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Abstract: Runway surface friction is critically important to safe aircraft operations and mostly
depends on the surface texture, which provides grip in the presence of contamination and directly
affects the friction coefficient in general. Microtexture assessment is the most challenging part of
texture assessment since there is no standardised pavement microtexture control method in runway
maintenance and management practice. The purpose of this study was to develop a simple laser
profilometer and analysis model and subsequent validation for use in runway friction surveys. To
that end, a simple laser profilometer was developed, and a profile picture analysis and macrotexture
filtration method were designed. Test results were compared to the stylus-based roughness tester
and the British Pendulum Tester. The proposed profile picture analysis and profile smothering and
filtration methodology, based on linear approximation, is simpler and more effective for the case
of macrotexture filtration for the friction survey. The laser profilometer model results were highly
correlated with the stylus-based roughness tester results (R2 = 0.99). The average roughness of the
microtexture profile, after smothering and macrotexture filtration, also showed good correlation with
the British Pendulum results (R2 = 0.78). The results from this study confirm the possibility of texture
assessment for routine runway friction surveys using a simple and economical laser profilometer,
which is not routinely available in current airport surface friction management.

Keywords: laser profilometer; texture; microtexture; macrotexture; filtration algorithm; British
pendulum tester; friction

1. Introduction

Surface texture is a set of surface irregularities characterised by the size, depth and
other shape parameters. It is usually divided into different classes, depending on the size
of irregularities. This is important for the analysis of texture because all of the classes
affect the rolling and sliding performance of the tire differently. As shown in Figure 1,
the Permanent International Association of Road Congers (PIARC) defines four classes
of texture: microtexture, macrotexture, megatexture and unevenness [1]. For practical
purposes, only micro- and macrotextures are important for runway surface friction manage-
ment due to the tire-pavement contact area being relatively small compared to megatexture
and unevenness.

The macrotexture of a runway surface mostly depends on the type of surface, being
a mixture type, and maximum aggregate size. Open-graded asphalt mixes, stone mastic
asphalt, and porous asphalt usually have a relatively high texture [3,4]. In contrast, dense-
graded asphalt and cement concrete have lower macrotexture, and in most cases, special
treatments are required to increase the actual or effective macrotexture [5,6]. Importantly,
even when adequate macrotexture is provided at the time of surface constructure, it can be
reduced due to contamination and wear of the pavement through the life of the surface [7].
Consequently, ongoing monitoring and measurement are required.
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Figure 1. PIARC classification for pavement surface characteristics according to wavelength [2]. 
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gate. Stone aggregate roughness can be different due to the size of the aggregate, its shape 
and its hardness. Crushed stone, for example, usually has a larger microtexture than 
rounded natural gravels [8]. The roughness of a stone can also change due to wear and 
erosion, a phenomenon known as aggregate polishing, with higher initial microtexture 
usually associated with a higher rate of microtexture wear during service [9]. Surface mi-
crotexture can also be reduced due to contamination and the “masking” effect when 
binder, rubber, clay, dust, or other contaminants fill the microtexture cavities and pores, 
reducing the microtexture [10,11]. In practice, it is common for microtexture to be revealed 
as the binder is worn off the exposed aggregate in a new surface [12], but then to be 
masked over time by rubber contamination from landing and taxiing aircraft tires [13]. 

Due to the evolution of both microtexture and macrotexture over the life of a runway 
surface, texture parameters require regular monitoring because of their impact on aircraft 
safety, surface durability and the associated environmental effects [14]. Although macro-
texture measurements are simple and well established, with a number of recommended 
techniques available [2], microtexture measurements are not common and require im-
proved standards and monitoring systems. For example, the International Civil Aviation 
Organisation (ICAO) does not currently recommend any microtexture measurement tech-
niques. In their international regulation known as Annex 14 [15], it is recommended to 
provide a good microtexture. However, their guidance material, known as PANS Aero-
dromes [16], recommends only visual and tactile assessment of microtexture, which can 
only be used for the detection of contamination and defects. 

In contrast to airport pavement practice, researchers have used different methods of 
microtexture assessment, which can be divided into contact and non-contact methods. 
Contact methods include the mechanical stylus test [17] and different wear tests [18]. Non-
contact methods are more common and include laser profilometry [19], image texture 
analysis [20], stereoscopy [21], computer tomography scanning [22], 3D scanning [23] and 
simpler microscopy assessment methods, such as the straightedge shadow method [9,24]. 
The most precise and simple method is laser profilometry, which is based on the 
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In contrast, the microtexture mostly depends on the parameters of the stone aggregate.
Stone aggregate roughness can be different due to the size of the aggregate, its shape and
its hardness. Crushed stone, for example, usually has a larger microtexture than rounded
natural gravels [8]. The roughness of a stone can also change due to wear and erosion,
a phenomenon known as aggregate polishing, with higher initial microtexture usually
associated with a higher rate of microtexture wear during service [9]. Surface microtexture
can also be reduced due to contamination and the “masking” effect when binder, rubber,
clay, dust, or other contaminants fill the microtexture cavities and pores, reducing the
microtexture [10,11]. In practice, it is common for microtexture to be revealed as the binder
is worn off the exposed aggregate in a new surface [12], but then to be masked over time
by rubber contamination from landing and taxiing aircraft tires [13].

Due to the evolution of both microtexture and macrotexture over the life of a runway
surface, texture parameters require regular monitoring because of their impact on aircraft
safety, surface durability and the associated environmental effects [14]. Although macro-
texture measurements are simple and well established, with a number of recommended
techniques available [2], microtexture measurements are not common and require improved
standards and monitoring systems. For example, the International Civil Aviation Organi-
sation (ICAO) does not currently recommend any microtexture measurement techniques.
In their international regulation known as Annex 14 [15], it is recommended to provide a
good microtexture. However, their guidance material, known as PANS Aerodromes [16],
recommends only visual and tactile assessment of microtexture, which can only be used
for the detection of contamination and defects.

In contrast to airport pavement practice, researchers have used different methods
of microtexture assessment, which can be divided into contact and non-contact methods.
Contact methods include the mechanical stylus test [17] and different wear tests [18]. Non-
contact methods are more common and include laser profilometry [19], image texture
analysis [20], stereoscopy [21], computer tomography scanning [22], 3D scanning [23] and
simpler microscopy assessment methods, such as the straightedge shadow method [9,24].
The most precise and simple method is laser profilometry, which is based on the geometrical
measurement of a projection of the laser beam on a surface [25]. Laser profilometry requires
a profilometer, the main components of which are the laser and a camera (Figure 2), and
data filtration and analyses software.

The relative height of the profile point on the surface and on the registered or measured
profile shown in Figure 2 are related by Equation (1).

h =
h′ · sinβ

sin(180 − α − β)
(1)
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where h is a real height of the point on a profile, h′ is a height of the point on a regis-
tered profile, α is an angle between camera and surface and β is an angle between laser
and surface.
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Figure 2. Laser profilometer.

Surface texture parameters can be separated into two-dimensional amplitude and
shape-related parameters, three-dimensional amplitude and shape-related parameters,
spectral characteristics of a surface wave and fractal and multifractal characteristics [2].
Amplitude and shape-related parameters are widely used during the texture assessment.
However, the other parameters have limited use in regards to the texture analysis of
pavement surfaces. In one study [26], macrotexture, obtained by a circular track meter,
was characterised using wavelet analysis, which allowed the analysis of the influence of
different aggregate sizes on surface texture. In a similar study [27], asphalt surface friction
was characterised as a set of fractal parameters of texture. Fractal mathematics was also
used for the texture analysis by Kikkalis et al. [28]. Besides that, fractal surface parameters
can be effectively used for the surface topography analysis in material studies [29]. In
this study, however, the surface texture for simplicity was characterised using the average
roughness of a profile.

Various researchers have studied the influence of texture on available surface fric-
tion [30–33]. However, only a few of them have included microtexture measurements for
the friction prediction (Table 1).

Some of the abovementioned studies use theoretical models for friction calcula-
tions [36,37,39]. These studies are generally based on a hysteresis friction model [35].
This model also allows for the inclusion of contamination, such as water film thickness,
using the same textural parameters, assuming that contamination acts as a filler for the
texture and reduced the height of the asperities. Those models also showed good corre-
lation with CFME data. A Persson model can also be combined with numerical analysis
to calculate the stresses in the contact area and increase the reliability of the model [45].
However, practical use of those models is difficult since they require complex numerical
analysis and a detailed survey of the surface texture, and it can be seen that the study based
on the data obtained from field evaluation of the pavement parameters shows a lower
accuracy than required [39].
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Table 1. Correlation between friction and texture parameters in different studies.

№ Model R2 Friction Assessment Texture Assessment Reference

1
SN40 = 18.6 · TXT + 12.6

TXT = SFC×1000
CA

sFc =
avrage peak height
average peak width

0.70
Skid Number

according to ASTM E
274-70

Microtexture shape
factor and contact

area based on
macrotexture

[34]

2 Rubber friction theoretical model [35] with
modified data from optical measurement 0.91 and 0.97

ViaTech and
Wehner/Schulze

machine

Optical measuring
system data [36,37]

3 YFr = β0 + βmacro · Xmacro + βmicro · Xmicro
+∑4

i=i βiXtype i
0.43–0.82

British Pendulum
Number, Grip

number, Dynamic
friction test

Macrotexture and
microtexture

parameters, obtained
by profilometry

[38]

4 µ = φ +
8
∑
1

kiµi
0.78 Grip Tester

Texture parameters,
obtained by 3D
scanning data

[32]

5 Rubber friction theoretical model [35] with
modified data from 3D scanning 0.60 British Pendulum

Number 3D scanning data [39]

6 SMI = BPN · 0.0102 + 0.846 0.84 British Pendulum
Number

Microtexture Index
obtained by 3D

scanning
[40]

7
PTVpredicted = −837.43 + 96.26 · Sdq,MIC − 852.14

·Sk,MIC + 10.41 · Smr2,MIC + 4.92
·Spc,MAC

0.82 British Pendulum
Number

Texture parameters,
obtained by 3D

scanning
[41]

8 Artificial neural network model 0.77–0.95 Dynamic Friction
Tester 3D scanning data [42]

9 Artificial neural network model 0.85

Sideway-Force
Coefficient Routine

Investigation
Machine (SCRIM)

Sand patch test and
3D scanning [43]

10

BPN(AC) = 9.235 + 1899.789 Rami + 54.348 Rama
BPN(SMA) = −91.573 + 10.938 CR

+6547.885 Rami + 81.599 Rama
BPN(BBTM) = −194.201 + 4.787 CR

+2926.585 Rami + 296.675 Rama

0.82–0.95 British Pendulum
Number

Microtexture and
macrotexture average

roughness and
rubber content for

different mixes

[44]

In some of the more recent studies [42,43], artificial neural networks were used for
friction prediction. An artificial neural network is a good tool for friction analysis, and it
shows a high correlation between predicted and measured values for some pavements.
However, one of the drawbacks of neural network models is that they work as a ‘black
box’, since the calculation process is not presented for analysis. That creates a risk because
the result is based mostly on the training process and some properties of materials used for
training and not on fundamental dependencies [46].

Most of the abovementioned studies use 3D scanning for the microtexture measure-
ments. That technique, however, requires expensive testing equipment and cannot be used
widely in the field. Only three studies [36,38,44] used laser profilometry for microtexture
assessment, with the equipment being different in all three cases. The parameters used
in these studies were also different, which makes the comparison of the results difficult.
Two of the studies [38,44] used linear models for the pavement friction prediction, the
appropriateness of which also needs to be validated.

In general, recent research analysis shows that texture assessment can reliably predict
surface friction, including the effect of contaminants on aircraft skid resistance. However,
texture assessment methods are not fully developed within current international practice,
and there is no friction model commonly used due to a lack of widely available microtexture
assessment techniques of real runway pavement surfaces.

The aim of this study was to develop a simple and economical laser profilometer
and to validate the potential to use that laser profilometer for surface texture characteri-
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sation and ultimately towards a unified microtexture assessment methodology, including
microtexture profile analysis. For this purpose, the laser profilometry equipment was
produced and verified against a standard roughness measurement device on plane surfaces
before being assessed on real pavement surfaces against spot friction, measured by a British
Pendulum machine.

2. Materials and Methods
2.1. Verification Surfaces

For the verification of the profilometer, a set of surfaces with minimal macrotexture
was used. Those surfaces include sandpaper with P60, P80, P120, P180, and P240 grit,
polished metal plates, and a mill file. A total of 8 samples were tested using a laser
profilometer and roughness tester.

2.2. Validation Surfaces

For the microtexture and friction assessment, various surfaces were considered, in-
cluding polished concrete (Figure 3c), rough concrete (Figure 3f), older asphalt (Figure 3e),
road marking paint (Figure 3d), paving stones (Figure 3a,b), different grades of sandpaper
(Figure 3g) and a smooth whiteboard (Figure 3h). The sandpaper and whiteboard were
included to increase the range of the texture measured since all of the other surfaces had
a generally similar microtexture. The sandpaper was secured to a heavy concrete slab
using cyanoacrylate glue, to keep it flat and to avoid measurement errors. All of the
tested surfaces had minimal macrotexture to avoid errors during the friction measure-
ment. For this study, 17 total measurements were performed on surfaces with different
microtexture values.

2.3. Friction Measurements

The British Pendulum machine was used for the friction measurements (Figure 4).
This method is widely used for the friction measurement of different surfaces. This method
is based on the measurement of the pendulum energy after sliding on a wet surface with
the rubber slider on the end of the pendulum. The British Pendulum Number (BPN)
is the unitless value shown on the plate behind the pendulum, reflecting the angle of
the pendulum swing after sliding. For this study, measurements were performed on
a wet surface. The reliability of the British Pendulum test has been shown to decrease
with an increase in macrotexture [47]. Consequently, it is not recommended to use the
British Pendulum on surfaces with a high macrotexture, such as sprayed seals and stone
mastic asphalt.
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Figure 3. Examples of tested surfaces: (a) natural paving stone, (b) ceramic paving stone, (c) polished
concrete, (d) road marking, (e) asphalt, (f) rough concrete, (g) sandpapers and (h) whiteboard.

2.4. Surface Texture Measurement

For the surface texture measurements, a simple laser profilometer was designed
(Figure 5). Although laser profilometry is a well-known tool and there are commercial laser
profilometers available, this study required a new model that was suitable for pavement
surface measurement. The profilometer was also designed to be economical and small in
size, allowing it to be used by many airports around the world. The profilometer mount
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allows the angles between the laser and the camera and pavement surface to be adjusted.
The main advantages of the model, compared to commercial equipment, are the component
price, which is equal to 36 AUD in total, excluding the price of the mount, which was made
from the 3 mm sheet metal. There are no comparable commercially available products
designed for the microtexture assessment of pavement surfaces, with similar equipment
costing more than 1000 AUD [48].
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The horizontal resolution of the laser profilometer is equal to 6.09 µm. Vertical resolu-
tion can vary by changing the angle between the camera and the laser (1). The thickness of
a laser beam is approximately 100 µm, but the real vertical resolution is finer due to the
nature of the processing algorithm, as shown in the example in Figure 6.
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Figure 6. Horizontal resolution of the laser profilometer.

Verification of the laser profilometer was performed using the Intra Touch roughness
tester (Figure 7) with 4 nm vertical and 0.5 µm horizontal resolution. This roughness tester
is based on the stylus test and allows precise texture measurement. The vertical range of
that tester, however, is limited. Consequently, it is only possible to use it to measure the
microtexture of plain surfaces with little or no macrotexture.
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Figure 7. Intra Touch roughness tester.

2.5. Data Processing

Once the surface profile is registered, it must be analysed. Consequently, a data
processing algorithm was also designed. It consisted of the following four steps:

1. Profile registration.
2. Fine smothering.
3. Macrotexture filtration.
4. Texture parameters calculation.
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The profile generated by the laser profilometer was first photographed with a phone-
based camera. The photo was processed to obtain a texture profile. First, pixel brightness
was calculated, as well as the profile line brightness threshold. After that, the points on the
profile were calculated by finding the centre of brightness of each column of pixels. The
registered profile was then smothered to remove any errors (Figure 8).
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Figure 8. Processing of the photo of a profile.

The obtained profile consists of macrotexture and microtexture. Macrotexture needs to
be filtrated out for the microtexture analysis. There are many algorithms for macrotexture
filtration, for example, the Fourier transformation, the Butterworth filter [49] and the
Gaussian smoothing filter [43]. All of these can effectively isolate the microtexture from
the macrotexture. However, the main drawback of those methods is they use orthogonal
filtration, which can lead to microtexture overestimation. An example of that is shown in
Figure 9. In this example, two different filtration algorithms were applied to the profile
obtained by Florková et al. [50]. The existing algorithm was based on the Butterworth
filter, and the microtexture depth was calculated as the height difference between the
macrotexture and a point on a profile. A new algorithm was also applied that uses the
distance between the point on a profile and the macrotexture profile. As shown in Figure 9 in
a circle, the existing algorithm overestimates the microtexture. That overestimation affects
zones near the slopes of macrotexture, and in the case of surfaces with deep macrotexture,
that difference can be significant. For that reason, the new algorithm is justified for use
with airport pavements, where it is crucial to provide a good macrotexture.

The macrotexture profile needs to be approximated based on the profile data for the
filtration. Polynomial spline approximation is smoother than a linear approximation and
can be used for mean profile approximation as well. However, for this study, the linear
approximation was used for a number of reasons.

First, the polynomial spline is designed to “fit” the natural shape of the elastic beam,
thus it can create an almost smooth profile [51]. The real profile or surface, however, is not
limited by any force and can create an odd shape. Polynomial spline approximation can
also lead to “overfitting”, which leads to an obvious error [52]. An example of overfitting is
shown in Figure 10.

Moreover, the friction problem requires an unusual solution for the profile approxima-
tion. For example, if you compare the flat surface and the surface with a curved shape, it is
obvious that the grip is better on a curved surface. If we consider the flat surface to be the
most slippery surface, we cannot use polynomial approximation for the smoothening of the
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surface. Otherwise, we will inevitably lower the overall predicted grip since we decided to
characterise the grip by using the texture depth. An example of that is shown in Figure 11.
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Figure 10. Smoothening of the profile with linear and polynomial approximations.

And finally, since the method in this study requires the calculation of the exact distance
to the point, that problem is crucial for the acceptability of the filtration algorithm. With
the polynomial approximation, it is hard to find the exact distance from any given point to
the macrotexture profile. This problem can be solved using brute-force algorithms or using
more advanced methods, such as the spherical clipping method [53]. All of the methods
compute the approximate solution and require significant computational resources [54],
especially in the case of the texture profiles, because the profile consists of thousands of
points and the processing time can also become crucial. In the case of linear approximation,
however, it is a simple problem with a simple solution, according to Equation (2).

dn =
yn − bnxn − an√

1 + b2
n

(2)
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where dn is a distance between the n-point (xn, yn) and the line defined by Equation (3).

y = an + bnx (3)

where an and bn are coefficients of the line on a profile for each n-point.
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In that case, the number of points for the linear approximation can be used as a
filtration coefficient. The proposed algorithm finds a linear approximation based on the
method of least squares for the (n − S; n + S) points for each n-point, where S is a filtration
coefficient. The same algorithm is used for the fine smothering, with the number of points
for linear approximation being equal to 2 × S′ + 1, where S′ is a fine smothering coefficient
(Figure 8). Coefficients an and bn (2) for each point can be found using Equation (4) and
Equation (5), respectively.

an =
∑n+S

i=n−S yi

2S + 1
− bn

∑n+S
i=n−S xi

2S + 1
(4)

bn =

∑n+S
i=n−S xiyi

2S+1 − ∑n+S
i=n−S xi
2S+1 · ∑n+S

i=n−S yi
2S+1

∑n+S
i=n−S xi

2

2S+1 −
(

∑n+S
i=n−S xi
2S+1

)2 (5)

The same method can be used for the fine smothering. In the case of fine smothering,
distance calculation is not important. Consequently, for simplicity, n-point coordinates (y′n,
xn) of the point on a smothered profile can be calculated from Equation (6).

y′n = a′n + b′nxn (6)

where a′n and b′n can be found for each point using Equation (4) and Equation (5), respec-
tively, and using S′ coefficient instead of S.

Details of the profile registration algorithm and each further step are shown in
Figure 12. This algorithm was applied using the Visual Basic application for Excel due to
the simplicity of data storage and compatibility with other data analysis tools.



Sensors 2024, 24, 7661 12 of 17

Sensors 2024, 24, 7661 12 of 18 
 

 

The same method can be used for the fine smothering. In the case of fine smothering, 
distance calculation is not important. Consequently, for simplicity, n-point coordinates 
(y′n, xn) of the point on a smothered profile can be calculated from Equation (6). 𝑦′௡ = 𝑎௡ᇱ + 𝑏௡ᇱ 𝑥௡  (6)

where a′n and b′n can be found for each point using Equation (4) and Equation (5), respec-
tively, and using S′ coefficient instead of S. 

Details of the profile registration algorithm and each further step are shown in Figure 
12. This algorithm was applied using the Visual Basic application for Excel due to the 
simplicity of data storage and compatibility with other data analysis tools. 

 
Figure 12. Block diagram of microtexture profile analysis algorithm. 

3. Results and Discussion 
3.1. Laser Profilometer Verification 

As stated above, the verification of the laser profilometer was performed using a sty-
lus-based Intra Touch roughness tester (Figure 7). A sandpaper, smooth metal plate and 
a mill file were used as testing surfaces. Four sets of tests were performed with different 
laser and profilometer angles (Figure 2). The results are presented in Table 2. At the same 
time, the S’ coefficient was optimised to maximise the R2 value. The final S’ coefficient in 
all cases was 2.0. An average roughness (Ra) value was calculated in all cases without the 
macrotexture filtration. 

  

Figure 12. Block diagram of microtexture profile analysis algorithm.

3. Results and Discussion
3.1. Laser Profilometer Verification

As stated above, the verification of the laser profilometer was performed using a
stylus-based Intra Touch roughness tester (Figure 7). A sandpaper, smooth metal plate and
a mill file were used as testing surfaces. Four sets of tests were performed with different
laser and profilometer angles (Figure 2). The results are presented in Table 2. At the same
time, the S′ coefficient was optimised to maximise the R2 value. The final S′ coefficient in
all cases was 2.0. An average roughness (Ra) value was calculated in all cases without the
macrotexture filtration.

Table 2. Sets of tests for profilometer verification.

Test Number
The Angle Between
Camera and Surface

(α), ◦

The Angle Between
Laser and Surface

(β), ◦

Theoretical Vertical
Resolution of the
Profilometer, µm

Coefficient of Determination
Between the Roughness

Tester and Profilometer (R2)

1 45 45 4.31 0.92
2 45 90 8.61 0.95
3 60 90 12.18 0.89
4 60 60 6.09 0.99

It was found that angle between camera and laser and surface affected the correlation
between the roughness tester and laser profilometer results. The lower the angles, the
higher the vertical resolution. However, too low an angle for the camera obstructs the vision
of the asperities of macrotexture. Furthermore, too low an angle for the laser distorts the
profile projection. The maximum correlation between the roughness tester and profilometer
was obtained in the fourth series of tests, with both angles being set to 60◦. The associated
correlation is shown in Figure 13. Despite the high correlation indicating the profilometer is
in fact valid, it can be seen that the resolution of the laser is lower than that of the Intra Tech
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roughness meter, because at average roughness (Ra) lower than 10 µm, the profilometer
tends to underestimate the Intra Tech reported roughness. Despite this, the results are
proportionally consistent for the two devices. This error for finer surfaces, however, will
systematically occur for such laser profilometers. This problem, however, can generally be
ignored for runway friction management due to the coarseness of pavement surfaces.
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Figure 13. Correlation between profilometer and Intra Touch roughness for optimised laser and
camera angles.

3.2. Laser Profilometry for Surface Texture Assessment

With the laser profilometer validated on place surfaces, 17 different surfaces with
macrotexture were tested using the laser profilometer (Figure 5) and a British Pendulum
Tester (Figure 6). The profilometer results were smothered and filtered according to the
algorithm explained above. Each surface was tested 20 times, and average roughness
based on the results was calculated. All results were compared, and the S-coefficient
was optimised to maximise the R2 value. The final S-coefficient was 26. Test results after
processing are shown in Figure 14.

During the roughness assessment, the standard deviation was calculated for the
20 replicate measurements of each surface type. The average standard deviation was 21.5%
of the average result. A high standard deviation was obtained due to the limited horizontal
range of the profilometer and high variations of the surface microtexture. However, a
sufficient number of measurements can be taken to reduce any error during the assessment
of any given surface, and this should be considered in future research.

A strong correlation between BPN and average roughness was found. This correlation
did not depend on the type of material, and a difference in macrotexture did not affect it
either. That validates the possibility of microtexture test application for the friction surveys.
The Ra value, however, does not entirely describe the microtexture by ignoring the shape
of asperities, which describes some difference between sandpaper and rough concrete on
a graph. The difference, however, was not significant for practical measurements. The
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correlation obtained in this study (R2 = 0.78) was slightly lower than in other studies
(Table 1). However, the surfaces were significantly more varied than for the other studies.
That is, the data obtained in this study covers a broader range of surface roughness
compared to all the studies detailed in Table 1, meaning a lower correlation between the
profilometer results and the BPN was expected.
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It can be seen that the optimal microtexture average roughness was generally in
the range between 10 µm and 20 µm. Above 20 µm, microtexture does not significantly
increase the BPN value, which reached a maximum value of 80 in the case of the sandpaper.
Furthermore, values of microtexture below 10 µm resulted in a significant drop in the
BPN value.

The obtained S-coefficient indicates that the wavelength threshold between microtex-
ture and macrotexture, in terms of correlation between the British Pendulum Tester and the
Ra value after macrotexture filtration, was approximately 0.3 mm. Those results correspond
well to the PIARC classification, as shown in Figure 1 [2].

Taking into account the ready availability and economy of the proposed methodology,
laser profilometry has the potential to be an effective tool for routine friction assessment
when combined with a suitable macrotexture filtration algorithm. However, further testing
on typical runway surfaces is required to assess the practical repeatability of the method
and the influence of microtexture on the high-speed friction testing results obtained by
continuous friction measurement equipment and other tools.

4. Conclusions

This study provides the required basis for the improvement in the friction measure-
ment system by introducing microtexture measurements to runway surface friction as-
sessment. This study focused on the design of a microtexture assessment algorithm that
includes filtration and smothering techniques based on linear approximation and a laser
profilometer. The laser profilometer model presented in this study was designed with eco-
nomical and commonly available components and has a maximum vertical and horizontal
resolution of 6 µm. The laser profilometer and microtexture assessment algorithm were
validated and calibrated. This study revealed the following results:

• Laser profilometry testing equipment for the friction assessment can be economical
and reliable.
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• The optimal angle between the laser, camera, and surface was equal to 60◦, which
increases the vertical resolution of the profilometer without distorting the result-
ing profile.

• The proposed laser profilometry method results agreed with stylus-based roughness
tester results, with a R2 coefficient of 0.99.

• A comparison of laser profilometer testing results to the British Pendulum Number
of different pavement surfaces revealed that the average roughness had a good cor-
relation with the British Pendulum Number (R2 = 0.78), which validates the friction
assessment method based on texture testing.

• The filtration coefficient optimisation found that the wavelength threshold between
microtexture and macrotexture, in terms of correlation between the British Pendulum
Tester and average roughness, was approximately equal to 0.3 mm.

• Increasing microtexture roughness improves friction, but beyond 20 µm roughness
has no significant effect on BPN value.

These findings show that cost-effective microtexture assessment can be used to as-
sess friction. However, more research is needed to link texture measurements, including
macrotexture measurements, to continuous friction measurement results. That research
can be completed once the reliability and repeatability of the laser profilometer have been
demonstrated on a range of real runway surfaces.
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Nomenclature

h µm real height of the point on a profile
h′ µm height of the point on a registered profile
α ◦ angle between camera and surface
β ◦ angle between laser and surface
dn µm distance between point n and macro-profile
yn µm y-coordinate of the point n
xn µm x-coordinate of the point n
an µm y-intercept coefficient of an approximated line
bn - slope coefficient of an approximated line
S points filtration coefficient
xi µm x-coordinate of a point within the (n − S; n + S) or (n − S′; n + S′) range
yi µm y-coordinate of a point within the (n − S; n + S) or (n − S′; n + S′) range
a′n µm y-intercept coefficient of a line within the smothered profile
b′n - slope coefficient of a line within the smothered profile
y′n µm y-coordinate of a point n within the smothered profile
S′ points smothering coefficient
Ra µm average roughness of texture
BPN - British Pendulum Number
R2 - coefficient of determination
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