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Abstract: Accurate vehicle type classification plays a significant role in intelligent transportation
systems. It is critical to understand the road conditions and usually contributive for the traffic light
control system to respond correspondingly to alleviate traffic congestion. New technologies and
comprehensive data sources, such as aerial photos and remote sensing data, provide richer and
higher-dimensional information. In addition, due to the rapid development of deep neural network
technology, image-based vehicle classification methods can better extract underlying objective fea-
tures when processing data. Recently, several deep learning models have been proposed to solve this
problem. However, traditional purely convolution-based approaches have constraints on global infor-
mation extraction, and complex environments such as bad weather seriously limit their recognition
capability. To improve vehicle type classification capability under complex environments, this study
proposes a novel Densely Connected Convolutional Transformer-in-Transformer Neural Network
(Dense-TNT) framework for vehicle type classification by stacking Densely Connected Convolutional
Network (DenseNet) and Transformer-in-Transformer (TNT) layers. Vehicle data for three regions
under four different weather conditions were deployed to evaluate the recognition capability. Our
experimental findings validate the recognition ability of the proposed vehicle classification model,
showing little decay even under heavy fog.

Keywords: deep learning; transformer; remote sensing; vehicle classification

1. Introduction

Vehicle type classification is one of the most important parts of an intelligent traffic
system. Vehicle classification results can contribute to traffic parameters statistics, regional
traffic demand and supply analysis, time series traffic information prediction [1], and
transportation facilities usage management [2,3]. Example of remote sensing data vehi-
cle classification is shown in Figure 1. In combination with appropriate data processing
techniques such as missing data imputation and map matching, this can provide further
traffic management guidance [4]. Traditional vehicle type classification methods are mainly
based on sensor feedback such as magnetic induction and ultrasonic data [5,6]. Thanks
to the extensive use of UAV surveillance and satellite remote sensing data, image-based
solutions towards intelligent traffic system are being rapidly developed. Image process-
ing approaches can be divided into appearance-based methods and deep learning-based
methods. Appearance-based methods usually generate a 3D parameter model to represent
the vehicle for classification, while deep learning-based methods apply image recognition
algorithms to extract objective features that can be used to classify vehicles.

Although remarkable efforts have been made in remote sensing classification, these
methods are not ideal when applied to real situations. There are three main limitations on
processing remote sensing data. First, high-resolution satellite remote sensing images are
expensive, and most accessible open-source datasets are in low-resolution [7]. The poor
quality of these images constrains model performance. Second, optical remote sensing
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images are highly affected by weather conditions [8]. Complex weather conditions such as
fog and haze lead to degraded and blurred images. Third, some modern progressive car
designs make distinction boundaries ambiguous. It is essential to determine vehicle types
by considering both local and global dependencies, which places higher requirements on
the model design process.

Figure 1. Deep learning algorithms can capture huge amounts of vehicle information in a specific
region based on remote sensing data.

To overcome these issues, existing studies have provided solutions in two directions.
The first line of work focuses on haze removal or visibility enhancement by utilizing
methods such as Image Super-Resolution (ISR) [9] to sharpen edges and further improve
resolution. Several methods adopt denoising operations to remove haze and obtain clearer
processed images [10]. However, due to the pixel degradation caused by inherent statistical
features of fog and haze, these removal methods may not be effective for processing satellite
remote sensing images. The other direction of work involves the construction of new end-
to-end deep learning algorithms. However, as stated above, it is quite challenging to
capture both local and global information under comprehensive conditions.

This study proposes a novel Dense-TNT model for all-weather vehicle classification.
The proposed model combines a DenseNet layer with a TNT layer. This latter type of layer
based on the general transformer architecture was recently introduced for objective detec-
tion as a way to more effectively extract image features. The proposed model is evaluated
using a real-world satellite dataset under various weather conditions by classifying objects
into three categories: sedan, pickup, and other. Sedans and pickups are the two primary
types of vehicles on the road, and obtaining accurate distribution information for these
three vehicle categories provides significant benefits to intelligent transportation systems
in terms of several different aspects. Classification results can be applied in areas such as
multimodal traffic characteristic prediction, Estimated Time of Arrival (ETA) prediction,
and smart traffic management. In summary, this paper makes three main contributions:

• A novel Dense-TNT model containing a DenseNet layer and TNT layer for vehicle
type recognition. The proposed method has better ability to understand the global
pattern of objectives based on the existing knowledge.

• Extensive analysis regarding vehicle type classification over remote sensing images
collected from three different regions. This analysis validates the proposed model
based on its superior recognition capability compared to several baseline models.

• We use data from three real-world regions under normal weather condition, with
appropriate filters added to simulate light, medium, and heavy haze conditions. The
evaluation results show around 80% classification accuracy even under heavy haze,
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with an improvement in accuracy of around 5–10% over the baseline algorithms. These
results verify the feasibility of the proposed method.

The rest of this paper is organized as follows: in Section 2, recent research on vehicle
classification is introduced; in Section 3, the proposed Dense-TNT framework is described
in detail; Section 4 describes the experimental settings and evaluates the vehicle recogni-
tion performance in comparison to baseline models using different datasets and weather
conditions; finally, Section 5 provides our conclusions and future research plans.

2. Related Work

Existing vehicle type classification methods can be divided into three categories:
appearance-driven methods [11–15], model-based methods [16–18], and deep learning-
based methods. Appearance-driven methods focus on extracting vehicle appearance
features, then try to classify vehicle types by comparing these features with known vehicle
features. In [19], the authors proposed a method for extracting distinctive invariant features
and performed robust matching within a known database based on the indicated probability.
In this approach, the quantity and quality of known data largely determine the classification
performance, and it is difficult for the model to provide accurate recognition when the
features of the target object are not in the database collection. Unfortunately this is a
common scenario, as vehicle designs can differ widely. Model-based methods focus on
computing vehicles’ 3D parameters and recovering a 3D model used for classification.
In [20], a parameterized framework was designed to represent a single vehicle with twelve
shape parameters and three pose parameters. The local gradient-based method was applied
to evaluate the goodness of fit between the vehicle projection and known data. However,
similar to appearance-driven methods, the appearance and dimension of vehicles can
be disturbed and degraded by poor data collection and complex weather condition [21].
Moreover, both model-based and appearance-driven methods rely heavily on substantial
prior knowledge about the classification objectives, which can be challenging to obtain in
many real-world applications. Thus, in this study we mainly discuss deep learning-based
methods, which have the ability to capture more information.

Among deep learning-based methods, Convolutional Neural Networks (CNNs) and
variants thereof play a significant role in existing image processing approaches [22]. In
the classical CNN structure, convolution layers and pooling layers are stacked, allowing
CNNs to automatically learn multistage invariant features for specific objects via trainable
kernels [23]. A CNN takes a vehicle images as input and generates each vehicle type
probability. However, the pooling operation means that CNNs can ignore some valuable
information due to the absence of careful screening of the correlation between the parts
and the entire object [24]. Thus, there has been a great deal of interest in combining
convolutional layers with attention mechanisms for image classification tasks to address the
unbalanced importance distribution over a single image [25]. To increase the interpretability
of CNNs, some research has applied semi-supervised learning by using unlabeled data in
pretraining process and learning output parameters in a supervised way [26].

The transformer architecture was first proposed in 2017 for natural language process-
ing (NLP) tasks. The principle of the attention mechanism leads to quadratic computational
costs when directly applying the transformer architecture to image processing, as each pixel
needs to attend to every other pixel. Therefore, in order to adopt transformer-like struc-
tures for image processing, adaptive adjustments are necessary. In [27], self-attention was
applied in local neighborhoods to save operations and replace convolutions [28]. Sparse
Transformer [29] uses a scalable filter to adjust the global self-attention before processing
images, while the recent MetaFormer [30] replaces the attention mechanism with a token
mixer while retaining the general transformer architecture. Even when simply introducing
a pooling layer inside a token mixer has been found to lead to superior performance.
Although CNNs are the fundamental model in vision applications, transformers have a
great potential to provide an alternative approach.
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Vision Transformer (ViT) has been widely used and verified to be efficient in many
scenarios, including object detection, segmentation, pose estimation, image enhancement,
and video captioning [31]. The canonical ViT structure divides one image into sequence
patches and treats each patch as one input element for classification. Due to the inherent
characteristics of transformers, ViT is good at long-range relationship extraction but poor
at capturing local features, as 2D patches are compressed into a 1D vector. Thus, previous
works have tried to improve the local modeling ability [32–34] by introducing extra archi-
tectures to model the inner correlation patch-by-patch and layer-by-layer [35,36]. In [34],
the authors proposed a hybrid token generation mechanism to obtain local and global
information from regional tokens and local tokens. In addition to efforts around enhancing
the local information extraction capability of ViT, other directions include improving the
self-attention calculation [37], encoding [38,39], and normalization strategy [40]. In [30],
the authors achieved qualified performance by simplifying the structure even without an
attention mechanism.

Due to the need to use low-resolution data sourced from satellite imagery and the
existence of complex real-world noise, local and global information extraction are both
significant challenges for accurate vehicle classification. Even though ViT tends to focus
on low-resolution features due to repeated downsampling processes, loss of fine-grained
localization information occurs during feature extraction, making ViT unsuitable for low-
level image recognition tasks [41]. Meanwhile, unlike CNNs, which inherently build
hierarchical feature representations, ViT lacks this inductive bias, making it less effective
at capturing the local features which are crucial for low-resolution images. Instead of
embedding a nesting structure within the transformer, in this study we stack suitable CNN
and ViT variants to construct a novel efficient architecture for vehicle classification task
while avoiding the need for complex computation. By integrating convolutional layers
into the feature extraction process, more localized information can be extracted prior to
downsampling. This approach is expected to achieve satisfying recognition performance
even under complex conditions. If realized, this technology could even be deployed on
nanosatellites for other recognition tasks [42].

3. Methodology
3.1. Problem Analysis

The main purpose of this paper is to build a novel end-to-end vehicle classification
model combining selected CNN and ViT variants. The proposed model uses satellite remote
sensing images of various vehicle types from different regions under different weather
conditions as input to perform image processing and generate vehicle type classification
results. The principle and detailed architecture of the proposed model is illustrated in
this section.

3.2. Transformer Layer: TNT

ViT has been successfully applied for a wide range of scenarios, and has proven to
be efficient thanks to its ability to extract global long sequence dependencies; however,
in terms of local information aggregation performance there is still a gap between ViT
and CNNs. Even though some works have proposed variants that enhance ViT’s local
extraction ability, combination with CNNs is a more direct method to equip transformer
architectures with local capture ability.

Similarly, after a careful review of the literature, TNT [32] was selected as the variant
in our proposed hybrid model. In the canonical ViT structure, input images are divided into
long sequence patches without local correlation information, which makes it difficult for
transformers to capture the relationship simply based on the 2D patch sequence. Compared
to ViT, the main advantages of TNT in terms of the current study are its introduction of a
fragmentation mechanism to create sub-patches within every patch. As the name indicates,
the TNT architecture contains one internal transformer that models the correlation between
sub-patches and another external transformer that propagates information among patches.
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If the n-length patch sequence X i =
[
X1, X2, . . ., Xn] is regarded as a visual sentence, each

sentence is further divided into m visual words for embedding:

Xi embedding−−−−−→ Yi =
[
yi,1, yi,2, . . ., yi,m

]
. (1)

For internal transformers, the data flow can be expressed as

Y′ i
l = Yi

l−1 + MSA(LN(Yi
l−1)), (2)

Yi
l = Y′ i

l + MLP(LN(Y′ i
l)), (3)

where l is the index of visual words, MSA means multihead self-attention, MLP means
multi-layer perceptron, and LN means layer normalization. Thus, the overall internal
transformations are

Yl =
[
Y1

l , Y2
l , . . ., Yn

l

]
. (4)

Further, the sequence is transformed from words

Zi
l−1 = Zi

l−1 + FC(Vec(Yi
l )), (5)

where FC refers to the fully connected layer. Then, the entire sentence embedding sequence
is represented as Z0 =

[
Zclass, Z1

0 , Z2
0 , . . ., Zn

0
]
, where Zclass is the class token. Finally, the

data flow of the external transformer is formulated as

Z ′
l = Zl−1 + MSA(LN(Zl−1)), (6)

Zl = Z ′
l + MLP(LN(Z ′

l)). (7)

In the original paper, the authors showed better classification performance of TNT
compared to several baselines, including ViT. The TNT architecture is shown in Figure 2.

Figure 2. Illustration of TNT model details. Apart from positional embeddings, Mark * in the figure
refers to other learnable embeddings.

3.3. Convolutional Layer: DenseNet

As discussed in the previous sections, CNNs usually show better local fixed infor-
mation extraction capability thanks to their use of a kernel structure and convolution
operations [43]. Thus, the convolutional layer was retained when designing our efficient
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image recognition model. DenseNet is designed for localized spatial information extrac-
tion to overcome the problem of losing fine-grained localization information; thus, we
chose DenseNet as the locality information extractor in this research. Compared to other
commonly used CNN models such as ResNet and GoogLenet, DenseNet connects each con-
volutional layer with every other layer using the feed-forward network instead of through
sequential connections between layers, as in ResNet and other models. This approach is
called dense connectivity [44]. The i-th layer is formulated as Equation (8):

Z ∗
i = Hi([Z0, Z1, . . ., Zi−1]) (8)

where [Z0, Z1, . . ., Zi−1] is the concatenation result of the feature maps from all previous
layers and Hi(·) is the composite function combining the batch normalization, rectified
linear unit, and convolution operations. The convolutional layers initially extract features
from the input data, which are subsequently passed through the ReLU activation function.
The ReLU outputs are then normalized to enhance training stability and performance.

In this case, every layer takes the feature maps from all preceding convolutional
layers. This enhances the information propagation capability to avoid the issue of serious
dependencies loss from distant stages, and also helps to alleviate the vanishing gradient
problem. Due to the complex environment of vehicle remote sensing imagery, such as hazy
weather conditions and shadowed regions, this enhanced feature extraction capability is
exactly what we need during training. An illustration of the DenseNet layout is shown in
Figure 3.

Figure 3. DenseNet model structure showing a four-layer dense block. Each layer takes all preceding
feature maps as input. The convolutional layers between two adjacent blocks are used to adjust the size
of the feature map.

3.4. Classifier Layer

To complete the vehicle classification task, the probability of each type is expected
to be calculated based on the output feature maps from previous layers. Thus, the soft-
max classifier layer is added as the final part of our proposed model to take the output
feature vector from TNT layer and generate vehicle type probability vector for the choice
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with highest probability. The learnable linear function modeling the relationship can be
expressed as follows:

v = WTZ ∗ + b (9)

where Z ∗ ∈ RD×1 is the real number output feature with dimension D from TNT, W is the
parameter to be learned, v ∈ RC×1 is the vehicle type variable, C is the number of vehicle
types, and b is the bias of the linear mapping. To emphasize the vehicle type with the highest
probability, softmax is applied to achieve the final normalized output O = [O1, O2, . . ., OC]

T .
For the i-th class prediction vi, the final output Oi can be calculated as

V =
C

∑
i=1

evi , (10)

Oi =
1
V

evi . (11)

3.5. Dense-TNT Overview Model

In summary, our novel Dense-TNT model is designed based on DenseNet and TNT as
shown in Figure 4. It contains two parts: (1) the transformer-based layer, which guarantees
baseline reasonable performance; and (2) the convolutional layer, which captures local fixed
features. DenseNet is beneficial for its kernel and convolutional operation, widely used for
image recognition, and has deeper locality extraction capability than other CNN variants,
while TNT is adept at global information capture and provides better understanding than
canonical ViT. The proposed Dense-TNT model can processes the information propagated
through this hybrid structure by extracting some specific local features, further improving
the recognition capability even under complex environmental conditions such as haze
and fog.

Figure 4. The architecture of the proposed Dense-TNT neural network, consisting of TNT and
DenseNet parts. The classifier layer serves as the recognition layer used to compute the type
probability of the input vehicle. Mark * in the figure refers to other learnable embeddings.

4. Experiments

To evaluate our Dense-TNT model, we compared its classification performance with
that of several advanced baselines, including PoolFormer and ViT. The main classifica-
tion task is to classify sedans and pickups from pictures taken by remote sensors from
three different areas. To comprehensively evaluate the model’s performance in multiclass
classification, we further simulated satellite remote sensing using a drone remote sensing
dataset and conducted a seven-class classification task. In addition, we evaluated the
classification ability of Dense-TNT in a two-class classification scenario when the input
pictures were affected by fog and darkness.
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4.1. Evaluation Criteria

To evaluate classification outcomes for all models, four criteria were applied to assess
the performance results. In the case of two-class classification:

• True Positive (TP): A sedan is successfully recognized as a sedan.
• True Negative (TN): A pickup is successfully recognized as a pickup.
• False Positive (FP): A pickup is successfully recognized as a sedan.
• False Negative (FN): A sedan is successfully recognized as a pickup.

Thus, the following four criteria are formulated:

Accuracy =
TP + TN

TP + TN + FP + FN
, (12)

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

F1 − score =
2 × Precision × Recall

Precision + Recall
. (15)

The higher the evaluation score, the better the recognition performance.
In a multiclass classification task with C classes, the following terms are defined for

each class i ∈ {1, 2, . . . , C}:

• True Positive (TPi): The number of instances correctly predicted as belonging to class i:

TPi = Mii (16)

where Mii is the diagonal element of the confusion matrix, representing instances
where both the actual and predicted class are i.

• False Positive (FPi): The number of instances incorrectly predicted as class i when the
actual class is not i:

FPi =
C

∑
j=1,j ̸=i

Mji (17)

where Mji represents the instances actually belonging to class j but predicted as class i.
• False Negative (FNi): The number of instances of class i incorrectly predicted as

another class:

FNi =
C

∑
j=1,j ̸=i

Mij (18)

where Mij represents the instances actually belonging to class i but predicted as class j.
• True Negative (TNi): The number of instances correctly predicted as not belonging to

class i, that is, the total number of instances minus those involved in TPi, FPi, and FNi:

TNi =
C

∑
k=1

C

∑
l=1

Mkl − (TPi + FPi + FNi) (19)

where Mkl represents all elements of the confusion matrix.

The confusion matrix for C-class classification is represented as a C × C matrix:
M11 M12 . . . M1C
M21 M22 . . . M2C

...
...

. . .
...

MC1 MC2 . . . MCC


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where:

• Mij is the number of instances with actual class i and predicted class j.
• Diagonal elements (Mii) represent correct predictions (True Positives for class i).
• Off-diagonal elements (Mij for i ̸= j) represent misclassifications.

Thus, the four criteria for multiclass classification are formulated as follows:

Accuracy =
∑C

i=1 TPi

∑C
i=1(TPi + FPi + FNi)

, (20)

Precisioni =
TPi

TPi + FPi
, (21)

Recalli =
TPi

TPi + FNi
, (22)

F1-scorei =
2 × Precisioni × Recalli

Precisioni + Recalli
. (23)

4.2. Experiment Settings

All settings, including baseline models and training settings, were kept the same in
the following experiments. The baseline models were PoolFormer and ViT. PoolFormer
is the specific framework proposed in [30], and achieves strong recognition performance.
ViT is widely applied in image processing problems, as discussed in Section 2. We applied
Dense-TNT with parameter sizes of s12 and s24, PoolFormer with parameter sizes of s12
and s24, and ViT with two layers and twelve layers. The parameter settings of the baseline
models and the Dense-TNT model are shown in Table 1. The dense blocks for the Dense-
TNT S12 and Dense-TNT S24 models both consisted of five convolutional layers with 5 × 5
kernels and a stride of 1.

Table 1. Model parameter settings.

Model Number of Layers (L) Hidden Size (D) Attention Heads (H) MLP Size

Dense-TNT s12 12 384 8 -

Dense-TNT s24 24 512 8 -

PoolFormer s12 12 384 - -

PoolFormer s24 24 512 - -

Vision Transformer (ViT-L/12) 12 1024 16 4096

Vision Transformer (ViT-L/2) 2 1024 16 4096

The models were trained over 50 epochs on an RTX3060 GPU with a maximum
learning rate of lr = 2e−3. The AdamW optimizer was used with a weight decay of 0.05.
The batch size was set to 0.01 of the training dataset. The size of the training dataset was
0.8 of the whole dataset, while the size of test dataset was 0.2 of the whole dataset. All
the training and test data were randomly selected from the whole dataset. The number
of different vehicle samples are kept consistent considering the balance of the number of
different vehicle types. See Algorithm for the detailed training process (Algorithm 1).
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Algorithm 1: Dense-TNT Model Training.

1 Initialize: input figures preprocessing ;
2 Initialize: network weights with random values;
3 for episode = 1 to max − episodes do
4 for batch = 1 to max − batch size do
5 extract input features with TNT;
6 classify vehicle types with DenseNets;
7 output classification results;
8 calculate loss using RMSE;

9 perform a gradient descent and network weights update;

4.3. Classification in Normal Weather Conditions
4.3.1. Data Description

We used Cars Overhead With Context (COWC accessed in 12 September 2024) (http:
//gdo-datasci.ucllnl.org/cowc/) [45], a remote sensing target detection dataset with a
resolution of 15 cm per pixel and an image size of 64 × 64, to perform the classification.
Remote sensing pictures from three different areas (Toronto, Canada; Selwyn New Zealand;
and Columbus, Ohio USA) were selected. Details of the different area datasets are described
in Table 2 and example pictures of sedans and pickups are shown in Table 3.

Table 2. Details of the three datasets. The first column refers to the three different areas where images
were taken, the second column refers to the total number of images in the area, and the other two
columns refer to the number of sedans and pickups in the dataset, respectively.

Locations Total Number Number of Sedans Number of Pickups

Columbus Ohio 7465 6917 548
Selwyn 4525 3548 1067
Toronto 45,994 44,208 1789

Table 3. Example pictures of sedans and pickups. The first column shows four example pictures of
sedans and the second column shows four example pictures of sedans.

Sedan Pickup

4.3.2. Experiment Results and Analysis

Table 4 shows the experimental results. Figure 5 shows the classification results with
probabilities after processing under the normal weather condition.

http://gdo-datasci.ucllnl.org/cowc/
http://gdo-datasci.ucllnl.org/cowc/
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Table 4. Experimental results showing the classification accuracy of the models on the three datasets.

Models

Criteria Selwyn Columbus Ohio Toronto

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Dense-TNT s24 0.8065 0.8211 0.9558 0.8810 0.7685 0.7876 0.9516 0.8582 0.8009 0.8205 0.9365 0.8734

Dense-TNT s12 0.7971 0.8183 0.9399 0.8722 0.7459 0.7855 0.9109 0.8377 0.7968 0.8389 0.9062 0.8706

PoolFormer s24 0.7819 0.7956 0.9559 0.8672 0.7675 0.7835 0.9691 0.8634 0.7584 0.7871 0.9183 0.8469

PoolFormer s12 0.7724 0.7977 0.9424 0.8619 0.7507 0.7812 0.9661 0.8431 0.7456 0.7509 0.9254 0.8441

ViT l12 0.7462 0.7462 0.9256 0.8252 0.7392 0.7421 0.9543 0.8455 0.7300 0.7349 0.9326 0.8401

ViT l2 0.7624 0.7659 0.9435 0.8623 0.7460 0.7486 0.9339 0.8504 0.7510 0.7559 0.9273 0.8560

In comparing ViT l12, Dense-TNT s24, and PoolFormer s24, Dense-TNT achieves
generally better performance on all datasets. Even though the computation costs of Dense-
TNT s24 and PoolFormer s24 are both smaller than that of ViT l12, the accuracy results of
both models are relatively higher. In the comparison between the smaller Dense-TNT s12,
PoolFormer s12 and ViT l2 models, Dense-TNT again performs better than the others. Due
to its larger amount of parameters, Dense-TNT s24 has relatively better performance than
Dense-TNT s12.

Figure 5. Classification results with corresponding probabilities under normal weather conditions.

The F1-score is the harmonic mean of the precision and recall, and reflects the robust-
ness of a model’s recognition capability. Figure 6 shows the F1-scores in histogram form. It
can be observed that Dense-TNT again has superior performance.
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F1-Scores on Three Datasets

Selwyn Columbus Toronoto

Dataset

0.8

0.82

0.84

0.86

0.88

0.9

F
1

-S
c
o

re

Dense-TNT s24

Dense-TNT s12

PoolFormer s24

PoolFormer s12

Vision Transformer l12

Vision Transformer l2

Figure 6. F1-scores for the three datasets under normal weather conditions.

4.4. Multiclass Classification
4.4.1. Data Description

To comprehensively evaluate the proposed Dense-TNT model on a multiclass clas-
sification task, we conducted a seven-type vehicle classification experiment on a remote
sensing dataset obtained via drone. The dataset for this experiment was the Vehicle Aerial
Imaging from Drone (VAID accessed on 22 November 2024) dataset (https://vision.ee.ccu.
edu.tw/aerialimage/) [46], which contains 6000 aerial images of different places in Taiwan
taken under varying illumination conditions and from different viewing angles. This
dataset includes multiple vehicle types captured by camera, including sedans, minibuses,
trucks, pickups, buses, cement trucks, and trailers. Example images from the VAID dataset
are shown in Figure 7.

Figure 7. Example images from the VAID dataset; from left to right: sedan, minibus, truck, pickup
truck, bus, cement truck, and trailer.

4.4.2. Experimental Results and Analysis

For this experiment, 500 samples were selected for each vehicle type to ensure a
comprehensive and balanced analysis. Dense-TNT s24, Dense-TNT s12, PoolFormer s24,
PoolFormer s12, ViT l12, and ViT l2 were again selected for model evaluation. We calculated
the average precision, recall, and F1-score as evaluation criteria for all vehicle types. The
classification results are shown in Table 5.

Table 5 presents the experimental results in the multiclass classification scenario.
Compared to the results in Section 4.3, the models achieved relatively higher accuracy,
precision, recall, and F1-scores, which is due to the input data having higher resolution and
containing more spatial information. The proposed Dense-TNT s24 model outperforms the
baseline models. These results demonstrate the effectiveness of combining convolutional
feature extraction with the attention mechanism, which balances global attention across all
input patches while preserving local detail.

https://vision.ee.ccu.edu.tw/aerialimage/
https://vision.ee.ccu.edu.tw/aerialimage/
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Table 5. Multiclass classification results, showing the classification performance of the six models on
the VAID dataset in terms of accuracy, precision, recall, and F1-score.

Models
Criteria Accuracy Precision Recall F1-Score

Dense-TNT s24 0.8753 0.8764 0.9621 0.9173

Dense-TNT s12 0.8579 0.8657 0.9591 0.9100

PoolFormer s24 0.8619 0.8636 0.9679 0.9083

PoolFormer s12 0.8376 0.8401 0.9484 0.8910

ViT l12 0.8229 0.8377 0.9580 0.8938

ViT l2 0.8304 0.8459 0.9441 0.8923

Figure 8 shows the classification accuracy of the Dense-TNT s24 model for all seven
vehicle types. Dense-TNT demonstrates exceptional performance in vehicle classification,
achieving high accuracy across all categories, with an average exceeding 87.5%. It performs
particularly well on pickup trucks and sedans, reflecting its ability to effectively extract
features for these classes. While cement trucks and buses have slightly lower accuracy, this
could be attributed to their structural complexity and feature overlap with other categories.
These results highlight the robustness and adaptability of Dense-TNT for multiclass vehicle
recognition, with potential for further improvement through targeted data augmentation
and feature optimization.

Figure 8. Classification accuracy for different vehicle types.

4.5. Classification in Foggy Condition
4.5.1. Data Preprocessing

To obtain vehicle images under different fog conditions, we processed the grayscale
value of every pixel in the vehicle image. Based on the grayscale value I(x, y) of the pixel
on the x-th row and y-th column in the original image, new different grayscale values
I(x, y)′ were obtained based on the parameter β, as follows:

d = −0.04 ×
√
(x − x0)2 + (y − y0)2 +

√
max(N, M) (24)

td = e−β×d (25)

I(x, y)′ = I(x, y)× td + 0.5 × (1 − td) (26)
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where x0 and y0 refer to the center of each row and column, respectively, N and M refer
to the number of pixels in each row and column, respectively, e is the natural exponential
base and parameter, and β can be adjusted to simulate varying levels of fog intensity. In the
experiment, β was chosen as 0.08, 0.16, and 0.24 to realize three levels of foggy conditions,
denoted light fog, medium fog, and heavy fog. The dataset collected in Selwyn, New
Zealand was randomly chosen for the experiments. Table 6 shows example pictures under
different levels of weather impact. The samples were selected from the COWC dataset and
preprocessed to simulate foggy condition.

Table 6. Experimental images under different weather conditions. The four columns respectively
refer to images taken under normal weather conditions, light fog conditions, medium fog conditions,
and heavy fog conditions.

Origin Light Medium Heavy

4.5.2. Experimental Results and Analysis

In this experiment, we kept the evaluation criteria the same as in Section 4.3 and
used the same six models (Dense-TNT s24, Dense-TNT s12, PoolFormer s24, PoolFormer
s12, ViT l12, and ViT l2). Table 7 shows the results of the experiment. Figure 9 shows the
classification results with probabilities after processing under foggy weather conditions.

Figure 9. Classification results with corresponding probabilities under foggy weather conditions.
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Table 7. Results of experiment with image data affected by fog. The first column of the table refers to
the different models, while the other columns show the accuracy of the six models in normal weather,
light fog, medium fog, and heavy fog, respectively.

Models
Criteria Light-Foggy (fog = 0.08) Medium-Foggy (fog = 0.16) Heavy-Foggy (fog = 0.24)

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Dense-TNT s24 0.7941 0.8240 0.9215 0.8682 0.7961 0.7934 0.9352 0.8712 0.7692 0.7660 0.9440 0.8787

Dense-TNT s12 0.7907 0.8244 0.9178 0.8671 0.7839 0.7815 0.9510 0.8382 0.7648 0.7748 0.9497 0.8715

PoolFormer s24 0.7665 0.7912 0.9243 0.8490 0.7590 0.7630 0.9594 0.8608 0.7535 0.7663 0.9543 0.8635

PoolFormer s12 0.7631 0.7630 0.9289 0.8641 0.7500 0.7469 0.9624 0.8543 0.7371 0.7370 0.9601 0.8469

ViT l12 0.7533 0.7539 0.9310 0.8569 0.7456 0.7369 0.9449 0.8431 0.7428 0.7400 0.9627 0.8512

ViT l2 0.7566 0.7495 0.7297 0.8585 0.7394 0.7402 0.9573 0.8482 0.7383 0.7369 0.9659 0.8471

Figure 10 shows the F1-scores of the models in the experiment in the form of a
histogram. Again, Dense-TNT has better performance than the baselines, with Dense-TNT
s24 showing the best performance. Notably, this performance advantage increases as the
fog becomes heavier, with the proposed model leading the baselines by even more.

When the input data are affected by different levels of fog, there is a certain level of
decay in the accuracy of all six models. Despite this decrease in accuracy, Dense-TNT s24
still has a relatively better performance than PoolFormer s24 and ViT l12. Dense-TNT s12
also has generally better performance than PoolFormer s12 and ViT l2, demonstrating that
Dense-TNT can still be useful when dealing with weather-affected input data.

F1-Scores on Selwyn Dataset

fog=0.08 fog=0.16 fog=0.24

Fog Intensity

0.8
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Vision Transformer l2

Figure 10. F1-scores on the Selwyn, New Zealand dataset under different levels of fog.

4.6. Classification in Darkness Condition
4.6.1. Data Preprocessing

We introduced a uniform darkness effect to the image dataset to simulate a dark
environment. For every pixel in the image, the grayscale value was multiplied by a
darkness factor θ ∈ [0, 1]. In this case, the transformation of the grayscale value can be
express as

I(x, y)′ = I(x, y)× θ. (27)

In this experiment, the value of the θ parameter was chosen as 0.8, 0.64, and 0.32
to realize three darkness conditions: light, medium, and heavy. The dataset collected in
Selwyn, New Zealand was randomly chosen for this experiment. Table 8 shows example
pictures under different levels of darkness impact.
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Table 8. Experimentalimages showing different darkness conditions. The four columns respectively
refer to images under normal conditions and under light, medium, and heavy darkness conditions.

Origin Light Medium Heavy

4.6.2. Experimental Results and Analysis

Table 9 presents the experimental results, showcasing the performance of various mod-
els under different darkness conditions. The results provide a comprehensive comparison
of the models’ F1-scores across light, medium, and heavy darkness scenarios, highlighting
their effectiveness and robustness under varying levels of visibility impairment.

The F1-score performance of the six models is presented under the following darkness
conditions: light (θ = 0.8), medium (θ = 0.64), and heavy (θ = 0.32). Under the light darkness
condition, Dense-TNT s24 exhibited the highest F1-score of 0.8912, demonstrating superior
performance, followed closely by ViT l12 with an F1-score of 0.8776. The other models
achieved F1-scores ranging from 0.8370 to 0.8783. Under medium darkness conditions,
Dense-TNT s24 again showed outstanding performance, with the highest F1-score of 0.9048,
while PoolFormer s12 ranked second with an F1-score of 0.8534 and the F1-scores of the
other models ranged from 0.8264 to 0.8385. Under heavy darkness conditions, Dense-
TNT s24 again performed the best, with an F1-score of 0.8761. ViT l12 and PoolFormer s24
followed with F1-scores of 0.8591 and 0.8295, respectively, and the other models achieved F1-
scores ranging from 0.8225 to 0.8517. This summary highlights the consistent performance
of Dense-TNT s24 across all darkness conditions, particularly excelling in the light and
medium darkness scenarios.

Table 9. Results of experiments with data affected by darkness. The first column of the table refers to
the six models, while the other columns show the accuracy of the models under normal conditions
and light, medium, and heavy darkness conditions.

Models
Criteria Light-Darkness (θ = 0.8) Medium-Darkness (θ = 0.64) Heavy-Darkness (θ = 0.32)

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Dense-TNT s24 0.8105 0.8122 0.8981 0.8912 0.8044 0.8137 0.9152 0.9048 0.7797 0.7561 0.9259 0.8761

Dense-TNT s12 0.7852 0.8341 0.9062 0.8783 0.7618 0.7795 0.9150 0.8283 0.7486 0.7847 0.9053 0.8517

PoolFormer s24 0.7432 0.7902 0.9142 0.8370 0.7590 0.7541 0.9495 0.8267 0.7535 0.7569 0.9435 0.8295

PoolFormer s12 0.7631 0.7750 0.9156 0.8566 0.7500 0.7291 0.9604 0.8534 0.7199 0.7257 0.9534 0.8225

ViT112 0.7533 0.7129 0.9317 0.8776 0.7528 0.7274 0.9449 0.8264 0.7244 0.7390 0.9567 0.8591

ViT12 0.7566 0.7481 0.7957 0.8585 0.7394 0.7337 0.9601 0.8385 0.7223 0.7469 0.9660 0.8351

Figure 11 illustrates the F1-score performance of the six models across three different
darkness conditions: light, medium, and heavy. Dense-TNT s24 consistently achieves the
highest F1-scores in all conditions, indicating its superior adaptability and accuracy. ViT
l12 also performs well, particularly under light and medium darkness conditions. The
chart highlights how model performance can vary significantly with changes in environ-
mental visibility, emphasizing the importance of selecting the right model for specific
darkness conditions.
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Figure 11. F1-scores on the Selwyn, New Zealand dataset under different darkness condition.

5. Future Work

In our future work, we aim to address several limitations and potential issues identified
in this study. First, we plan to expand the diversity and representativeness of the datasets by
incorporating real-world weather-affected satellite imagery and data from a wider range of
geographic regions in order to improve model robustness and generalization. Additionally,
we will explore lightweight variants of the Dense-TNT model to optimize computational
efficiency, enabling deployment on resource-constrained platforms such as nanosatellites
and embedded systems.

6. Conclusions

This paper proposes a novel classification neural network called Dense-TNT for rec-
ognizing vehicle types based on satellite remote sensing imagery. Dense-TNT combines
a DenseNet layer and TNT layer to capture both local and global information from input
images. Our experimental results show that Dense-TNT achieves better recognition perfor-
mance than other widely used methods, especially under complex weather conditions. Our
experiments were designed to validate the feasibility of Dense-TNT based on real-world
remote sensing datasets collected from three different regions and containing multiple
environment states. Data preprocessing on the datasets was conducted to imitate foggy
weather conditions and darkness at light, medium, and heavy levels. The experimental
results show that Dense-TNT achieves better recognition performance than the baseline
PoolFormer and ViT algorithms, achieving an improvement in accuracy of around 5–10%.
Under the foggy weather and darkness conditions, this improvement is even larger. In addi-
tion, the proposed model proved effective in a real-world multiclass classification scenario.
To summarize, our experiments verify the superior vehicle type classification performance
of the proposed Dense-TNT framework under comprehensive weather conditions using
remote sensing imagery.
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