity of the concrete. It was seen that as the concrete became
more fluid, the average entropy decreased and the high variation in contrast decreased.
Interestingly, stiffer concretes proved more challenging for the models, likely due to their
limited deformation and greater height variability without external forces. When the yield
strength of the concrete surpasses a certain limit, the concrete starts to deform continuously,
possibly making the prediction more predictable, and causing less variation between
the frames.

Further analysis of data preparation parameters (DM, FM, and ROI) demonstrated
the robustness of the framework. Additional denoising with DM 2 did not significantly
enhance model performance, which could also indicate the sufficiency of the original
depth data quality. While the average accuracies with the different FMs did not improve
substantially, focusing on the scoop blade with FM 2 increased the accuracy with high-
performing models. Therefore, the models appear to benefit from the interaction between
the concrete and the scoop blade, increasing both the accuracy and the effectiveness of
the model. A larger ROI was shown to be crucial for performance, hinting that capturing
expansive concrete movement is necessary for robust predictions. In other words, aiming
at a smaller area may not give enough information to make reliable estimations. The angle
of view was limited by the wide-angle lens, which led to cropping the frames to obtain
different ROI sizes, reducing the spatial resolution of frames before conversion to HTFs.
However, optimizing a suitable angle of view and spatial resolution could improve depth
data quality in future pipelines.

The authors aim to deploy our framework in industrial settings to examine its ap-
plicability across various mixer types and batch properties. We plan to transition from
classifying slump classes to predicting continuous slump values with regression models,
which would benefit from the increased data available in such environments. An on-site in-
vestigation also allows for optimizing the framework and tuning the models as the amount
of data vastly increases. We also anticipate integrating our depth camera approach with
frameworks developed by other researchers to further refine and enhance the performance
of our models in situ.

5. Conclusions

This paper introduced a novel ML framework utilizing an active stereovision camera
within a concrete mixer to estimate the slump of concrete. The collected depth data were
prepared for the ML models by denoising the depth frames and extracting the core features.
Additionally, the extracted frames were converted into HTFs that were used to train
and evaluate the nine ML classifiers. The key findings from this study are summarized
as follows:

1. The framework demonstrated good accuracy where the XGBoost classifier achieved
the highest testing accuracy of 0.8179. In addition, MLP, GBoost, and RF provided com-
petitive results. Misclassifications typically occurred between adjacent slump classes,
attributable to the ordinal nature of concrete workability. Based on the confusion
matrices, the models demonstrated slightly better classification accuracy with fluid,
which is likely due to their lower yield stress enabling more consistent deformation
during the mixing.

2. PCA identified the slump classes as overlapping clusters within the 2D space, formed
by the two PCs. Stiff concretes were associated with more dispersed clusters, while
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fluid concretes generally led to more compact clusters, aligning with the findings with
confusion matrices where the accuracy improved with fluid concrete. The PCA also
highlighted that the HTFs significantly influenced the variance captured by the PCs,
indicating a strong connection between Haralick features and dataset variance.

3. Comparative and statistical analyses of three dataset preparation parameters (DM,
FM, and ROI) revealed that the classifiers were generally robust to these variations.
Specific findings include:

a. Denoising: The denoising of the depth data was analyzed by implementing two
levels of denoising. The substantial denoising (DM 2) did not clearly impact
the accuracy of the classifiers statistically (Mann–Whitney U test, p = 0.5750),
suggesting that the imperfections in the depth data minimally impact classifier
performance. However, the placement of the stereovision camera only showed
a minor degradation of the collected depth data.

b. Filtering: Four filtering methods were used to extract mixer features from the
depth data. The results indicate that the filtering method (FM) can significantly
impact the average model performance (Kruskal–Wallis test, p = 0.0046) while
also requiring less data to achieve equivalent or better performance, making
the framework more efficient. Interestingly, focusing on the action of the scoop
blade (FM 2) increased significantly (Dunn’s test, p = 0.0049) the accuracy, which
was most notable with the best-performing classifiers.

c. Region of Interest: The impact of ROI selection was also investigated by com-
paring three crop sizes. The best performance was achieved with the larger
ROIs (Kruskal–Wallis and Dunn’s test, p < 0.05), indicating the importance of
collecting the depth data from a larger concrete surface. In addition, a larger
ROI reduces the sensitivity for the placement of the camera.
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