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Abstract: The accuracy of the control model is essential for the effectiveness of model-based control
methods. However, factors such as model simplification, parameter variations, and environmental
noise can introduce inaccuracies in vehicle state descriptions, thereby compromising the precision
of path tracking. This study introduces data-driven enhancements for an MPC-based path tracking
controller in autonomous vehicles (DD-PTC). The approach consists of two parts: firstly, Kolmogorov–
Arnold Networks (KANs) are utilized to estimate tire lateral forces and correct tire cornering stiffness,
thereby establishing a dynamic predictive model. Secondly, Gaussian Process Regression (GPR) is
deployed to accurately capture the unmodeled dynamics of the vehicle to form a comprehensive
control model. This enhanced model allows for precise path tracking through steering control.
The superiority of DD-PTC is confirmed through extensive testing on the Simulink-CarSim simula-
tion platform, where it consistently surpasses normal MPC and Linear Quadratic Regulator (LQR)
strategies, especially in minimizing lateral distance errors under challenging driving conditions.

Keywords: data-driven; model predictive control; path tracking

1. Introduction

Driven by rapid advancements in technology, autonomous vehicles have emerged
as a significant focus of research, primarily due to their vast commercial potential and
broad spectrum of applications. An autonomous driving system mainly consists of core
modules such as perception, decision-making, planning, and tracking [1]. Among these,
path tracking is especially critical as it directly influences the vehicle’s ability to precisely
adhere to the planned path. Accurate path tracking is not only crucial for driving safety but
also serves as an important indicator for evaluating the overall reliability of autonomous
driving technologies [2]. Therefore, in-depth research and optimization of path tracking
algorithms are crucial for enhancing the navigational accuracy and safety of autonomous
vehicles. In recent years, a considerable amount of research has been conducted on path
tracking technology for autonomous vehicles.

Currently, diverse algorithms are utilized in the design and optimization of path
tracking controllers. These include proportional–integral–derivative control (PID), fuzzy
logic control (FL), sliding mode control (SMC), linear quadratic regulator (LQR), robust
control, and model predictive control (MPC) [3]. Compared to other controllers such
as PID, LQR, and FL, MPC can more effectively handle constraints on state variables,
control variables, and their rates of change, thereby achieving optimal control. Unlike SMC,
MPC avoids potentially unsafe chattering phenomena, ensuring the smoothness of control
actions [3].

In the design of path tracking controllers, the predictive model of MPC is a core
component, essential for achieving high precision and stability in control. Kinematic single-
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track models, employed by researchers for path tracking applications [4–7], simplify the
dynamics by assuming zero tire slip angles at both the front and rear tires and disregarding
the effects of inertia. The primary benefits of this model are its minimal computational
requirements and its effectiveness at lower speeds. However, the model’s accuracy di-
minishes with increased vehicle speed, limiting its effectiveness in high-speed scenarios.
Dynamics single-track models, adopted by some researchers for path tracking [5,8–10],
assume that the vehicle consistently maintains a constant speed and the tires remain within
the linear region. Under these conditions, the lateral tire force maintains a linear relation-
ship with the slip angle. At high speeds and with small steering angles, an MPC-based
controller using the dynamics single-track model generally maintains good path track-
ing accuracy. When the tires exhibit nonlinear characteristics, the linear assumption of
cornering stiffness leads to increased model error, which in turn severely affects tracking
accuracy. Kabzan et al. [11] developed a hybrid model by combining the single-track
kinematic model and the single-track dynamic model using an adjustable scaling factor.
This approach improved the model’s adaptability but still faced the previously mentioned
challenges. To more accurately capture real vehicle dynamics and enhance model preci-
sion, several researchers [12–15] have turned to the dynamics double-track model for path
tracking, recognizing it as an effective approach. This model accounts for the forces exerted
by each tire and can precisely simulate the effects of lateral load transfer, along with the
impact of suspension springs and dampers, significantly enhancing the accuracy of path
tracking. However, the complexity of the dynamics double-track model may restrict its
widespread adoption in practical applications.

The aforementioned predictive models do not account for model errors resulting from
factors such as model simplification, parameter variations, and environmental noise. This
leads to inaccuracies in describing vehicle states, thereby affecting the accuracy of tracking.
Researchers have developed various strategies to improve the accuracy and adaptabil-
ity of models beyond the linear region. Several approaches [16–20] directly estimate tire
cornering stiffness or precisely utilize tire force observers to estimate lateral forces and
effectively adjust tire cornering stiffness to accommodate the nonlinear characteristics of the
tires, thus significantly enhancing model performance and ensuring the accuracy of path
tracking. In several studies [21–25], learning-based MPC strategies were proposed. These
strategies integrate a simplified mechanistic model with residual models that are learned
through data-driven methods. Employing an MPC framework, it effectively minimizes
path tracking errors and has been validated for its effectiveness and practicality under
the conditions of high speed and high acceleration. These advanced methods highlight
the critical need to account for both nonlinear characteristics and unmodeled dynamics
in dynamics models. By accurately estimating tire cornering stiffness or implementing
learning-based MPC, these studies significantly improve the adaptability and predictive ac-
curacy of the models. Despite individual advancements in enhancing path tracking through
tire cornering stiffness estimation and data-driven approaches, integrated strategies that
combine these methods are still relatively underexplored in the current research.

Inspired by the methods discussed above, this study introduces a data-driven enhance-
ments for an MPC-based path tracking controller architecture that aims to improve path
tracking accuracy through precise modeling of the predictive model. As shown in Figure 1,
the architecture includes three main components: the state estimation layer, the augmented
predictive model layer, and the MPC solver layer. Firstly, we utilize the KAN network [26]
to estimate the lateral forces on the front and rear axles of the vehicle, which are employed
to correct the vehicle dynamics model. Based on this, GPR is employed as the residual
model to describe the deviation between the simplified mechanistic model and the actual
vehicle state. Finally, the MPC-based controller is employed to solve for the optimal control
solutions. The main contributions of this paper include the following:

• In response to the challenge that the relationship between the lateral force and slip
angle becomes nonlinear as the tires exhibit nonlinear characteristics, this study
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employs the KAN network to estimate the lateral forces to correct the tire cornering
stiffness, thereby enhancing the accuracy of the predictive model.

• GPR is utilized to learn the residual dynamics between the simplified mechanistic
model and the actual vehicle state. This strategy significantly enhances the predictive
model accuracy of the MPC and further improves the precision of path tracking.

The remainder of this paper is organized as follows: Section 2 introduces the establish-
ment of the vehicle prediction model; Section 3 elaborates on the data-driven enhancements
for the MPC-based path tracking controller; Section 4 presents the simulation results to
demonstrate the effectiveness of the strategy; and Section 5 discusses the conclusions.
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Figure 1. Framework of DD-PTC.

2. Nominal Vehicle Dynamics Model

When autonomous vehicles follow a path, the primary emphasis is placed on assessing
the vehicle’s lateral dynamics performance. The effects of air resistance and load transfer
between the front and rear axles on tire characteristics are ignored. A three-degree-of-
freedom vehicle dynamics model encompassing longitudinal, lateral, and yaw motion is
established, as shown in Figure 2.

Figure 2. Dynamic model.

The vehicle dynamics equations are as follows:
mẍ = mẏφ̇ + 2Fx f + 2Fxr

mÿ = −mẋφ̇ + 2Fy f + 2Fyr
Iz φ̈ = 2l f Fy f − 2lrFyr

(1)
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where m represents the mass of the vehicle, and l f and lr denote the distances from the vehi-
cle’s center of mass to the front and rear axles, respectively. In the vehicle coordinate system,
x and y represent the longitudinal and lateral positions, ẋ and ẏ represent the longitudinal
and lateral speeds, and ẍ and ÿ represent the longitudinal and lateral accelerations. φ, φ̇,
and φ̈ correspond to the vehicle’s yaw angle, yaw rate, and yaw acceleration, respectively.
Iz denotes the vehicle’s moment of inertia. Fx f and Fy f represent the decomposition of the
front tire forces into lateral and longitudinal components, while Fxr and Fyr represent the
decomposition of the rear tire forces into lateral and longitudinal components, respectively,
as follows: 

Fx f = Fl f cos δ f − Fc f sin δ f
Fxr = Flr
Fy f = Fl f sin δ f + Fc f cos δ f
Fyr = Fcr

where Fl f and Flr represent the longitudinal forces of the front and rear wheels, respectively,
while Fcl and Fcr represent the lateral forces of the front and rear wheels, respectively.
Considering the slip angle and slip rate are within a small range near the origin, the lateral
and longitudinal forces of the tires can be simplified into a linear relationship, as follows:

Fl = Cls

Fc f = Cc f α f = Cc f

( l f φ̇+ẏ
ẋ − δ f

)
Fcr = Ccrαr = Ccr

ẏ−lr φ̇
ẋ

(2)

where Cl represents the longitudinal stiffness of the tires, and Cc,i with i ∈ { f , r} represents
the cornering stiffness of the tires, respectively. αi with i ∈ { f , r} represents the tire slip
angle, µ denotes the ground adhesion coefficient, and s indicates the tire slip rate.

Considering the transformation relationship between the coordinate system of the ve-
hicle and the inertial coordinate system, as shown in Figure 3, the coordinate transformation
formula can be expressed as follows:{

Ẏ = ẋ sin φ + ẏ cos φ
Ẋ = ẋ cos φ − ẏ sin φ

(3)

Finally, the single-track model of vehicle dynamics can be described as follows:

ξ̇(t) = fdyn(ξ(t), u(t)) =



ẋ cos φ − ẏ sin φ

ẋ sin φ + ẏ cos φ

φ̇
1
m ẏφ̇ + 2(Cl f s f + Clrsr + Cc f α f δ f )

1
m (−mẋφ̇ + 2Cc f α f + 2Ccrαr)

2
Iz
(aCc f α f − bCcrαr)

(4)

In Equation (4), the state variables and control variable are as follows:ξ =
[

X Y ẋ ẏ φ φ̇
]T

u = δ f

(5)

To meet computational requirements, the model described above must be linearized.
The linearized equations can be rewritten as follows:

ξ̇ = f (ξ(t), u(t)) (6)
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By performing a Taylor expansion around the reference point (ξt, ut), Equation (6) can be
approximately transformed into a linear time-varying (LTV) system.

ξ̇ = Aξ + Bu (7)

where

A =
∂ f
∂x

|ξt ,ut =



− 2(Cc f +Ccr)
mẋt

∂ fẏ
∂ẋ 0 −ẋt +

2(lrCcr−l f Cc f )
mẋt

0 0

φ̇ − 2Cc f δ f ,t−1
mẋt

∂ f ẋ
∂ẋ 0 ẏt −

2l f Cc f δ f ,t−1
mẋt

0 0

0 0 0 1 0 0
2(lrCcr−l f Cc f )

Iz ẋt

∂ f φ̇

∂ẋ 0 − 2(l f
2Cc f +lr2Ccr)

Iz ẋt
0 0

cos(φt) sin(φt) ẋt cos(φt)− ẏt sin(φt) 0 0 0

− sin(φt) cos(φt) −ẏt cos(φt)− ẋt sin(φt) 0 0 0


(8)

B =
∂ f
∂u

|ξt ,ut =

2Cc f

m
,

2Cc f

(
2δ f ,t−1 −

ẏt+l f φ̇t
ẋt

)
m

, 0,
2l f Cc f

Iz
, 0, 0

 (9)

∂ fẏ

∂ẋ
=

(
2Cc f

(
ẏt + l f φ̇t

)
+ 2Ccr(ẏt − lr φ̇t)

)
/mẋ2

t − φ̇t (10)

∂ f φ̇

∂ẋ
=

(
2l f Cc f

(
ẏt + l f φ̇t

)
− 2lrCcr(ẏt − lr φ̇t)

)
/Iz ẋ2

t (11)

Figure 3. Coordinate transform.

3. DD-PTC Architecture
3.1. Augmented Predictive Model Layer
3.1.1. Gaussian Process Regression

Inspired by [21,22], we employ GPR to augment the nominal dynamics model in the
MPC framework. A GPR ensemble predicts dynamics model errors and makes adjustments
at each time step. Similar to most GP-based learning problems, we assume a true vehicle
dynamics model, ftrue. We obtain ỹk+1 by measuring at discrete time points tk , where the
measurements are subject to noise.

ỹk+1 = ftrue(xk, uk) + wk (12)
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Assuming Gaussian noise wk∼N(0, Σ) with a time-invariant diagonal covariance matrix,
this implies that each output dimension can be independently processed using a one-
dimensional GPR. GPR employs the Radial Basis Function (RBF) as its kernel function,
defined as follows:

κ(zi, zj) = σ2
f exp

(
−1

2
(zi − zj)

T L−2(zi − zj)

)
+ σ2

n (13)

where L represents the diagonal length scale matrix, σf and σn denote the data variance
and the prior noise variance, respectively, while zi and zj represent data features.

The vehicle system dynamics is redefined as a combination of the normal dynamics
plus the mean posterior µgp from the GPR, and µgp is determined by the selection matrix
Bd and the input feature vector zk.

fcor(xk, uk) = fdyn(xk, uk) + Bdµgp(zk) (14)

In this paper, the input to the GPR is selected as zk =
[

ẏ φ φ̇
]T , with Bdµ(zk) repre-

senting the residual compensation for the state variables. This paper focuses on correcting[
ẏ φ φ̇ Y

]
. Given the training feature samples Z and the query feature sample zk,

the mean and covariance predicted by GPR can be derived as follows:

µgp(zk) = KT
k K−1Z (15)

Σuk = Kkk − KT
k K−1Kk (16)

where K, Kk, and Kkk, respectively, represent:

K = κ(Z, Z) + σ2
n I (17)

Kk = κ(Z, Zk) (18)

Kkk = κ(Zk, Zk) (19)

3.1.2. Data Collection and Practical Implementation

To fit the GPR ensemble, data are collected in Carsim using the nominal dynamics
model. For each sampling moment tk, the actual state variables at the next time step
xtrue

k+1
, the state variables predicted by the prediction model xk+1 , and the time step δtk are

recorded. The error in the state variables of the vehicle per unit time is then calculated
as follows:

xek =
xtrue

k+1
− xk+1

δtk
(20)

During the fitting process of GPR, outlier processing is initially conducted on the
collected data. Subsequently, to reduce the fitting errors of GPR, we use a Gaussian
Mixture Model (GMM) to cluster the data, and a separate GPR is fitted for each category
to form a GPR ensemble. Better fitting results are achieved by appropriately selecting the
hyperparameters of the kernel function. During this process, we utilize the maximum
likelihood estimation method to optimize the hyperparameters of the kernel function,
ensuring that the predictive model can accurately reflect the actual vehicle dynamics.
In practical applications, by calculating the Euclidean distance between the current vehicle
state and each cluster center, the GPR model from the closest category is chosen from the
GPR ensemble to correct state variable errors in MPC. This method effectively improves
prediction accuracy and optimizes control performance.

3.2. State Estimation Layer

The tire lateral force calculated based on constant cornering stiffness only provides
good approximations under stable conditions. When there are drastic changes in the
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vehicle’s vertical load, significant discrepancies arise between the calculated tire lateral force
using constant stiffness and the actual lateral force. Therefore, fixed stiffness values Cc f
and Ccr struggle to adapt to scenarios with significant changes in vertical load. To enhance
path tracking performance in autonomous vehicles, a lateral force observer based on the
KAN network has been designed. This observer can precisely estimate the tire’s lateral
force, and then the cornering stiffness is dynamically adjusted.

The KAN network is based on the Kolmogorov–Arnold representation theorem, which
proves that any multivariate function can be represented by a sum of single-variable
functions. Compared to Multilayer Perceptrons (MLPs) [27], KAN networks offer several
advantages. Firstly, KAN networks have better interpretability and exhibit faster neural
scaling laws than MLPs. By leveraging the locality of splines, KAN networks can avoid the
catastrophic forgetting issue, which is a severe problem observed in MLPs. Secondly, KAN
networks achieve comparable performance to MLPs with fewer parameters and exhibit
good generalization capabilities [26].

Assuming the structure of the KAN is [n0, n1, · · · , nL], where ni represents the number
of nodes in the ith layer of the computational graph, we denote ith the neuron in the lth

layer as (l, i), and its activation value as xl,i. The activation function connecting (l, i) and
(l, j + 1) is denoted as follows:

ϕl,j,i, l = 0, · · · , L − 1, i = 1, · · · , nl , j = 1, · · · , nl+1. (21)

Given the pre-activation value of xl,i, the post-activation value x̃l,j,i is obtained through the
activation function ϕl,j,i. The activation value (l + 1, j) is the sum of all x̃l,j,i.

xl+1,j =
nl

∑
i=1

x̃l,j,i =
nl

∑
i=1

ϕl,j,i(xl,i), i = 1, · · · , nl , j = 1, · · · , nl+1. (22)

The matrix representation of the above Equation (22) is given by the following:

xl+1 =


ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,nl

(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,nl

(·)
...

...
...

ϕl,nl+1,1(·) ϕl,nl+1,2(·) · · · ϕl,nl+1,nl
(·)


︸ ︷︷ ︸

Φl

xl (23)

Given an input vector x0 ∈ Rn0 , the output of the KAN network is denoted by the following:

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ1 ◦ Φ0)x (24)

where Φl is the function matrix corresponding to the lth KAN layer. The selected input fea-
tures for the KAN network are zk = [ vx vy yaw_rate ax ay delta ], and the output
of the KAN network is as follows:

[F̂c f , F̂cr] = KAN(zk) (25)

where F̂c f and F̂cr are the estimated lateral forces. The tire cornering stiffness is adjusted
based on the lateral tire force estimated by the KAN network. The tire cornering stiffness
correction coefficient is defined as follows:

λ f =
F̂c f −Fc f

|F̂c f |
=

F̂c f −Cc f

(
l f φ̇+ẏ

ẋ −δ f

)
F̂c f

λr =
F̂cr−Fcr
|F̂cr |

=
F̂cr−Ccr

(
ẏ−lr φ̇

ẋ

)
F̂cr

(26)
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The corrected tire cornering stiffness is given by the following equation:{
Ĉc f = (1 + λ f )Cc f

Ĉcr = (1 + λr)Ccr
(27)

To avoid the failure of tire lateral force estimation and the deterioration of the path tracking
controller’s performance due to excessive correction by the correction factor, the correction
coefficients for the cornering stiffness of the front and rear axles are constrained as follows:{

λ f min ≤ λ f ≤ λ f max

λr min ≤ λr ≤ λr max
(28)

where λ f max and λ f min are the upper and lower limits of the front axle cornering stiff-
ness correction coefficient, while λr max and λr min are the upper and lower limits for the
rear axle cornering stiffness correction coefficient. The lower and upper limits are set as
λ f min = λr min = −0.4 and λ f max = λr max = 0.4, respectively. The cornering stiffness in
the path tracking controller is replaced with the corrected cornering stiffnesses Ĉc f and
Ĉcr. To prevent singularities in the correction factor when the tire lateral force is too low,
the correction coefficient is set to zero if the tire slip angle’s absolute value is less than 0.1◦.

3.3. MPC Solver Layer

MPC controls a system subject to its dynamics ẋ = f (x, u) by minimizing a cost
function L(x, u) based on reference outputs ηre f (t) and reference input controls u∗(t).
The general form of MPC is as follows:

min
u

∫
L(x, u)

s.t.ẋ = fdyn(x, u)
x0 = xinit

r(x, u) = 0

h(x, u) ≤ 0

(29)

where x0 is the initial state, and r and h represent the equality and inequality constraints,
respectively. ẋ = fdyn(x, u) can be further written in the form of state space equations
ẋ = Adisx + Bdisu, and the output is η = Cdisx + Ddisu. The normal model introduced in
Section 2 is employed here. The cost function and state space equations above are expressed
in a continuous form. For practical applications, it is necessary to discretize the equations.
Assuming the discretization time step is T, the output in this study is solely dependent on
x. The forward Euler method is used for discretization to obtain the following:{

x(k + 1) = Akx(k) + Bku(k)

η(k) = Ckx(k)
(30)

where Ak = I + AdisT, Bk = BdisT, Ck = Cdis, and T = 0.01. To prevent sudden changes in
the control variables that could cause danger during the driving process, it is necessary to
limit the control increments. Thus, the augmented state vector is defined as follows:

χ(k) =
[

ξ̃(k) ũ(k − 1)
]T (31)

The new expression for the state space equations is obtained as follows:

χ(k + 1) = Aχ(k) + B∆u(k) (32)

y(k) = Cχ(k) (33)
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where A =

[
Ak Bk

0m×n Im

]
, B =

[
Bk
Im

]
, C = [ Ck 0m×1 ], n is the number of state

variables, and m is the number of control variables. The state prediction incorporating
GPR-augmented dynamics can be expressed as follows:

χ(k + 1|k) = Aχ(k) + B∆u(k|k) + µgp(ξ(k))

χ(k + 2|k) = A2χ(k) + AB∆u(k|k) + B∆u(k + 1|k) + µgp(ξ(k + 1|k))
χ(k + 3|k) = A3χ(k) + A2B∆u(k|k) + AB∆u(k + 1|k) + B∆u(k + 2|k) + µgp(ξ(k + 2|k))
...
χ(k + Np|k) = ANp χ(k) + ANp−1B∆u(k|k) + ANp−2B∆u(k + 1|k)
+ · · ·+ ANp−Nc B∆u(k + Nc − 1|k) + µgp(ξ(k + Np − 1|k))

(34)

where µgp is the mean of the state variable errors predicted by GPR, Np is the prediction
horizon of the system, Nc is the control horizon, and ∆u represents the control increments.
The output of the system at future time steps is given by the following:

η(k + 1|k) = Cχ(k + 1|k)
η(k + 2|k) = Cχ(k + 2|k)
η(k + 3|k) = Cχ(k + 3|k)
...
η(k + Np|k) = Cχ(k + Np|k)

(35)

The primary goal of the cost function is to penalize deviations between the output
and the reference target, and to minimize the rate of change in control actions as much as
possible, thereby ensuring passenger comfort. Additionally, to prevent situations where
no solution is feasible, a slack variable ε is introduced. In this study, we specify the cost
function in a quadratic form.

L(x, u) =
Np

Σ
i=1

||η(k + i|t)− ηre f (k + i|t)||2Q +
Nc−1

Σ
i=0

||∆u(k + i|k)||2R + ρε2 (36)

The first summation term penalizes the difference between the expected vehicle state and
the state within the prediction horizon of Np steps. The second summation term penalizes
the control increments over the control horizon of Nc steps. Q and R are the weight matrices.
In addition, a set of constraints is applied to the control actions.

umin ≤ u(k) ≤ umax (37)

The sequence of control actions and the sequence of control increments satisfy the follow-
ing relationship:

U(k) = M∆U(k) + Γu(k − 1) (38)

where U(k) =


u(k|k)

u(k + 1|k)
...

u(k + Nc − 1|k)

, M =


Im 0 · · · 0
Im Im · · · 0
...

...
. . . 0

Im Im Im Im

, Γ =


Im
Im
...

Im

,

∆U(k) =


∆u(k|k)

∆u(k + 1|k)
...

∆u(k + Nc − 1|k)

.
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According to Equation (37), constraints are imposed on the sequence of control actions
as follows:

Umin ≤ U(k) ≤ Umax (39)

The constraints for the front wheel steering angle and the increment of the front wheel
steering angle are set as follows: {

−30 ≤ u ≤ 30
−0.47 ≤ ∆u ≤ 0.47

(40)

In summary, the constraints can be represented by the following equation:
M
−M

I
−I

∆U(k) ≤


Umax − Γu(k − 1)
−Umin + Γu(k − 1)

∆Umax
−∆Umin

 (41)

Finally, the solution is obtained using a nonlinear programming (NLP) solver.

4. Simulation and Analysis

To validate the effectiveness and robustness of the proposed method, we selected two
typical scenarios for path tracking verification, as illustrated in Figure 4. These scenarios
correspond to double-lane change and single-lane change maneuvers. Both scenarios
were simulated using the Simulink-CarSim joint simulation platform. The parameters for
the vehicle in the CarSim simulation model are detailed in Table 1. To demonstrate the
superiority of DD-PTC, path tracking controllers based on MPC and LQR were developed
as benchmarks.
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Figure 4. The traffic scenes of two cases.

Table 1. Vehicle parameters.

Parameter Value Parameter Value

Vehicle mass (kg) 1270 Yaw moment of inertia (kg·m2) 1536.7
Wheelbase (m) 2.910 Wheel track (mm) 1.675 (front, rear)

Distance from front axle to
center of mass (m) 1.015 Distance from rear axle to center of

mass (m) 1.895

Centroid height (m) 0.54 Rolling radius (m) 0.325
Front axle cornering stiffness

(N/rad) 60,000 Rear axle cornering stiffness (N/rad) 40,000
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4.1. Estimation Results of the KAN Model

As discussed in Section 3, the lateral force was estimated using the KAN network. Data
were gathered via Carsim across a variety of driving scenarios and conditions. Subsequently,
these data were employed to train the KAN network, which is structured as follows: the
input layer consists of six neurons, corresponding to the primary variables influencing
the outputs. This is followed by a hidden layer containing 32 neurons, which allows for
the extraction and processing of important features from the input data. The architecture
culminates in an output layer of two neurons. These output neurons specifically represent
the lateral forces at the front and rear axles, respectively. The KAN network, implemented
using PyTorch, incorporates learnable activation functions to enhance model adaptability
and performance. The network was trained for 500 epochs with a learning rate set at
0.001. For the dataset distribution, 80% was allocated for training purposes, while the
remaining 20% was employed for testing. To further refine the model parameters during
the later stages of training, the ExponentialLR learning rate scheduler from PyTorch was
employed. This scheduler decreases the learning rate by a certain proportion every epoch.
The decay factor of the scheduler was set to 0.99. Additionally, to address the dimensional
discrepancies between features and labels, we employed the Z-score normalization method.
This technique standardizes the data to a normal distribution, achieving a mean of 0 and a
standard deviation of 1 for each feature. As depicted in Figure 5, the training curve of the
KAN network demonstrated efficient learning, characterized by a steady decrease in MSE
(Mean Squared Error) loss and no indications of overfitting. This suggests that the model
generalizes well to new data.

Figure 5. Learning curve.

In the testing phase, we assessed the performance of the KAN network by comparing
the estimated values of lateral forces at the front and rear axles with their corresponding
actual values. The representative results from this evaluation are illustrated in Figure 6.
The experimental results demonstrate that the KAN network has high predictive accuracy
on the test dataset, accurately predicting the lateral forces of the front and rear axles of
the vehicle.
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Figure 6. Prediction vs. ground truth.

4.2. Double-Lane Change

The double-lane change maneuver is a critical scenario for assessing a vehicle’s ability
to safely execute overtaking maneuvers, as illustrated in Figure 4, Case 1. We set the vehi-
cle’s speed at 72 km/h and specified a road surface adhesion coefficient of 0.8. The design
parameters for DD-PTC and MPC were identical, with a prediction horizon of Np = 35,

a control horizon of Nc = 15, weights for the output variables Q =
[

2000 12000
]T ,

and weights for the control increments R = 5000. The weights of the MPC were set to be
the same as those of the DD-PTC, and the preview time for LQR was 0.1 s. The lateral
force estimation and comparative results of path tracking performance across the three
controllers are presented below.

Figure 7a,b demonstrate that the KAN network exhibited excellent adaptability in
estimating lateral forces. The KAN network effectively understood the characteristics
of input data and accurately estimated the lateral forces of the front and rear axles of
the vehicle. The root mean square errors (RMSEs) of the lateral force estimation for
the front and rear axles were 190.1904 N and 136.3055 N, and the maximum estimation
errors were 1.093 × 103 N and 466.854 N, respectively. The average absolute errors of the
lateral force estimations were 94.5349 N for the front axle and 62.6035 N for the rear axle.
Although these average errors were very small, the maximum values were relatively large.
This discrepancy may be attributed to the limited data collected under extreme driving
conditions, leading to insufficient training of the model. As a result, the network may
struggle to accurately estimate lateral forces, so it is necessary to employ more data to
thoroughly train the KAN network to enhance its robustness and accuracy under various
driving conditions, which will be a focus of future work. Figure 7c demonstrates that
all three methods are capable of tracking the reference path. However, in the scenario
involving paths with slightly large curvatures, the LQR method exhibited significant
lateral errors and slower convergence compared to the other methods. MPC, by predicting
future states with its predictive model, converged over more quickly but still exhibited
substantial lateral errors due to limitations in its predictive model. In contrast, DD-PTC,
which utilizes a more accurate predictive model, demonstrated smaller lateral errors. This
distinction underscores the importance of model accuracy in reducing prediction error
and enhancing overall system performance. Figure 7d–f and Table 2 provide a detailed
comparison of tracking errors for the three controllers. LDE (Lateral Distance Error) and
HAE (Heading Angle Error) are key performance metrics. Employing DD-PTC for path
tracking significantly improved the performance: the maximum lateral error decreased by
19.83% and 35.02% compared to MPC and LQR, respectively. Additionally, the average
lateral error displacement was reduced by 29.56% and 54.51%, respectively. Regarding
the heading angle error, the maximum and average values for DD-PTC were 2.0818◦ and
0.3564◦, respectively, which are roughly equivalent to those recorded for MPC and LQR,
indicating that both remained at a comparably low level.
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Figure 7. Vehicle simulation results of double-lane change. (a) Lateral force of front axle; (b) lateral
force of rear axle; (c) result of path tracking; (d) wheel angle; (e) lateral distance error; and (f) heading
angle error.

Table 2. Double-lane change test.

LDE (m) HAE (°)
Max/Avg. Max/Avg.

DD-PTC 0.0885/0.0162 2.0818/0.3564
LQR 0.1362/0.0357 2.0139/0.4071
MPC 0.1104/0.0230 1.4532/0.3080

4.3. Single-Lane Change

To further validate the robustness of the proposed algorithm, a lane changing simula-
tion experiment was conducted, as illustrated in Figure 4, Case 2. The vehicle speed was
fixed at 72 km/h, with a road surface adhesion coefficient of 0.8. The controller parameters
were the same as those used for the double-lane change setup. The lateral force estima-
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tion and comparative results of path tracking performance across the three controllers are
presented below.

Figure 8a,b demonstrate that the KAN network generally provided accurate estimates
of the lateral forces on the front and rear axles of the vehicle. Most of the estimation results
were close to the actual values, with only a few showing some deviations. The RMSE of the
lateral force predictions for the front and rear axles were 406.6039 N and 234.9228 N, and the
maximum prediction errors were 1.731× 103 N and 1.009× 103 N, respectively. The average
absolute errors of the predicted lateral forces for the front and rear axles were 252.2186 N
and 145.5211 N, respectively. Notably, in order to reduce the computational load, the KAN
network estimated lateral forces without requiring historical data, considering only the
current state of the vehicle. Despite this simplification, the network still achieved results
that are relatively satisfactory. However, some estimates still exhibited errors, indicating
potential for further optimization of the KAN network. Figure 8c–f and Table 3 display
the path tracking performance of the three controllers, all demonstrating the ability to
track the reference path. In the single-lane change scenario, both MPC and LQR exhibited
significant lateral errors. LQR converged more slowly than MPC and DD-PTC, but due to
its preview mechanism and slower convergence rate, its HAE was smaller; however, its
LDE was significantly greater than those of MPC and DD-PTC. In comparison, DD-PTC
performed the best among the three controllers, significantly enhancing path tracking
precision, particularly in terms of lateral error. When using DD-PTC for path tracking,
the maximum lateral error decreased by 32.64% and 46.30% compared to MPC and LQR,
respectively, and the average lateral error decreased by 12.57% and 36.40%. Regarding
HAE, the maximum and average values for DD-PTC were 7.1496◦ and 1.4074◦, respectively,
which represents a reduction of 21.60% and 21.92% compared to MPC.

Table 3. Single-lane change test.

LDE (m) HAE (°)
Max/Avg. Max/Avg.

DD-PTC 0.1025/0.0331 7.1496/1.4074
LQR 0.1908/0.0520 3.1016/0.3942
MPC 0.1521/0.0378 9.1182/1.8024

(a) (b)

Figure 8. Cont.
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Figure 8. Vehicle simulation results of double-lane change. (a) Lateral force of front axle; (b) lateral
force of rear axle; (c) result of path tracking; (d) wheel angle; (e) lateral distance error; and (f) heading
angle error.

4.4. Ablation Experiment

To comprehensively demonstrate the effectiveness of our proposed method, we per-
formed ablation experiments in both single-lane and double-lane change scenarios. Our
method was compared with MPC using only cornering stiffness correction, GP-MPC,
and standard MPC. The comparison results are presented below.

In Figure 9, GP-MPC refers to an MPC approach where only Gaussian Process Com-
pensation was applied to the prediction equation, while Stiff Corr–MPC represents an
MPC method with cornering stiffness correction. The results indicate that under both
single-lane and double-lane change conditions, the DD-PTC method demonstrated strong
performance. Compared to standard MPC, both Stiff Corr–MPC and GP-MPC performed
better. The performance of both Stiff Corr–MPC and GP-MPC is presented in Table 4. In
the double-lane change scenario, the mean lateral error of DD-PTC was approximately
16.60% lower than that of Stiff Corr–MPC and 9.07% lower than that of GP-MPC, with the
maximum error reduced by around 16.67% and 0.65%, respectively. In the single-lane
change scenario, although the mean lateral error of DD-PTC was approximately 10.10%
higher than that of Stiff Corr–MPC, the maximum error in this scenario was reduced by
approximately 13.23% compared to Stiff Corr–MPC. Additionally, the mean lateral error
of DD-PTC was 5.58% lower than that of GP-MPC, with the maximum error reduced by
15.52% compared to GP-MPC.
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Figure 9. Vehicle simulation results of double-lane change. (a) Path tracking results for DLC; (b) wheel
angle for DLC; (c) lateral distance error for DLC; (d) heading angle error for DLC; (e) path tracking results
for SIL; (f) wheel angle for SIL; (g) lateral distance error for SIL; and (h) heading angle error for SIL.
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Table 4. Ablation study results of path tracking performance in single-lane and double-lane
change scenarios.

Test Scenarios LDE (m) HAE (°)
Max/Avg. Max/Avg.

Stiff Corr–MPC Double-lane 0.1062/0.0194 2.1643/0.3705
Single-lane 0.1181/0.0297 5.8537/1.1589

GP-MPC Double-lane 0.0891/0.0178 1.6996/0.3610
Single-lane 0.1213/0.0350 8.8269/1.7213

5. Discussion and Conclusions

This paper developed and validated data-driven enhancements for the MPC-based
path tracking controller, which integrates cornering stiffness corrections and Gaussian
Process Regression as residual dynamics to improve both the adaptability of the prediction
model and the accuracy of path tracking. Specifically, the strategy utilizes the KAN
network to estimate the tire lateral forces for dynamically adjusting cornering stiffness,
and combined Gaussian Process Regression to correct discrepancies between the simplified
mechanistic model and the actual vehicle state. Our predictive model accurately captures
and responds to dynamic changes in the vehicle. Consequently, this enhances the precision
of path tracking. In comparative tests conducted on the Simulink-Carsim joint simulation
platform, our DD-PTC method demonstrated superior performance in high adhesion
double-lane change and single-lane change scenarios, outperforming normal MPC and
LQR methods.

Although DD-PTC has demonstrated significant potential, there remains considerable
room for optimization. The robustness and precision of the KAN network in estimating lat-
eral forces require further enhancement. Additionally, the computational speed of DD-PTC
presents opportunities for optimization. Future research will focus on enhancing the contin-
uous learning capabilities of the KAN network and improving the computational efficiency
of DD-PTC. These efforts aim to enable quicker controller responses to changes in complex
environments, comprehensively enhancing the controller’s performance and adaptability.
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