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Abstract: Given the urgent challenges posed by global climate change and the ongoing energy crisis,
fuel cell electric vehicles (FCEVs) have emerged as a promising solution. Incorporating sophisticated
energy management strategies (EMSs) into FCEVs can significantly enhance the efficiency of the
complex powertrain under diverse driving conditions. In this paper, a dual-model predictive control
energy management strategy based on long short-term memory (LSTM)-based driving condition
recognition is proposed to enhance the economic performance of FCEVs and robustness across
diverse driving conditions. Firstly, to improve the generalization capability and adaptability of
the LSTM model and to enhance the accuracy of driving condition recognition, wavelet transform
(WT) is introduced into both the offline training and online application of LSTM. Secondly, to
enhance the real-time performance and control effectiveness of the EMS, model predictive control
(MPC) and explicit model predictive control (eMPC) are established based on a unified optimization
objective and constraints. Thirdly, a dual MPC switching logic is developed using the information
of driving condition prediction, ensuring the coordination of dual MPCs in practical applications
and enhancing their adaptability to various conditions. Finally, an evaluation of the simulations
demonstrates that the proposed dual-model predictive control energy management strategy based on
wavelet transform LSTM driving condition recognition (WTL-DMPC EMS) can improve economic
performance. Compared with other baselines, the energy-saving capability is remarkable, showcasing
its promising performance.

Keywords: energy management strategy; dual-model predictive control; driving condition recognition;
long short-term memory; fuel cell vehicles

1. Introduction

With the continuous improvement of the intelligence level of new energy vehicles,
the requirements for their energy consumption performance are becoming increasingly
stringent [1]. Fuel cell vehicles, due to their zero carbon emissions, are considered an ideal
solution to address the energy and environmental crises [2]. However, reasonably allocating
the power coupling relationship among multiple power sources poses challenges for the
design of energy management strategies, especially in maintaining control effectiveness
under complex and variable driving conditions [3]. Therefore, it is crucial to develop
high-performance energy management strategies for FCEVs [4].

The reported EMSs are broadly categorized into three types based on their implemen-
tation: rule-based EMSs [5], optimization-based EMSs [6], and learning-based EMSs [7].
Rule-based EMSs include deterministic rule-based EMSs [8] and fuzzy rule-based EMSs [9].
Deterministic rule-based EMSs are characterized by clear and predefined rules that govern
decision-making processes. These rules provide transparency and high interpretability,
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making it easier to understand and explain the system’s behavior. They are computation-
ally efficient, suitable for real-time applications and embedded systems, and ensure stable
system responses due to their precise control over operations. However, deterministic
strategies are inherently static and struggle to adapt to complex and changing driving con-
ditions [10]. Fuzzy rule-based EMSs employ fuzzy logic to handle incomplete or ambiguous
information, offering greater adaptability. However, the performance heavily relies on the
design and adjustment of fuzzy sets, making it challenging to guarantee its adaptability
to varying driving conditions [11]. Optimization-based EMSs can be classified into global
strategies and instantaneous strategies [12]. Global optimization-based EMSs include
dynamic programming (DP) [13], Pontryagin’s minimum principle (PMP), and heuristic
algorithms [14], such as the genetic algorithm (GA) [15] and particle swarm optimization
algorithm (PSO) [16]. These approaches aim for theoretically optimal solutions using histor-
ical driving data but face challenges in computational complexity and are limited in their
adaptability across varying driving conditions without prior information. Instantaneous
optimization-based EMSs, such as equivalent consumption minimum strategy (ECMS) [17]
and model predictive control (MPC) [18], demonstrate effective control performance and
practical application potential. An ECMS employs an equivalent coefficient to equate
electric consumption with fuel consumption, thereby minimizing instantaneous equivalent
fuel consumption, but it only yields local optimal solutions [19]. However, the ECMS’s pre-
dictive capabilities are restricted as it primarily considers current power states, limiting its
adaptability in practical scenarios [20]. In contrast, MPC generates optimal control inputs
by forecasting state changes over prediction horizons, thereby adapting to diverse driving
conditions effectively, but the real-time rolling optimization and constraints inherent in
MPC’s quadratic programming create significant computational intensity, constraining its
practicality [21]. To address this, the explicit model predictive control is proposed, aiming
to derive state feedback control laws through multi-parameter quadratic programming for
linear time-invariant (LTI) systems in eMPC [22]. The eMPC shifts online computations
offline, reducing computational demands and easing microcontroller workloads. Although
the control laws generated by eMPC based on LTI systems are effective, the vehicle models
are highly nonlinear, and driving conditions are complex and variable, making a single
control law inadequate to accommodate all operating states of the vehicle [23]. Learning-
based EMSs, including reinforcement-learning [24] and heuristic-dynamic programming
strategies [25], show advantages for energy savings in simulations. They rely on pre-trained
models to make decisions, leveraging their generalization capabilities [26]. However, the
offline learning process involves extensive data collection and complex algorithm training,
which is costly and time-consuming [27]. Additionally, solving optimal control problems
online imposes stringent real-time performance requirements on the controller. To sum
up, eMPC balances computational complexity and real-time performance, making it a
practical and effective energy management solution. However, the control law generation
rules of eMPC result in less adaptability to varying driving conditions compared to MPC.
Therefore, coordinating the two model predictive control algorithms has become a key
focus of research.

To highlight the control effectiveness of eMPC, enhancing its adaptability is essential.
Methods to improve eMPC adaptability can be summarized into speed prediction [28],
driving condition recognition [29], and multi-model control [30]. Speed prediction can be
divided into statistical methods [31] and learning-based methods [32]. Statistical methods
utilize time-series data models and inverse prediction, predicting future speed based on
past speed data. These methods are suitable for speed data with obvious periodicity and
trends but cannot handle complex nonlinear relationships, limiting prediction accuracy.
Learning-based methods, such as using SVM regression [33] to establish speed prediction
models, have good generalization ability but high computational complexity for large
datasets and are sensitive to parameter selection. Methods based on decision trees [34],
random forests [35], and neural networks [36] can handle nonlinear relationships and are
robust to missing values and noise, with strong adaptability. However, increased model
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complexity can lead to overfitting, and large training datasets bring a heavy computational
burden. Driving condition recognition can be categorized into rule-based methods [37],
model inference-based methods [38], and machine learning-based methods [39]. Rule-based
driving condition recognition uses predefined sets of rules, judging the current driving
condition based on specific conditions and logic. This method is simple, intuitive, easy to
implement and adjust, and suitable for specific scenarios and clear rules, but it has poor
adaptability to complex and variable driving conditions. Model inference-based methods
use pre-built physical or statistical models to infer the current driving condition. These
methods can perform state recognition without sensor data or when data are unreliable,
having a strong theoretical basis, but model building and parameter adjustment are com-
plex. Machine learning-based methods learn the features and patterns of driving conditions
from historical data to achieve condition recognition, capable of handling complex non-
linear relationships and high-dimensional data, exhibiting excellent adaptability [40]. To
give predictive control algorithms better condition adaptability, long short-term memory
(LSTM)-based condition recognition methods have gradually become a research hotspot.
LSTM excels at handling time-series data and capturing long-term dependencies, making
it significantly advantageous in driving condition recognition [41]. Specifically, LSTM
analyzes continuous time-series data such as vehicle speed, acceleration, and road types
to accurately identify the current driving condition, such as urban roads, highways, and
mountain roads. After identifying the driving condition, eMPC and MPC strategies can be
dynamically switched according to different conditions, enabling the control system to bet-
ter adapt to complex and variable driving conditions. However, LSTM lacks sensitivity to
changes in the instantaneous frequency components of data, especially when dealing with
non-stationary signals. Additionally, raw vehicle data typically contain noise, and using
such data directly for training may affect the model’s performance [42]. Wavelet transform
can effectively remove noise and extract important features [43]. Moreover, the multi-scale
analysis capability provided by wavelet transform allows LSTM to simultaneously utilize
features at different time scales, enhancing the response speed and accuracy to driving state
changes. Multi-model control can be categorized into parallel multi-model control [44],
switching multi-model control [45], and adaptive multi-model control [46]. Parallel multi-
model control runs multiple eMPC controllers simultaneously, offering robustness across
various system states but demanding significant computational resources due to the need
for storing precomputed control policies. In contrast, switching multi-model control ac-
tivates a single controller at a time, improving computational efficiency but potentially
causing control discontinuities due to frequent switching. Adaptive multi-model control
dynamically adjusts controller parameters in real time, enhancing stability and adaptability
to changing environments. While it reduces the need for switching and ensures smoother
control, it requires substantial computational power for real-time data processing and
parameter tuning. In summary, combining wavelet theory with LSTM can make the model
exhibit higher robustness and adaptability when facing different driving conditions and
data noise.

In this context, this paper proposes a dual-model predictive control energy manage-
ment strategy based on wavelet transform LSTM driving condition recognition (WTL-
DMPC-EMS) to enhance the adaptability across diverse driving conditions, specially de-
signed for FCEVs. Firstly, a dual-model predictive control algorithm is proposed, balancing
the predictive capability, optimization performance, and real-time application of the energy
management strategy. Secondly, a wavelet transform combined with the LSTM model is
introduced to enhance the accuracy and adaptability of driving state recognition. Thirdly, a
set of logic for switching dual-model predictive control based on driving state recognition
is established, enhancing the adaptability of the energy management strategy to chang-
ing conditions. Finally, through the simulation of dual driving cycles, the energy-saving
potential and feasibility of the proposed WTL-DMPC-EMS are evaluated.

The contributions of this paper are as follows:
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1. A WTL-DMPC EMS is proposed to release the energy-saving potential of an FCEV.
Switching between MPC and eMPC based on the identified vehicle-operating state
optimizes energy distribution, enhancing the adaptability and real-time performance
of the energy management strategy to various driving conditions.

2. A driving condition recognition method is proposed that incorporates wavelet transform
into LSTM (WT-LSTM), improving feature extraction capability and model robustness.

3. A switching logic between MPC and eMPC is proposed, which enhances the matching
between the algorithm and driving conditions, improving the system’s response speed.

The remainder of this paper is structured as follows. The general description of the
vehicle model construction is provided in Section 2. Section 3 elaborates on the developed
WTL-DMPC EMS. Section 4 discusses the simulation results and validates the superior
performance of the raised strategy; this is followed by the main conclusions, which are
drawn in Section 5.

2. Modeling

The target vehicle of this paper is a fuel cell electric vehicle equipped with three motors.
The vehicle configuration diagram is depicted in Figure 1. The front motor transmits torque
to the front wheels through a reducer, while the two in-wheel motors directly drive the rear
wheels. The specific parameters of the vehicle are demonstrated in Table 1.
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Figure 1. The schematic of the FCEV configuration.

Table 1. Basic parameters of the studied FCEV.

Vehicle Body
Mass 1860 [kg]

Tire rolling radius 0.35 [m]

Front Motor
Speed 0–14,000 [rpm]

Torque −137–137 [Nm]

Rear Motors
Speed 0–10,000 [rpm]

Torque −97–97 [Nm]

Battery
Nominal voltage 366 [V]

Capacity 40 [kWh]

Fuel Cell
Idle Power 2 [kW]

Maximum Power 50 [kW]

2.1. Vehicle Dynamic

The driving force generated by the powertrain overcomes the driving resistance. At
the wheel side, the dynamic characteristics of the vehicle can be expressed as

Freq =
mg f cosα

3600
+

mgsinα

3600
+

1
2

ρCD Av2 +
m dv

dt
3600

(1)
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According to Equation (1), the vehicle power demand can be expressed as

Preq =

(
mg f cosα

3600
+

mgsinα

3600
+

1
2

ρCD Av2 +
m dv

dt
3600

)
v (2)

where m [kg] is the vehicle mass; g
[
m/s2] is the gravitational acceleration; α [rad] is the

road slope; f is the dimensionless rolling resistance coefficient; ρ is the air density, typically
taken as 1.225 N · s2 · m−4 under standard atmospheric pressure and at a temperature of
15 ◦C; CD is the dimensionless air drag coefficient; A [m2] is the front area of the vehicle;
v [m/s] is the vehicle velocity; and Preq [w] and Freq [N] represent the driving force and
vehicle power demand, separately. The power demand equation provided focuses solely
on the longitudinal dynamics and the corresponding powertrain requirements, which are
the primary factors influencing the vehicle’s energy consumption. This simplification is
appropriate for the development of energy management strategies, as it directly relates to
the power required to drive the vehicle forward, accelerate, and handle road slopes.

2.2. Fuel Cell

Given the focus of this paper on researching the control effect of the energy manage-
ment strategy, the influence of environmental factors like temperature and humidity on
the fuel cells are neglected. The relationship curves of fuel cell system efficiency, hydrogen
consumption rate, and fuel cell system power are shown in Figure 2.
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Theoretically, the relationship of fuel cell power PFC and fuel cell efficiency can be
expressed as

PFC =
Qin

t
× ηFC (3)

where PFC [w] is the fuel cell power, ηFC is the fuel cell system efficiency, Qin [J] is the total
input energy, and t is time is seconds.

The relationship between input energy and hydrogen consumption can be expressed as

Qin = mFC · LHVH2 (4)

mFC =
∫ PFC

ηFC · LHVH2

(5)

where mFC [kg] is the hydrogen consumption of the fuel cell and LHVH2 is the hydrogen
lower heating value, here taken as 140 J/kg.

2.3. Battery

To improve computational efficiency, the electrochemical characteristics and temper-
ature rise characteristics of the battery are ignored, and a simple R-C battery model is
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established based on experimental data. The output voltage of the battery can be ex-
pressed as

Ubatt = Ebatt − IbattRbatt (6)

where Ubatt [V] is the load voltage, Ebatt [V] is the open-circuit voltage, Rbatt [Ω] is the
internal resistance of the battery, and Ibatt [A] is the battery current. The definition Ibatt > 0
indicates charging, while Ibatt < 0 indicates discharging.

The state of charge (SOC) of the battery is shown as

SOC =


SOCinit +

1
ηbattCbatt

∫ t
0 Ibattdt

SOCinit −
ηbatt
Cbatt

∫ t
0 (−Ibatt)dt

(7)

where SOCinit is the dimensionless initial value of the battery’s SOC, and Cbatt is the battery
capacity in Ah.

The battery efficiency ηbatt is defined as the ratio of battery power to total power, and
it can be expressed as

ηbatt =


Pbatt

Pbatt+Pbatt_loss
= Ubatt Ibatt

Ubatt Ibatt+I2
battRbatt

, Pbatt < 0

Pbatt+Pbatt_loss
Pbatt

= Ubatt Ibatt+I2
battRbatt

Ubatt Ibatt
, Pbatt > 0

(8)

where Pbatt [W] is the battery power and Pbatt_loss [W] is the battery power loss due to
internal resistance. Pbatt > 0 means the battery is in the charging phase. The resistance of
the battery can be written as

Rbatt = f (SOC, temp) (9)

The resistance characteristic of the battery during charging and discharging is shown
in Figure 3.
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2.4. Motor

As the primary power component of the target vehicle, the motor is responsible for
driving and regenerative braking. To simplify the model, the thermal and dynamic features
of the motor are neglected. Based on the different driving conditions of the vehicle, the
power of front/rear motors can be expressed as

Pelec_m =

{ Tmωm
ηm

, Tm > 0

Tmωmηgen, Tm ≤ 0
(10)

where Pelec_m is the electrical power of the motor, Tm is motor torque, ωm is rotating speed
of the motor, ηm is the efficiency of the motor during the driving mode, and ηgen is the
efficiency of the motor during the charging mode. Tm > 0 indicates that the motor is
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operated in the driving mode. On the contrary, the motor is operated in the regenerative
braking process.

The motor model adopts the look-up table to represent the relationship among the
torque, speed, and efficiency, which can be expressed as

ηm = η(Tm, ωm) (11)

The efficiency maps of the front and rear motors are provided in Figure 4.
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3. Development of the WTL-DMPC EMS

To equip the EMS with fast processing capacity, robustness, and practical application
potential, a WTL-DMPC EMS for the studied FCEV is proposed. The general process of
the EMS can be summarized as the driving condition recognition and energy management.
The proposed EMS switches between MPC and eMPC by online recognition of driving
conditions to solve the energy distribution problem. Figure 5 illustrates the implementation
of the WTL-DMPC EMS. A hierarchical control architecture is adopted to strengthen
adaptability and the control effect across diverse driving conditions. In the hierarchical
control architecture, the upper layer integrates a pre-trained WT-LSTM model to recognize
driving conditions in real-time and transmits the data to the lower layer. The lower layer,
acting as a high-level actuator, processes the received driving condition information and
switches between MPC and eMPC according to the predetermined logic to solve the energy
distribution problem.
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Firstly, to enhance the feature extraction and nonlinear recognition capabilities of
LSTM and improve the accuracy of driving condition predictions, the wavelet transform is
introduced. Secondly, to ensure the collaborative capability of the dual MPC, MPC and
eMPC laws based on unified optimization objectives and constraints are established, reduc-
ing implementation complexity. Finally, to improve the adaptability of the dual MPC to
various operating conditions and ensure real-time application capability, a switching logic
is established, determining the priority of algorithms under different driving conditions.

3.1. WT-LSTM in EMS

Driving condition recognition in the upper layer of the hierarchical control architecture
enables adaptive control and optimal energy management by adjusting strategies, prevent-
ing battery overcharging, and coordinating the operation of the battery fuel cell. LSTM
enhances recognition accuracy by processing time-series data and capturing long-term
dependencies, while wavelet transform further improves feature extraction and predic-
tion precision.

3.1.1. WT-LSTM

Long short-term memory (LSTM) networks consist of a cell state and three main
gates: the forget gate, the input gate, and the output gate. These gates control the flow
of information, effectively addressing the long-term dependency problem in traditional
RNNs. The forget gate can be expressed as

ft = σ
(

W f · [ht−1, xt] + b f

)
(12)

where ft is the output of the forget gate, σ is the sigmoid function, W f is the weight matrix
for the forget gate, [ht−1, xt] is the concatenation of the previous hidden state and the
current input, and b f is the bias vector for the forget gate.

The input gate determines which new information should be added to the cell state,
which can be expressed as

it = σ(Wi · [ht−1, xt] + bi) (13)

C̃t = tanh(WC · [ht−1, xt] + bC) (14)

where it is the output of the input gate; C̃t is the candidate cell state; Wi and WC are the
weight matrices for the input gate and the candidate cell state, respectively; and bi and bC
are the bias vectors for the input gate and the candidate cell state, respectively.

The cell state is updated by combining the forget gate and the input gate, which can
be expressed as

Ct = ft · Ct−1 + it · C̃t (15)

where Ct is the current cell state and Ct−1 is the previous cell state.
The output gate decides the current hidden state, which can be expressed as

ot = σ(Wo · [ht−1, xt] + bo) (16)

ht = ot · tanh(Ct) (17)

where ot is the output of the output gate, ht is the current hidden state, Wo is the weight
matrix for the output gate, and bo is the bias vector for the output gate. While LSTM excels
at processing time-series data, it struggles with high-frequency and local feature extraction.
To enhance its feature extraction, improve signal processing, and boost model robustness,
wavelet transform is integrated into LSTM.

A wavelet function is a basic function used to generate a set of functions by scaling
and translation. The wavelet function typically satisfies the following condition:∫ +∞

−∞
ψ(t)dt = 0 (18)
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which means that the average value of the wavelet function is zero.
The scale factor a controls the dilation and compression of the wavelet function, while

the translation factor b controls the position. The scaling and translation of the wavelet
function produce a set of wavelet basis functions

ψa,b(t) =
1√
a

ψ

(
t − b

a

)
(19)

where 1√
a is a normalization factor ensuring that wavelets at different scales have the

same energy.
The wavelet transform includes continuous wavelet transform (CWT) and discrete

wavelet transform (DWT). The DWT has high computational efficiency and is suitable for
processing large-scale data, which can be expressed as

x(t) = ∑
k

cj[k]ϕj,k(t) + ∑
j

∑
k

dj[k]ψj,k(t) (20)

where cj[k] are the approximation coefficients, representing the signal’s low-frequency
components at scale j and position k; dj[k] are the detail coefficients, representing the signal’s
high-frequency components at scale j and position k; ϕj,k(t) are the scaling functions for low-
frequency components; and ψj,k(t) are the wavelet functions for high-frequency components.

In the offline training of WT-LSTM, the vehicle’s historical speed data are first normal-
ized. The normalization process can be represented as

vnorm(t) =
v(t)− vmin
vmax − vmin

(21)

where vmin and vmax are the minimum and maximum values of the speed data. Next,
the normalized speed data are subjected to discrete wavelet transform, extracting multi-
scale time-frequency features. The normalization in Equation (21) ensures consistent data
scaling, improves model convergence, prevents bias from dominant features, enhances
generalization, and stabilizes the training process.

The output of the WT-LSTM model will directly affect the accuracy of driving condition
recognition and indirectly influence the control performance of MPC and eMPC. Therefore,
to enhance system robustness and optimize energy distribution, SOC, vehicle speed, and
vehicle power demand are chosen as the outputs of the WT-LSTM model, which can be
represented as

SOCWT-LSTM(t) = fSOC(ht) (22)

Preq-WT-LSTM(t) = fpower(ht) (23)

The SOC directly affects the battery’s lifespan and performance. Accurately predicting
the SOC can prevent overcharging and discharging of the battery, thus improving the
overall energy efficiency of the vehicle. The vehicle power demand represents the power
required under different driving conditions. Accurately predicting the power demand
ensures that the vehicle has sufficient power output in all driving scenarios. Using the
prediction results to dynamically switch between MPC and eMPC can optimize the overall
performance of the energy management strategy. Through offline training, the WT-LSTM
can be deployed in the EMS for real-time vehicle state recognition.

3.1.2. The Training of WT-LSTM

The WT-LSTM model is trained offline to predict key parameters for energy manage-
ment, including SOC and power demand. The process involves data preprocessing, formula
derivation, and model validation, with a focus on integrating wavelet transform (WT) to
enhance feature extraction. The training process uses historical vehicle speed data collected
by onboard sensors. These historical data provide insights into typical driving patterns and
conditions, which are essential for accurate predictions during real-time operations.
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To enhance the LSTM’s ability to capture both time-domain and frequency-domain
features, the wavelet transform (WT) is applied to the input data:

XWT(t, f ) =
∫ ∞

−∞
x(t)ψ∗

(
t − τ

s

)
dt (24)

where XWT(t, f ) represents the wavelet transformed input, with s as the scaling factor and
ψ∗ as the mother wavelet function. This transformation improves the LSTM’s ability to
recognize transient patterns and high-frequency components in the vehicle speed data.

The LSTM cell processes the input through its hidden states:

ht = σ(Whxt + Uhht−1 + bh) (25)

where xt is the wavelet-transformed input at time t, ht−1 is the previous hidden state,
Wh and Uh are weight matrices, and bh is the bias term.

The output predictions can be expressed as

SÔC(t) = g(ht) (26)

P̂req (t) = h(ht) (27)

The training process for the WT-LSTM model involves minimizing a multi-objective
loss function that aims to ensure accuracy in predicting both the state of charge (SOC) and
power demand of the vehicle. This comprehensive loss function balances the contributions
from multiple prediction targets, making the WT-LSTM suitable for energy management
in dynamic driving environments. The multi-objective loss function used in training the
model can be expressed as

L =
1
N ∑N

i=1

(
ω
(
SOCtrue, i − SÔCi

)2
+ ν
(

Ptrue,i − P̂req, i
)2
)

(28)

where N is the number of training samples, and ω and ν are hyperparameters balancing
the accuracy of the SOC and power demand predictions. The first term represents the error
in the predicted SOC, while the second term represents the error in the power demand.

The combination of these loss components in a multi-objective setting allows the
model to simultaneously learn multiple aspects of energy management, improving its
ability to predict complex outputs under varying driving conditions. However, tuning ω
and ν manually can be challenging, as different outputs may require different levels of
emphasis depending on the driving scenario. To enhance the robustness of the training
process and to ensure that all prediction targets are optimized effectively, a Dynamic Weight
Adjustment approach is introduced.

The adaptive weighting mechanism can be implemented using a relative loss scaling
approach, where the weights are updated at each training epoch:

ωt =
LPreq

LSOC + LPreq

(29)

νt =
LSOC

LSOC + LPreq

(30)

where LSOC and LPreq represent the individual loss components for the SOC and power
demand, respectively, at time step t. This approach ensures that the sum of the weights
remains normalized to 1, maintaining a consistent total loss magnitude.

To further enhance the generalization ability of the WT-LSTM model, Dropout Regular-
ization is employed during training. Dropout is a regularization technique that randomly
drops a fraction of neurons from the model during each training iteration. This prevents
the model from overfitting specific patterns in the training data, such as particular driving
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habits or conditions that are unique to a subset of historical data. In WT-LSTM, dropout is
applied to both LSTM hidden states and the fully connected layer. By doing so, the model
learns to distribute the representation of features across different neurons, making it less
dependent on specific parts of the network and improving the model’s ability to generalize
to unseen driving scenarios.

In addition to dropout, weight decay is applied to further regularize the model. The
combined loss function with weight decay is represented as

Ltotal = L+ λ∗ ∑ w∈W w2 (31)

where W represents all the weights in the network and λ∗ is a regularization hyperparame-
ter controlling the strength of weight decay.

In the training process of the WT-LSTM model, a critical aspect is the use of a window
size. The window size defines the number of previous time steps that the model uses
to make predictions. By using a sliding window approach, the LSTM is able to capture
temporal dependencies and learn the underlying patterns from historical data, which are
crucial for time-series prediction tasks.

Previous work [47] and preliminary simulations indicated that incorporating a window
size of 20 time steps provided an optimal balance between capturing sufficient temporal
context and avoiding overfitting. This configuration allowed the LSTM to effectively learn
from past data, improving prediction accuracy for key parameters such as vehicle speed,
SOC, and power demand. When no window size was used, the model’s performance
deteriorated, with increased prediction errors due to the inability to capture sufficient
context from past data.

By incorporating these advanced training techniques, the WT-LSTM model is not only
capable of accurately predicting key parameters for energy management but also demon-
strates improved robustness and adaptability in complex and varying driving scenarios.

3.2. Energy Management Based on Dual MPC

In the upper layer of the hierarchical control architecture, the WT-LSTM uses sensors
to collect real-time vehicle speed data, predict changes in the SOC and vehicle power
demand, and input the predictive information into the lower layer of the hierarchical
control architecture. To enhance the adaptability and real-time application capability of the
energy management strategy, in the lower layer, MPC and eMPC are established to address
the energy allocation problem under different operating conditions, with optimization
objectives and constraints set. Considering that the eMPC law is generated based on LTI
systems and that a single control law cannot meet the rapid and drastic power changes in a
short period, eMPC laws suitable for different types of operating conditions are established.

3.2.1. Basic MPC and eMPC

MPC uses a predictive model of the system to forecast future states and outputs. For
linear systems, the predictive model is typically expressed as

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t)

(32)

where x(t) is the state vector of the system; u(t) is the control input vector; y(t) is the
output vector; and A, B, and C are the system matrices.

The optimization objective of MPC is usually to minimize the prediction error and
control input, and the objective function can be expressed as

J =
N−1

∑
k=0

(
∥ y(t + k | t)− yref(t + k) ∥2

Q+ ∥ u(t + k) ∥2
R

)
+ ∥ y(t + N | t)− yref(t + N) ∥2

P (33)
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where y(t + k | t) is the output predicted at time t for future time t + k; yref(t + k) is the
reference output; Q, R, and P are weight matrices; and N is the prediction horizon length.

The control problem must respect the system constraints, including state and in-
put constraints:

xmin ≤ x(t + k | t) ≤ xmax

umin ≤ u(t + k) ≤ umax
(34)

where xmin and xmax are the minimum and maximum constraints of state vectors, respectively,
and umin and umax are the minimum and maximum constraints of input vectors, respectively.

At each control interval t, the MPC solves the following optimization problem:

min
{u(t),u(t+1),...,u(t+N−1)}

J

subject to :
x(t + k + 1 | t) = Ax(t + k | t) + Bu(t + k) for k = 0, 1, . . . , N − 1
y(t + k | t) = Cx(t + k | t) for k = 0, 1, . . . , N − 1
xmin ≤ x(t + k | t) ≤ xmax for k = 0, 1, . . . , N
umin ≤ u(t + k) ≤ umax for k = 0, 1, . . . , N − 1

(35)

And then the optimal control sequence can be obtained, which can be expressed as

{u∗(t), u∗(t + 1), . . . , u∗(t + N − 1)} (36)

The first control input u∗(t) from this sequence is applied to the following system:

u(t) = u∗(t) (37)

Then, the time horizon is shifted forward by one time step, and the optimization
problem is solved again with updated state information at the next time step t + 1. By
solving this optimization problem at each time step and applying the first control input,
MPC achieves optimal control performance while respecting system constraints in a re-
ceding horizon manner. However, receding horizon optimization poses challenges for
the real-time application of MPC. The eMPC is an explicit solution for MPC; it introduces
the multi-parameter quadratic programming to solve control problems for LTI systems.
The state feedback control law generated offline is an affine relationship between the state
vector and the control vector, which can avoid online rolling horizon optimization.

The problem is expressed in terms of the augmented state and control vectors:

X =


x(t + 1 | t)
x(t + 2 | t)

...
x(t + N | t)

, U =


u(t)

u(t + 1)
...

u(t + N − 1)

 (38)

Then, the system dynamics can be written in augmented form:

X = Ax(t) + BU (39)

A =


A
A2

...
AN

, B =


B 0 · · · 0

AB B · · · 0
...

. . . . . .
...

AN−1B AN−2B · · · B

 (40)

The cost function J can be expressed as

J =
1
2

UT HU + f TU (41)
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where H = BTQB + R, f = BTQ(Ax(t)− yref).
Convert the quadratic programming (QP) problem to a multi-parametric quadratic

programming (mp-QP) problem where the state x(t) is treated as a parameter. The mp-QP
problem can be formulated as

min
U

1
2 UT HU + f (x(t))TU

subject to :
GU ≤ W + Sx(t)

(42)

where G, W, and S are matrices derived from the constraints on x and u.
The state space is divided into polyhedral regions called critical regions (CRs). Each

region corresponds to a unique active set of constraints. For each possible active set of
constraints, solve the Karush–Kuhn–Tucker (KKT) conditions to find the affine control law.
The KKT system can be expressed as[

H GT
active

Gactive 0

][
U∗

λ∗

]
=

[
− f (x(t))

Wactive + Sactivex(t)

]
(43)

where Gactive, Wactive, and Sactive are the active sets. Solve this system to obtain

U∗ = Kix(t) + di (44)

Determine the polyhedral regions where each active set remains valid

Ri = {x(t) | Gactive(Kix(t) + di) ≤ Wactive + Sactivex(t)} (45)

then solve the mp-QP for all possible active sets of constraints, yielding affine control laws
and corresponding critical regions. By using the above method, the eMPC state feedback
control law for LTI systems can be obtained. During online application, the system state is
used to identify the region, and the precomputed control law is applied for obtaining the
solution. Although the initial state of the system varies at each sampling time, there is no
need to repeatedly construct the optimal control problem. Instead, one can simply find the
corresponding CRi based on the state vector, and the control vector can be obtained by the
functional relationship.

Based on the foundational principles of MPC and eMPC and established FCEV model,
state-space equations tailored to address the energy allocation challenge can be formulated,
accompanied by the specification of an optimization objective.

3.2.2. Offline Construction of Dual MPC

In the lower layer of the hierarchical control architecture, MPC and eMPC adaptively
switch based on different operating conditions, enhancing the robustness and real-time
performance of the EMS. Maintaining consistent state-space equations ensures that the
system state does not require additional conversion or adjustment during the switching
between MPC and eMPC, simplifying the switching process and reducing implementation
complexity. Additionally, a unified model ensures consistency in controller design and
system simulation, facilitating the validation and optimization of control strategies under
different driving conditions. Therefore, during the offline computation stage, it is necessary
to determine the optimization objectives and constraints, and to construct the state feedback
control laws for eMPC.

To enhance the accuracy of WT-LSTM driving condition recognition, the SOC and
vehicle power demand Preq are selected as the outputs of the WT-LSTM model. When
switching between MPC and eMPC, maintaining consistent state variables ensures that
the system state does not require additional conversion or adjustment. Furthermore, the
SOC and vehicle power demand outputs from the WT-LSTM ensure that the predictive
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results can be promptly and accurately applied to control strategies, improving the overall
performance of the system.

According to vehicle configuration, the expression of S
.

OC can be expressed as

S
.

OC = −
Ebatt −

√
E2

batt − 4Rbatt Pbatt

2Rbatt Cbatt
(46)

where Ebatt, Rbatt, and Cbatt are the open-circuit voltage, internal resistance, and capacity
of the battery, respectively.

The relationship between the vehicle and component power can be expressed as

Preq(t) = Pbatt(t) + PFC(t) (47)

where Pbatt(t) is the battery power and PFC(t) is the fuel cell power. The power relationship
with motors can be expressed as

Pbatt(t) + PFC(t) =
PFMot

ηFMot
(t) +

PRLMot

ηRLMot
(t) +

PRRMot

ηRRMot
(t) (48)

where PFMot, PRLMot, and PRRMot are the mechanical power of the front and rear motors;
and ηFMot, ηRLMot, and ηRRMot are the efficiency of the front and rear motors.

According to the power relationship, Equation (41) can be rewritten as

S
.

OC = −
Ebatt −

√
E2

batt − 4Rbatt (PFMot + PRLMot + PRRMot − PFC )

2Rbatt Cbatt
(49)

The state matrix A and the input matrix B can be expressed as

A =

[
1 0
0 1

]
(50)

B =

[
− 1

2Rbatt CCbatt

(
Ebatt −

√
E2

batt − 4Rbatt(PFMot + PRLMot + PRRMot − PFC)
)

0
0 1

]
(51)

where
x =

[
SOC, Preq

]T (52)

u = [Pbatt, PFC]
T (53)

In establishing the optimization objective, it is necessary to consider the coordina-
tion between power sources to reduce energy consumption. The cost function can be
expressed as

J = α · EFC + β · Ebatt (54)

where EFC is the energy consumption of the fuel cell, Ebatt is the energy consumption of the
battery, and α and β are the energy consumption weights, statically determined based on
the relative costs of energy from the fuel cell and battery. In the cost function, the weights
are predefined and remained constant throughout the operation. These static weights are
determined based on the method proposed in previous work [48], ensuring efficient energy
utilization and system durability across most operating conditions.

By adjusting the values of the two coefficients, the usage of the battery and fuel cell
can be balanced. A larger α increases the weight of battery energy consumption in the cost
function, prompting the controller to reduce battery usage to extend battery life. A larger
β increases the weight of fuel cell energy consumption in the cost function, prompting
the controller to reduce fuel cell usage to save hydrogen fuel consumption. In the WTL-
DMPC EMS, the weight factors are predefined and remain constant throughout the entire
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operation. In this study, fixed weight factors are used, eliminating the need for real-
time calculation and adjustment, thus reducing the computational burden on the control
system and improving real-time performance and response speed. Additionally, fixed
weights ensure consistent system response under different operating conditions, avoiding
performance fluctuations due to frequent weight changes and enhancing system stability.

During the implementation of the WTL-DMPC EMS, some constraints related to the
powertrain performance and vehicle dynamic should be set, which ensure that different
components can operate within limits. The constraints for the optimization problem can be
expressed as 

SOCmin ≤ SOC(t + k) ≤ SOCmax

Preq_min ≤ Preq(t + k) ≤ Preq_max

Pbatt_min ≤ Pbatt(t + k) ≤ Pbatt_max

PFC_min ≤ PFC(t + k) ≤ PFC_max

PFMot_min ≤ PmF ≤ PFMot_max

PRLMot_min ≤ PmRL ≤ PRLMot_max

PRRMot_min ≤ PmRR ≤ PRRMot_max

(55)

where SOCmin is the minimum SOC, SOCmax is the maximum SOC, Preq_min is the mini-
mum vehicle power demand, Preq_max is the maximum vehicle power demand, Pbatt_min
is the minimum battery power, Pbatt_max is the maximum battery power, PFC_min is the
minimum fuel cell power, PFC_max is the maximum fuel cell power, PFMot_min is the min-
imum front motor power, PFMot_max is the maximum front motor power, PRLMot_min is
the minimum rear left motor power, PRLMot_max is the maximum rear left motor power,
PRRMot_min is the minimum rear right motor power, and PRRMot_max is the maximum rear
right motor power. After determining the optimization objectives and constraints, MPC can
be used to solve the energy distribution problem. However, for the eMPC, it is necessary to
establish state feedback control laws offline.

The outstanding feature of the eMPC is its rapid computation capability, but it essen-
tially solves the optimal control problem for LTI systems. During rapid changes in driving
conditions, control errors can occur, necessitating its combination with MPC. To enhance
the adaptability of the WTL-DMPC EMS, it is necessary to establish eMPC laws suitable for
different driving conditions.

The K-means algorithm’s goal is to minimize the sum of squared distances between
data points and their corresponding cluster centers. The objective function can be ex-
pressed as

minimize
k

∑
j=1

∑
xi∈Cj

∥ xi − µj ∥2 (56)

where Cj is the j-th cluster, xi represents a data point in cluster Cj, and µj represents the
center of cluster Cj.

Randomly choose µ1, µ2, . . . , µk as initial cluster centers for each data point xi, and
then compute its distance to each cluster center and assign it to the nearest cluster:

ci = argmin
j

∥ xi − µj ∥2 (57)

For each cluster Cj, recompute the cluster center as the mean of all data points in
the cluster:

µj =
1∣∣Cj
∣∣ ∑

xi∈Cj

xi (58)

then repeat the assignment and update steps until the cluster centers do not change significantly.
By using K-means, the operating conditions are clustered into high-speed, medium-

speed, and low-speed regions. VLow_1 and VLow_2 are the lower and upper limits of low-
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speed region, VMedium_1 and VMedium_2 are the lower and upper limits of medium-speed
region, and VHigh_1 and VHigh_1 are the lower and upper limits of high-speed region.

The constant values of the eMPC’s state transition matrix A and input matrix B vary
across different speed ranges, resulting in different numbers of control law regions. The
established control laws are shown in Figure 6.
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In the eMPC, the key regions are obtained by solving a multi-parametric quadratic
programming (mp-QP) problem offline. The state space of the system is divided into several
polyhedral regions, with each region corresponding to a specific set of constraints and
control laws. In Figure 6, each colored region represents a particular key region, illustrating
the control strategies under different states of charge (SOCs) and vehicle power demands.

The eMPC laws for different speed regions can reduce control instability caused by
changes in operating conditions and improve system robustness. However, for eMPC laws,
such a speed range is still quite large. Given that eMPC laws are generated based on LTI
systems, it is necessary to coordinate the application of MPC and eMPC across different
speed intervals.

3.3. Online Application of Dual MPC

To enhance the control performance and real-time capability of the WTL-DMPC EMS,
and to make MPC and eMPC complementary, MPC and eMPC are switched according to
different vehicle operating states in the lower layer of the hierarchical control architecture.
First, the upper layer inputs the driving condition recognition information from WT-LSTM
into the lower layer. Second, the lower layer dynamically switches between MPC and
eMPC based on the SOC, vehicle power demand, and vehicle speed. Finally, the optimal
control inputs are applied to the vehicle system.

The dual MPC is applied to solve the power distribution problem of energy sources,
which requires specific problem scenarios. Typically, fuel cell vehicles operate in three
driving modes: electric drive mode, hybrid mode, and driving charge mode. The hybrid
mode provides a suitable working environment for the dual MPC. In hybrid mode, based
on the established eMPC (extended model predictive control) control laws applicable to
low-, medium-, and high-speed conditions, the switching logic between MPC and the
eMPC is set.

The WT-LSTM predicts the SOC and vehicle power demand over a future period.
Considering that the eMPC exhibits control errors during rapid changes in operating
conditions, it is crucial to determine whether the power changes over the upcoming period
are suitable for applying the eMPC. Let the vehicle power demand at the current time t
be Preq(t), and the power predicted by WT-LSTM at time t + k be Preq-WT-LSTM (t + k). The
power change over the time k can be expressed as

∆Preq(k) = Preq-WT-LSTM (t + k)− Preq(t) (59)

The power change allowed by the eMPC can be denoted as PeMPC. If the power change
over the time k exceeds the power change allowed by the eMPC, the system switches to MPC
to solve the energy distribution problem. Since both MPC and the eMPC are instantaneous
optimization algorithms, frequent switching is permitted. Figure 7 illustrates the switching
logic between the eMPC and MPC.
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As shown in Figure 7, PeMPC_Low is the permitted power change in the eMPC for a
low-speed region, PeMPC_Medium is the permitted power change in the eMPC for a medium-
speed region, and PeMPC_High is the permitted power change in the eMPC for a high-speed
region. Within the allowed range of power changes, the eMPC is prioritized to solve
the energy distribution problem due to its excellent fast computation capabilities. Firstly,
determine which speed range the current vehicle speed falls into. Secondly, assess whether
the power change over time k is acceptable according to the control law. If acceptable,
use the eMPC to solve the energy distribution problem; otherwise, use MPC to solve the
power distribution problem. In operating conditions where the vehicle power demand
fluctuates smoothly, the eMPC can quickly solve the optimal control problem, saving
significant time compared to the online rolling optimization of MPC. However, in cases
of significant changes in vehicle power demand, due to the characteristics of the eMPC’s
control law, the resulting control errors are not acceptable, and MPC can provide more
stable control performance.

The pattern recognition ensures that the eMPC operates in conditions that maxi-
mize its performance advantages; by classifying the current vehicle speed, the system
can pre-emptively adjust the energy management strategy, ensuring seamless transitions
and reducing the need for reactive control changes. By establishing the switching rules
between the eMPC and MPC, the adaptability and robustness of the WTL-DMPC EMS to
different operating conditions are ensured. The energy-saving performance is validated via
simulation in Section 4.

4. Comparison of Simulation Results

After constructing the algorithm and selecting a vehicle model based on Sections 2 and 3,
respectively, the WTL-DMPC EMS for the studied FCEV is developed. This section ad-
dresses the performance evaluation of the WTL-DMPC EMS on the energy-saving valida-
tion. To evaluate the economic performance of the WTL-DMPC EMS, various driving cycles
need to be tested, and the profiles are illustrated in Figures 9 and 12. The test-driving cycles
are World Light Vehicle Test Cycle (WLTC) and Urban Dynamometer Driving Schedule
(UDDS), representing the daily life driving conditions.

The general performance of the WTL-DMPC-EMS in optimal control is evaluated by
comparing a series of baselines, including the compared energy management strategies
and the matched reference curves, as follows:

• Rule-based EMS (RB): It uses a set of logic thresholds to switch the operating mode, which
is benchmarked in road tests [49]. In this paper, the driving modes are divided into three
categories: electric mode, hybrid mode, and charging mode. In the electric mode, the
power required by the vehicle is supplied solely by the battery. In the hybrid mode, both
the fuel cell and the battery provide the required power. In the charging mode, the fuel cell
not only meets the vehicle’s power demand but also charges the battery. The switching
logics are illustrated in Figure 6. All other baselines are built upon this foundation.
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• ECMS: It is a representative instantaneous optimization-based EMS that is widely
studied [50]. The equivalent factor is the core of ECMS and is used to convert battery
energy into equivalent hydrogen consumption to achieve a unified measurement of
different energy sources. In this paper, a fixed equivalent factor of λ = 0.55 is used,
which is determined based on the average efficiency of the fuel cell and the battery.
Using a fixed equivalent factor reduces the complexity of real-time calculations while
ensuring a balance between energy sources.

• Model Predictive Control (MPC): It is a control algorithm with the advantages of rolling
optimization, feedback correction, and is widely used in many practical engineering
problems [51]. The MPC objective function balances hydrogen consumption and
battery usage to ensure an optimal trade-off, as illustrated in Equation (54). The
weights α is set to 0.7 and β is set to 0.3.

All of the mentioned methods have a fixed simulation step of 0.01 s. To highlight the
comparison of different methods, the vehicle is in electric mode at the beginning of the
simulation, and the initial SOC is set to 0.85. Simulations are performed on a computer
with an Intel i5-12400 processor with 32 GB memory.

4.1. Assessment of Energy Consumption by Different EMSs in WLTC Driving Cycles

This section illustrates the vehicle simulation results of the above four energy man-
agement strategies in four WLTC driving cycles. WLTC provides a comprehensive and
standardized test cycle that reflects real-world driving conditions, including urban, subur-
ban, and highway segments. This allows for a more accurate assessment of how energy
management strategies perform across different driving scenarios. Moreover, WLTC in-
cludes a wide range of driving behaviors such as acceleration, deceleration, cruising, and
idling. This variety ensures that energy management strategies are tested under diverse
conditions, enabling a thorough evaluation of their adaptability and robustness. Table 2 lists
the end SOC, the total equivalent hydrogen consumption, and the optimization percentage
of total equivalent hydrogen consumption (EHC) by four EMSs. Figure 8 presents the
simulation results of the WT-LSTM model. Figure 9 shows the SOC changes during the
simulation. Figure 10 illustrates the changes in total equivalent hydrogen consumption.
The EHC method ensures that both the fuel cell’s hydrogen consumption and the battery’s
electrical energy consumption are measured on the same scale. This unified metric enables
a clear comparison between the energy contributions of different power sources. The
equivalent hydrogen consumption is calculated using a fixed equivalent factor to convert
the battery energy into hydrogen-equivalent terms. The calculation is expressed as

EHC = Ebatt × λ + EFC (60)

where EHC is the total equivalent hydrogen consumption, Ebatt is the energy used from the
battery, EFC is the energy consumed by the fuel cell, and λ is the equivalent factor, which
remains fixed throughout the calculation and reflects the equivalence between hydrogen
energy and battery energy. This fixed equivalent factor λ ensures that the energy contribu-
tions from the battery are properly weighted relative to the fuel cell energy. Additionally,
the weights in the objective function are predetermined and remain constant throughout
the operation to reduce computational complexity. Table 2 illustrates the parameters.

Table 2. The selected parameters.

Parameters Value Description

λ 0.55 Equivalent factor
α 0.7 Weight for fuel cell energy in the objective function
β 0.3 Weight for battery energy in the objective function

Ebatt Varies based on demand Energy consumed from the battery
EFC Varies based on load Energy consumed from the fuel cell
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Figure 8 presents the simulation results of the WT-LSTM model for predicting vehicle
speed, SOC, and power demand, along with their corresponding Root Mean Square Error
(RMSE) values. The first subplot illustrates the vehicle speed prediction, comparing the
predicted values (red dashed line) with the true values (blue line). The close alignment of
the two lines indicates a high accuracy in speed prediction over the entire 3000 s period.
The second subplot depicts the SOC prediction, where the true and predicted values are
almost indistinguishable, demonstrating the model’s precise performance in predicting
the SOC. This high level of accuracy is further confirmed by the low RMSE value for
SOC, as shown in the bar chart at the bottom of the figure. The third subplot shows
the power demand prediction, with the predicted values closely tracking the true values,
despite minor deviations during high-frequency fluctuations. These slight discrepancies
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do not significantly impact the overall prediction performance, which remains consistent
and reliable. The bar chart at the bottom of the figure represents the RMSE for each
predicted parameter (speed, SOC, and power demand). The relatively low RMSE values
across all parameters underscore the robustness of the WT-LSTM model in capturing the
complex dynamics of the vehicle and energy system. The particularly low RMSE for SOC
highlights the model’s effectiveness in managing the energy state of the battery, which is
critical for efficient energy management. Overall, the figure validates the accuracy and
reliability of the WT-LSTM model in predicting key vehicle parameters, demonstrating its
suitability for energy management strategies aimed at optimizing both fuel cell and battery
operations effectively.

The RB shows a relatively stable SOC profile throughout the driving cycle. This stabil-
ity suggests that RB is effective in maintaining a consistent battery charge level, ensuring
that the vehicle has a reliable energy reserve. However, the stability comes at the cost of
optimization. RB typically follows predefined rules without adapting to specific driving
conditions, which leads to the highest total equivalent hydrogen consumption of 1450.084 g.
The SOC profile for ECMS exhibits more fluctuations compared to RB. This variability is
due to ECMS’s focus on minimizing equivalent fuel consumption by dynamically adjusting
the power split between the fuel cell and the battery based on instantaneous efficiency calcu-
lations. While this approach can significantly reduce hydrogen consumption, it also causes
more frequent charging and discharging cycles for the battery, potentially impacting its
longevity. ECMS reduces hydrogen consumption, but more frequent battery activation will
affect the battery lifespan. MPC further lowers the total EHC compared to ECMS and RB. By
predicting future driving conditions and optimizing control actions, MPC achieves better
fuel efficiency. The predictive nature of MPC allows it to make more informed decisions,
reducing hydrogen consumption effectively. By judging the driving conditions in real time
and switching MPC and the eMPC for energy distribution, WTL-DMPC achieves the lowest
total EHC 1151.163 g among all analyzed EMSs. It combines the advantages of MPC and
the eMPC, using MPC to calculate the optimal energy distribution during rapid changes in
vehicle power demand, and applying eMPC laws under relatively stable conditions. Its
excellent adaptability to various driving conditions enables it to demonstrate satisfactory
control performance under WLTC conditions. Additionally, the WTL-DMPC has the lowest
end SOC at 0.144, suggesting its aggressive optimization for fuel cell efficiency while still
managing battery charge effectively. The superior performance of WTL-DMPC in reducing
hydrogen consumption demonstrates its potential for real-world applications, highlighting
its capability to deliver optimal fuel efficiency without compromising battery stability.

Figure 11 illustrates the vehicle’s power output (red dashed line) compared to the
power demand (blue solid line) over a period from 0 to 7204 s. The power demand fluctuates
frequently, indicating dynamic driving conditions, and the vehicle’s power output closely
follows these changes. The minimal deviation between demand and output indicates a well-
performing control strategy that effectively adapts to power requirements, maintaining
consistency between the powertrain response and the dynamic driving conditions.

Table 3 presents the computational time required by different EMSs during the WLTC
driving cycles. Table 4 represents the energy consumption performance by different EMSs in
WLTC driving cycles. The results highlight the efficiency of the WTL-DMPC strategy, which
benefits from the dual MPC switching mechanism. By leveraging the fast computational
capabilities of the eMPC, the simulation step time for WTL-DMPC remains within the same
order of magnitude as the RB strategy, approximately 10−4 s. This demonstrates that the
additional complexity introduced by WTL-DMPC does not lead to a significant increase in
computational cost compared to RB. In contrast, both ECMS and MPC strategies require
online optimization at each time step, resulting in computational costs that are an order
of magnitude higher, approximately 10−3 s per step. The WTL-DMPC strategy, through
its efficient use of dual MPC switching, showcases relatively good real-time deployment
potential, combining effective energy management with computational feasibility. This
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makes WTL-DMPC a promising solution for practical applications requiring both high
performance and computational efficiency.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 29 
 

 

it to demonstrate satisfactory control performance under WLTC conditions. Additionally, 
the WTL-DMPC has the lowest end SOC at 0.144, suggesting its aggressive optimization 
for fuel cell efficiency while still managing battery charge effectively. The superior perfor-
mance of WTL-DMPC in reducing hydrogen consumption demonstrates its potential for 
real-world applications, highlighting its capability to deliver optimal fuel efficiency with-
out compromising battery stability. 

Figure 11 illustrates the vehicle’s power output (red dashed line) compared to the 
power demand (blue solid line) over a period from 0 to 7204 s. The power demand fluctu-
ates frequently, indicating dynamic driving conditions, and the vehicle’s power output 
closely follows these changes. The minimal deviation between demand and output indi-
cates a well-performing control strategy that effectively adapts to power requirements, 
maintaining consistency between the powertrain response and the dynamic driving con-
ditions. 

 
Figure 11. The power tracking performance of WTL-DMPC EMS under the WLTC. 

Table 3 presents the computational time required by different EMSs during the 
WLTC driving cycles. Table 4 represents the energy consumption performance by differ-
ent EMSs in WLTC driving cycles. The results highlight the efficiency of the WTL-DMPC 
strategy, which benefits from the dual MPC switching mechanism. By leveraging the fast 
computational capabilities of the eMPC, the simulation step time for WTL-DMPC remains 
within the same order of magnitude as the RB strategy, approximately 10−4 s. This demon-
strates that the additional complexity introduced by WTL-DMPC does not lead to a sig-
nificant increase in computational cost compared to RB. In contrast, both ECMS and MPC 
strategies require online optimization at each time step, resulting in computational costs 
that are an order of magnitude higher, approximately 10−3 s per step. The WTL-DMPC 
strategy, through its efficient use of dual MPC switching, showcases relatively good real-
time deployment potential, combining effective energy management with computational 
feasibility. This makes WTL-DMPC a promising solution for practical applications requir-
ing both high performance and computational efficiency. 

The differences in strategies lead to variations in the final SOC levels. To provide a 
more comprehensive analysis of the WTL-DMPC performance, the SOC was restored to 
its initial value of 0.85 using stationary charging, and the corresponding energy consump-
tion was converted to equivalent hydrogen consumption, as presented in Table 5. Com-
pared to other EMSs, the proposed WTL-DMPC reveals the superior energy-saving per-
formance. The WTL-DMPC exhibits the greatest deviation from the initial SOC, necessi-
tating recharging to restore it to the starting level of 0.85. Despite this requirement, it 
achieves the lowest EHC for recharging, recorded at 1617.133 g, which is significantly 

Figure 11. The power tracking performance of WTL-DMPC EMS under the WLTC.

Table 3. Energy consumption performance by different EMSs in WLTC driving cycles.

EMSs Minimum Step Time
Cost (s)

Maximum Step Time
Cost (s)

Average Step Time
Cost (s)

RB 1.650 × 10−4 4.800 × 10−4 1.780 × 10−4

ECMS 1.500 × 10−3 1.920 × 10−3 1.550 × 10−3

MPC 1.820 × 10−3 2.050 × 10−3 1.980 × 10−3

WTL-DMPC 2.100 × 10−4 3.500 × 10−3 2.320 × 10−4

Table 4. Energy consumption performance by different EMSs in WLTC driving cycles.

EMSs End SOC Total Equivalent Hydrogen
Consumption (g)

Energy-Saving
Optimality (%)

RB 0.419 1450.084 -
ECMS 0.381 1419.794 2.089
MPC 0.183 1288.568 11.138

WTL-DMPC 0.144 1151.163 20.614

The differences in strategies lead to variations in the final SOC levels. To provide
a more comprehensive analysis of the WTL-DMPC performance, the SOC was restored
to its initial value of 0.85 using stationary charging, and the corresponding energy con-
sumption was converted to equivalent hydrogen consumption, as presented in Table 5.
Compared to other EMSs, the proposed WTL-DMPC reveals the superior energy-saving
performance. The WTL-DMPC exhibits the greatest deviation from the initial SOC, neces-
sitating recharging to restore it to the starting level of 0.85. Despite this requirement, it
achieves the lowest EHC for recharging, recorded at 1617.133 g, which is significantly lower
than the consumption values of the RB, ECMS, and MPC strategies. This highlights WTL-
DMPC’s effective optimization of fuel cell efficiency while managing battery utilization.
Furthermore, WTL-DMPC demonstrates the highest energy-saving optimality, with a value
of 6.769%, indicating its superior capability in minimizing hydrogen consumption and
effectively allocating energy resources. The adaptive control and integration of both MPC
and the eMPC in the proposed strategy allow for enhanced fuel efficiency under varied
driving conditions.
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Table 5. The EHC required for stationary charging to reach the initial SOC.

EMSs The Deviation from
the Initial SOC EHC (g) EHC (g) for Charging

to the Initial SOC
Energy-Saving
Optimality (%)

RB 0.431 284.466 1734.550 -
ECMS 0.469 309.547 1729.341 0.301
MPC 0.667 440.229 1728.797 0.332

WTL-DMPC 0.706 465.970 1617.133 6.769

4.2. Assessment of Energy Consumption by Different EMSs in UDDS Driving Cycles

This section illustrates the vehicle simulation results of the above four energy manage-
ment strategies in eight UDDS driving cycles. WLTC provides a comprehensive and broad
coverage of driving conditions, while UDDS offers an in-depth evaluation of urban driving
details. UDDS primarily simulates city driving conditions, including frequent acceleration,
deceleration, and idling phases. The dual simulation of WLTC and UDDS allows for a better
assessment of the control effectiveness and robustness of energy management strategies.
Table 6 lists the end SOC, the total equivalent hydrogen consumption, and the optimization
percentage of total equivalent hydrogen consumption (EHC) by four EMSs. Figure 12
shows the SOC changes during the simulation. Figure 13 illustrates the changes in total
equivalent hydrogen consumption.

Table 6. Energy consumption performance by different EMSs in UDDS driving cycles.

EMSs End SOC Total Equivalent Hydrogen
Consumption (g)

Energy-Saving
Optimality (%)

RB 0.767 1236.592 -
ECMS 0.721 1190.864 3.698
MPC 0.262 1231.420 0.418

WTL-DMPC 0.652 1162.744 5.972
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Following the WLTC simulation, the UDDS simulation was conducted to further
evaluate the performance of WTL-DMPC under urban driving conditions. In managing
the SOC, Figure 12 shows that the SOC changes during the UDDS cycle indicate that WTL-
DMPC continues to manage the battery charge effectively, though with some fluctuations
due to the frequent start/stop nature of urban driving. Despite these fluctuations, WTL-
DMPC maintains a higher SOC compared to MPC, which is crucial for ensuring sufficient
energy reserves in city driving conditions. Regarding the total EHC, Figure 13 shows that
WTL-DMPC achieves one of the lowest total EHC values in the UDDS simulation. This per-
formance indicates that WTL-DMPC is efficient in managing hydrogen consumption even
in urban driving conditions characterized by frequent acceleration and deceleration. As for
energy-saving optimization, Table 6 reveals that WTL-DMPC achieves an energy-saving
optimization of 5.972% in the UDDS simulation. While this is lower than the optimization
percentage in the WLTC simulation, it still represents a significant improvement over other
strategies, particularly in the context of urban driving.

WTL-DMPC shows remarkable adaptability and robustness across different driving
conditions. Its ability to effectively manage SOC and minimize hydrogen consumption
in both WLTC and UDDS simulations demonstrates its versatility and reliability as an
energy management strategy. The dual-driving-cycle simulation approach highlights the
efficacy of WTL-DMPC in both comprehensive and specific driving conditions. In WLTC,
WTL-DMPC excels in the overall fuel economy, while in UDDS, it effectively handles the
demands of urban driving. The excellent performance of WTL-DMPC in minimizing total
EHC and maintaining SOC stability across varied driving cycles indicates that it provides
optimal control performance. This makes it a promising strategy for real-world applications
where vehicles encounter diverse driving scenarios.

4.3. Assessment of Fuel Cell Efficiency in WLTC and UDDS

Figures 14 and 15 show the distribution of operating points of fuel cell by different
EMSs, the proportion of operating points with different efficiencies in the whole simulation
process. As shown in Figure 14, in the WLTC simulation, WTL-DMPC shows a significant
proportion of its fuel cell operating points in the high-efficiency range. The pie chart for
WTL-DMPC indicates that 21.39% of the operating points fall into the lowest efficiency
segment, which is the smallest proportion among the compared strategies. This suggests
that WTL-DMPC is very effective in optimizing fuel cell operations to maximize efficiency,
leading to lower hydrogen consumption and improved overall energy utilization. By
maintaining a high proportion of operating points in the optimal efficiency range, WTL-
DMPC ensures that the vehicle operates more economically and sustainably over a variety
of driving conditions. The operating points for WTL-DMPC are well-distributed across a
high-efficiency range of fuel cell power. This balanced distribution highlights WTL-DMPC’s
ability to efficiently adapt to varying power demands throughout the WLTC cycle. By
maintaining high efficiency across different power levels, WTL-DMPC ensures optimal
performance under diverse driving conditions encountered in the WLTC. Additionally,
WTL-DMPC exhibits fewer low-efficiency operating points compared to other strategies.
This reduction in low-efficiency regions emphasizes WTL-DMPC’s capability to minimize
energy losses and enhance fuel cell performance consistently. Avoiding low-efficiency
operation contributes significantly to a more effective energy management system. By
reducing the time spent in inefficient operating regions, WTL-DMPC not only conserves
hydrogen but also extends the operational life of the fuel cell by preventing unnecessary
stress and wear.

Under the UDDS simulation, WTL-DMPC continues to maintain a substantial propor-
tion of high-efficiency operating points. The pie chart shows that 31.95% of the operating
points are within the high-efficiency range, highlighting WTL-DMPC’s effectiveness in
managing energy even in urban driving conditions characterized by frequent stops and
low-speed operations. Urban driving typically involves frequent acceleration and decelera-
tion, which can be challenging for energy management strategies. WTL-DMPC’s ability to
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sustain high efficiency under these conditions demonstrates its robustness and suitability
for city driving. WTL-DMPC minimizes the proportion of low-efficiency operating points
in the UDDS cycle. By reducing the time spent in inefficient regions, WTL-DMPC enhances
overall energy management and ensures more consistent performance. This capability
is particularly beneficial in urban driving, where frequent changes in speed and power
demand pose challenges to less adaptive strategies. The minimization of low-efficiency
operation points indicates that WTL-DMPC can handle the stop-and-go nature of urban
traffic more effectively.
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As illustrated in Figure 16, the battery (red line) and the fuel cell (blue line) share
power demands during a driving cycle. The fuel cell maintains a relatively stable output,
avoiding frequent power fluctuations, which mitigates load cycling and reduces the risk of
membrane degradation and catalyst deterioration. This stability is crucial for extending the
lifespan of the fuel cell. On the other hand, the battery handles the transient power demands
and high-frequency fluctuations. Although the battery experiences more dynamic power
variations, the WTL-DMPC strategy carefully manages the SOC within a controlled range
to prevent deep discharges and overcharging. This approach helps to mitigate electrode
wear and thermal stress, which are primary contributors to battery degradation. While
hydrogen consumption minimization is the main optimization objective, the WTL-DMPC
strategy addresses component longevity through effective power distribution. The dual
MPC adaptively allocates power to minimize stress on both components, contributing to
their overall durability.
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In summary, WTL-DMPC stands out for its remarkable adaptability and robustness
across different driving conditions, as demonstrated by the fuel cell operating points in
both WLTC and UDDS simulations. The strategy’s ability to maintain high efficiency
under varying power demands and driving scenarios underscores its versatility. This
adaptability ensures that the vehicle can achieve optimal performance whether it is cruising
on a highway or navigating through city traffic.

5. Conclusions

In this paper, a WTL-DMPC EMS is proposed for FCEVs, strengthening the energy-
saving potential and increasing the operational efficiency of the fuel cell system. Firstly,
the wavelet transform is introduced into LSTM to enhance its feature extraction capability
and the accuracy of driving state prediction. Secondly, the construction of MPC and
the eMPC for energy distribution problems under different driving conditions improves
the adaptability and robustness of the energy management strategy, making it feasible
for practical deployment. Thirdly, the proposed dual MPC switching logic increases the
algorithm’s compatibility with driving states, reducing control errors during transitions in
driving states. Finally, the equivalent fuel consumption of WTL-DMPC can be reduced by
20% and 6%, respectively, under dual simulation conditions.

However, aiming at guaranteeing the simulation, the required power for the studied
vehicle is determined by a given a priori driving speed, which ignores the impact of
predicted power error on the control effect. More effort will be devoted to the accurate
required power forecasting in our future work.
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