
Citation: Wang, J.; Zhang, Y.; Zhu, S.;

Wang, J. A Novel Multi-Objective

Trajectory Planning Method for

Robots Based on the Multi-Objective

Particle Swarm Optimization

Algorithm. Sensors 2024, 24, 7663.

https://doi.org/10.3390/s24237663

Academic Editor: Jesús Ureña

Received: 8 November 2024

Revised: 25 November 2024

Accepted: 28 November 2024

Published: 29 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Novel Multi-Objective Trajectory Planning Method for Robots
Based on the Multi-Objective Particle Swarm
Optimization Algorithm
Jiahui Wang 1, Yongbo Zhang 1,2,* , Shihao Zhu 1 and Junling Wang 3

1 School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
2 Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University,

Ningbo 315100, China
3 School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
* Correspondence: zhangyongbo@buaa.edu.cn

Abstract: The three performance indexes of the space robot, travel time, energy consumption, and
smoothness, are the key to its important role in space exploration. Therefore, this paper proposes a
multi-objective trajectory planning method for robots. Firstly, the kinematics and dynamics of the
Puma560 robot are analyzed to lay the foundation for trajectory planning. Secondly, the joint space
trajectory of the robot is constructed with fifth-order B-spline functions, realizing the continuous
position, velocity, acceleration, and jerk of each joint. Then, the improved multi-objective particle
swarm optimization (MOPSO) algorithm is used to optimize the trajectory, and the distribution
uniformity, convergence, and diversity of the obtained Pareto front are good. The improved MOPSO
algorithm can realize the optimization between multiple objectives and obtain the trajectory that
meets the actual engineering requirements. Finally, this paper implements the visualization of the
robot’s joints moving according to the optimal trajectory.

Keywords: Puma560 robot; multi-objective trajectory planning; MOPSO; B-spline

1. Introduction

With the rapid development of science and technology in today’s world, humankind’s
space exploration has shown unprecedented momentum, and space technology has grad-
ually risen to the focus of public attention. Among them, space robots have become
indispensable to space activities due to their powerful functions and high adaptability to
the space environment. A series of challenging tasks, such as assembling satellite parts,
capturing space targets, and monitoring alien spacecraft, cannot be realized without the
support of space robots. These tasks and harsh working environments also set higher
requirements for space robots’ travel time, energy consumption, and smoothness.

The primary method to improve each performance index is to design and plan the
robot’s trajectory rationally. Trajectory planning can be performed both in Cartesian space
and in joint space. The latter plans the trajectory of each joint of the robot, which has a small
amount of calculation and enables the real-time control of the robot. Trajectory planning
can usually be divided into two steps. The first step is to interpolate between given path
points using interpolation algorithms to obtain a trajectory-time sequence. The second step
is to optimize the trajectory in terms of single or multiple performance indexes within the
constraints of the kinematics and dynamics of the robot [1].

The mainstream interpolation algorithms in joint space are polynomial interpolation
and spline curve interpolation, and the former is mainly used in early research [2–5]. To
obtain the robot’s trajectory, Ref. [6] used a cubic polynomial to connect the path points.
This method is simple to calculate, but the acceleration curve obtained is not continuous,
the smoothness could be better, and it tends to cause rigid impacts. Ref. [7] used quintic

Sensors 2024, 24, 7663. https://doi.org/10.3390/s24237663 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24237663
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8730-8440
https://orcid.org/0009-0006-0223-9092
https://doi.org/10.3390/s24237663
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24237663?type=check_update&version=2

Sensors 2024, 24, 7663 2 of 17

polynomial interpolation to ensure the continuity of acceleration, but it increased the
amount of calculation, and there was still a problem of easy distortion. Compared to the
fifth-degree polynomial, the seventh-degree polynomial adds constraints to the jerk at
the start and termination points, realizing the continuity of the jerk. However, the eight
boundary conditions increase the difficulty of the solution, and the high-order polynomial
interpolation may cause the Runge phenomenon [8]. With the deepening of research, some
scholars have applied spline curves to the trajectory planning of robots [9–14]. Ref. [15]
used the fifth-order B-spline curves to interpolate the joint space trajectory, which realized
the continuity of the jerk and set the velocity and acceleration at the start and stop time to
be 0. When interpolating with seventh-order B-spline curves, it is possible to specify the
acceleration at the start and stop time, but the calculation process is complicated [1].

Trajectory optimization mostly takes a single performance index as the optimization
objective. Robot efficiency, the shortest time required by the robot to perform a task, was
the earliest goal of trajectory planning [16–19]. Ref. [20] constructed the trajectory with a
quintic polynomial and reduced the robot’s travel time by 75.35% through the improved
MOPSO algorithm under the constraints of each joint’s angles, velocities, and accelera-
tions. The time-optimal trajectory often leads to a large impact on the robot, affecting its
motion accuracy and shortening the service life of the robot structure. Many scholars have
solved this problem by optimizing the jerk. Ref. [7] effectively increased the smoothness
of the robot by optimizing the maximum value of joint jerks. Ref. [21] combined the PSO
algorithm with K-means clustering to achieve a fast solution for joint trajectories with
minimal shocks. Energy consumption optimization is also an important issue for robots
working in unique environments such as oceans, deserts, and space [22–25]. Ref. [26]
obtained a parameterized dynamic robot model through identification experiments and
used a sequential quadratic programming solver to minimize a mechanical energy-based
cost function under consideration of physical constraints. These three performance indexes
all play an important role in the motion of the space robot, and the single optimization
objective ignores the intricate balance between them. Therefore, there are studies on the
comprehensive optimization of multiple objectives [27–29]. Ref. [30] realized the compre-
hensive optimization of time, energy, and smoothness by a differential evolution algorithm.
Ref. [31] used the NSGA-II algorithm to optimize the same three objectives and obtained
Pareto optimal solution sets, thus obtaining the high-order continuous optimal trajectories.

There are few studies on multi-objective optimization problems, so this paper proposes
a trajectory planning method that can make the robot’s travel time, energy consumption,
and smoothness achieve the integrated optimal state when performing the task. In this
paper, continuous and smooth joint space trajectories are constructed using fifth-order
B-spline functions, which also realize the specification of the velocity and acceleration of
the robot at the start/stop moment. The trajectories are then optimized using the improved
MOPSO algorithm to obtain the Pareto optimal solution sets, from which suitable solutions
are selected according to practical needs.

The rest of the paper is organized as follows. Section 2 analyzes the kinematics
and dynamics of the Puma 560 robot manufactured by Unimation, USA. Section 3 uses
fifth-order B-spline curves to construct the joint space trajectories of the robot, builds a
mathematical model for the multi-objective optimization problem based on Section 2, and
solves the model with the improved MOPSO algorithm. Section 4 performs simulation
experiments on multi-objective trajectory planning. Section 5 summarizes this article.

2. Kinematics and Dynamics Analysis
2.1. Kinematics Analysis

This section gives the kinematics model of the Puma560 robot and analyzes its forward
and inverse kinematics. The MDH (Modified Denavit–Hartenberg) coordinate system [32]
shown in Figure 1 is established on the Puma560 robot with six rotary joints. The link
parameters from the MATLAB R2020b Robot Toolbox are shown in Table 1.

Sensors 2024, 24, 7663 3 of 17

Sensors 2024, 24, 7663 3 of 18

2. Kinematics and Dynamics Analysis
2.1. Kinematics Analysis

This section gives the kinematics model of the Puma560 robot and analyzes its for-
ward and inverse kinematics. The MDH (Modified Denavit–Hartenberg) coordinate sys-
tem [32] shown in Figure 1 is established on the Puma560 robot with six rotary joints. The
link parameters from the MATLAB R2020b Robot Toolbox are shown in Table 1.

Figure 1. The MDH coordinate system of the Puma560 robot.

Table 1. Link parameters of the Puma560 robot.

Link i -1iα (rad) -1ia (m) id (m) iθ (rad)

1 0 0 0 1θ

2 −1.5708 0 0.2435 2θ

3 0 0.4318 −0.0934 3θ

4 1.5708 −0.0203 0.4331 4θ

5 −1.5708 0 0 5θ

6 1.5708 0 0 6θ

The simulation model of the Puma560 robot is established by using the Robot
Toolbox in MATLAB, as shown in Figure 2.

Figure 2. Robot model in MATLAB.

Figure 1. The MDH coordinate system of the Puma560 robot.

Table 1. Link parameters of the Puma560 robot.

Link i αi-1 (rad) ai-1 (m) di (m) θi (rad)

1 0 0 0 θ1
2 −1.5708 0 0.2435 θ2
3 0 0.4318 −0.0934 θ3
4 1.5708 −0.0203 0.4331 θ4
5 −1.5708 0 0 θ5
6 1.5708 0 0 θ6

The simulation model of the Puma560 robot is established by using the Robot Toolbox
in MATLAB, as shown in Figure 2.

Sensors 2024, 24, 7663 3 of 18

2. Kinematics and Dynamics Analysis
2.1. Kinematics Analysis

This section gives the kinematics model of the Puma560 robot and analyzes its for-
ward and inverse kinematics. The MDH (Modified Denavit–Hartenberg) coordinate sys-
tem [32] shown in Figure 1 is established on the Puma560 robot with six rotary joints. The
link parameters from the MATLAB R2020b Robot Toolbox are shown in Table 1.

Figure 1. The MDH coordinate system of the Puma560 robot.

Table 1. Link parameters of the Puma560 robot.

Link i -1iα (rad) -1ia (m) id (m) iθ (rad)

1 0 0 0 1θ

2 −1.5708 0 0.2435 2θ

3 0 0.4318 −0.0934 3θ

4 1.5708 −0.0203 0.4331 4θ

5 −1.5708 0 0 5θ

6 1.5708 0 0 6θ

The simulation model of the Puma560 robot is established by using the Robot
Toolbox in MATLAB, as shown in Figure 2.

Figure 2. Robot model in MATLAB.

Figure 2. Robot model in MATLAB.

2.1.1. Forward Kinematics Analysis

Forward kinematics analysis refers to obtaining the end-effector pose relative to
the base according to the angle of each robot joint. The transformation matrix between
neighboring links, that is, the coordinate system {i} relative to the coordinate system {i − 1},
can be represented by

i−1
iT =


cos θi

sin θi cos αi−1
sin θi sin αi−1

0

− sin θi
cos θi cos αi−1
cos θi sin αi−1

0

0
− sin αi−1
cos αi−1

0

ai−1
− sin αi−1di
cos αi−1di

1

 (1)

Sensors 2024, 24, 7663 4 of 17

Substituting the parameters in Table 1 into (1), the six homogeneous transformation
matrixes of the Puma560 robot can be obtained by

0
1T =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 1 0
0 0 0 1

 1
2T =


cos θ2 − sin θ2 0 0

0 0 1 d2
− sin θ2 − cos θ2 0 0

0 0 0 1

 2
3T =


cos θ3 − sin θ3 0 a2
sin θ3 cos θ3 0 0

0 0 1 d3
0 0 0 1


3
4T =


cos θ4 − sin θ4 0 a3

0 0 −1 −d4
sin θ4 cos θ4 0 0

0 0 0 1

 4
5T =


cos θ5 − sin θ5 0 0

0 0 1 0
− sin θ5 − cos θ5 0 0

0 0 0 1

 5
6T =


cos θ6 − sin θ6 0 0

0 0 −1 0
sin θ6 cos θ6 0 0

0 0 0 1

.

(2)

The transformation matrixes in (2) can be multiplied together to find the transfor-
mation matrix of the end-effector coordinate system {6} relative to the base coordinate
system {0}

0
6T = 0

1T1
2T2

3T3
4T4

5T5
6T =


r11
r21
r31
0

r12
r22
r32
0

r13
r23
r33
0

px
py
pz
1

 (3)

where px, py, pz represent the position of the end-effector, and r11, r12, r13, r21, r22, r23,
r31, r32, r33 represent the orientation of the end-effector. These 12 elements are calculated
by the joint angles.

2.1.2. Inverse Kinematics Analysis

Inverse kinematics analysis refers to the inverse solution of the angle of each joint by
using the end-effector pose relative to the base. Analyzing the structural characteristics of
the Puma560 robot, it is easy to know that its last three axes intersect at one point, and the
six joints of the robot are all rotary joints. So, the Pieper method [33] can solve the inverse
kinematics of the Puma560 robot. When sin(θ5) ̸= 0, the joint angles can be obtained by

θ1 = A tan 2

(
g1y − g2x

g2
1 + g2

2
,

g1x + g2y
g2

1 + g2
2

)
(4)

θ2 = A tan 2

(
−z
ρ2

,±
√

1 − z2

ρ2
2

)
− A tan 2(f2, f1) (5)

θ3 = A tan 2

C − r
ρ3

,±

√
1 − (C − r)2

ρ2
3

− A tan 2(a3, d4) (6)

θ4 = A tan 2
(

x33

sin(θ5)
,

x13

sin(θ5)

)
(7)

θ5 = A tan 2
(
±
√

x2
21 + x2

22,−x23

)
(8)

θ6 = A tan 2
(

−x22

sin(θ5)
,

x21

sin(θ5)

)
(9)

where A tan 2 is predefined in many programming language libraries; its function is to
judge the quadrant of the angle according to the positive and negative of x and y while
calculating tan−1(y

x
)
. Unknown in (4)–(9), such as g1, g2, are the intermediate quantities in

the derivation process of the Pieper method, which are defined as

f1 = a2 + a3c3 + d4s3, f2 = a3s3 − d4c3, f3 = d3 (10)

g1 = f1c2 − f2s2, g2 = f3 + d2, g3 = − f1s2 − f2c2 (11)

Sensors 2024, 24, 7663 5 of 17

r = f 2
1 + f 2

2 + f 2
3 + d2

2 + 2 f3d2, C = r −
(

a2
2 + a2

3 + d2
4 + d2

2 + d2
3 + 2d2d3

)
(12)

x = (f1c2 − f2s2)c1 − (f3 + d2)s1, y = (f1c2 − f2s2)s1 + (f3 + d2)c1, z = − f1s2 − f2c2 (13)

ρ2 =
√

f 2
1 + f 2

2 , ρ3 = 2a2

√
a2

3 + d2
4 (14)

ϕ2 = A tan 2(f2, f1), ϕ3 = A tan 2(a3, d4) (15)

x13 = r13c23c1 − r33s23 + r23c23s1, x21 = −r31c23 − r11c1s23 − r21s1s23 (16)

x22 = −r32c23 − r12c1s23 − r22s1s23, x23 = −r33c23 − r13c1s23 − r23s1s23, x33 = r23c1 − r13s1 (17)

where ci = cos θi, si = sin θi, sij = sin
(
θi + θj

)
, cij = cos

(
θi + θj

)
, i, j = [1, 2, 3, 4, 5, 6], and

i ̸= j.
If sin(θ5) ̸= 0 and θ5 = 0, then the solutions of θ1, θ2, θ3 do not change, and θ4, θ5,

θ6 become
θ4 = 0 (18)

θ5 = 0 (19)

θ6 = A tan 2(−x12, x11) (20)

where x11 = r11c23c1 − r31s23 + r21c23s1, x12 = r12c23c1 − r32s23 + r22c23s1.
If sin(θ5) ̸= 0 and θ5 = π, then the solutions of θ1, θ2, θ3 do not change, and θ4, θ5,

θ6 become
θ4 = 0 (21)

θ5 = π (22)

θ6 = A tan 2(x12,−x11) (23)

2.2. Dynamics Analysis

The iterative Newton–Euler dynamics algorithm [34] is computationally efficient,
suitable for real-time control, and commonly used for modeling robot dynamics. The
algorithm is composed of two parts. First, link velocities and accelerations are iteratively
calculated from the base. Second, starting from the end-effector, the force and torque of
each link are calculated in reverse. The specific iterative calculation process is as follows.

Outward iterations: i : 0 → nl − 1

i+1wi+1 = i+1
i R

iwi +
.
θi+1

i+1Ẑi+1 (24)

i+1 .
wi+1 = i+1

i R
i .
wi +

i+1
i R

iwi ×
.
θi+1

i+1Ẑi+1 +
..
θi+1

i+1Ẑi+1 (25)

i+1 .
vi+1 = i+1

i R
[

i .
wi × iPi+1 +

iwi ×
(

iwi × iPi+1

)
+ i .

vi

]
(26)

i .
vCi

= i .
wi × iPCi

+ iwi ×
(

iwi × iPCi

)
+ i .

vi (27)

Fi = m
.
vCi (28)

Ni =
Ci I

.
wi + wi × Ci Iwi (29)

where nl is the number of links, i+1Ẑi+1 is the unit vector of the coordinate system {i + 1}
on the Z axis, Fi and Ni are, respectively, the inertia force and torque acting on the mass
center of the link i.

Inward iterations: i : nl → 1

i fi =
i
i+1Ri+1 fi+1 +

iFi (30)

ini =
i Ni +

i
i+1Ri+1ni+1 +

iPCi
× iFi +

iPi+1 × i
i+1Ri+1 fi+1 (31)

τi =
inT

i
iẐi (32)

Sensors 2024, 24, 7663 6 of 17

where i fi,
ini are, respectively, the force and torque acting on the link i, and τi is the driving

force of the joint motor.

3. Multi-Objective Trajectory Planning
3.1. Construction of Joint Space Trajectory

A kth-degree B-spline curve [35] is defined by

p(u) =
n

∑
i=0

di Ni,k(u) (33)

where di is the control point, n+1 is its number, p(u) is the path point at node u, Ni,k(u) is
the kth-degree B-spline basis function, and its specific definition is

Ni,0(u) =
{

1, ui ≤ u < ui+1
0, others

Ni,k(u) =
u−ui

ui+k−ui
Ni,k−1(u) +

ui+k+1−u
ui+k+1−ui+1

Ni+1,k−1(u)
0
0 = 0.

(34)

The interval of Ni,k(u), u ∈ [ui, ui+k+1], contains k + 1 node intervals. It can be seen
from (34) that for any node u ∈ [ui, ui+k+1] on the parameter axis, there are only up to
k + 1 nonzero basis functions Nr,k(u)(r = i − k, i − k + 1, . . . , i). This is the local support
property of the B-spline curve. Therefore, the B-spline curve can also be expressed as

p(u) =
i

∑
r=i−k

dr Nr,k(u) (35)

In this paper, the joint space trajectory of the robot is obtained by fifth-order B-spline
curve interpolation, so k = 5. Assuming that the position-time series of a certain joint is
P =

(
pj, tj

)
, j = 0, 1, . . . , m, then the node vector is U = [u0, u1, . . . , um+2k], and

n = m + k − 1.
In order to make the B-spline curve pass through the first and end position points of

the joint, the node repetition degree of these two positions needs to be defined as

u0 = u1 = . . . = u5 = 0 (36)

um+5 = un+6 = . . . = um+10 = 1 (37)

Moreover, the accumulative chord length parameterization method normalizes the
remaining m − 1 inner nodes

ui = ui−1 +
|∆ti−6|

m−1
∑

r=0
|∆tr|

, i = 6, 7, . . . , m + 4 (38)

The n + 1 equations are needed to solve n + 1 control points, where m + 1 equations
can be given by

p(ui+5) =
i+5

∑
r=i

dr Nr,5(ui+5) = pi, ui+5 ∈ [u5, um+5], i = 0, 1, . . . , m (39)

Additional conditions determine the other k − 1 equations. For the fifth-order B-spline
curve, specifying the velocity and acceleration of the joint at the start and end points can
add four additional equations{

p′(u)
∣∣u=u5 = vs, p′(u)

∣∣u=um+5 = ve
p′′ (u)

∣∣u=u5 = as, p′′ (u)
∣∣u=um+5 = ae

(40)

Sensors 2024, 24, 7663 7 of 17

where p′(u), p′′ (u) are, respectively, the first and second derivatives of the B-spline curve,
representing the velocity and acceleration of the joint. The deBoor–Cox recurrence formula
can calculate the lth derivative of the B-spline curve

pl(u) =
i

∑
r=i−k+l

dl
r Nr,k−l(u), ui < u < ui+1

dl
r =

{
dj, l = 0

(k + 1 − l)
(

dl−1
r − dl−1

r−1

)
/(ur+k+1−l − ur), l = 1, 2, . . . , r.

(41)

Expression (39) is combined with (40) to obtain

And = p (42)

where d = [d0, d1, . . . , dn−1, dn]
T , p = [p0, p1, . . . , pm, vs, ve, as, ae]

T , and the coefficient
matrix is

An =



1
N1,5(u6) N2,5(u6) · · · N5,5(u6)

N2,5(u7) N3,5(u7) · · · N6,5(u7)
.

Nm−2,5(um+3) Nm−1,5(um+3) · · · Nm+2,5(um+3)
Nm−1,5(um+4) Nm,5(um+4) · · · Nm+3,5(um+4)

cs1 cs2 1
ce1 ce2

as1 as2
ae1 ae2 ae3


Some parameters in the coefficient matrix are defined by

cs1 = −5/(u6 − u1)
cs2 = 5/(u6 − u1)

ce1 = −5/(um+9 − um+4)
ce2 = 5/(um+9 − um+4)

as1 = 20/[(u6 − u2)(u6 − u1)]
as2 = −20{1/[(u6 − u2)(u6 − u1)] + 1/[(u6 − u2)(u7 − u2)]}

as3 = 20/[(u6 − u2)(u7 − u2)]
ae1 = 20/[(um+8 − um+4)(um+8 − um+3)]

ae2 = −20{1/[(um+8 − um+4)(um+8 − um+3)] + 1/[(um+8 − um+4)(um+9 − um+4)]}
ae3 = 20/[(um+8 − um+4)(um+9 − um+4)].

(43)

From (42), all the control points can be obtained by

d = A−1
n p (44)

Bringing the control points back to (35), the angular displacement curve of each robot
joint can be obtained. Then, the angular velocity, angular acceleration, and angular jerk
curves of each joint are obtained by (41).

3.2. Establishing the Multi-Objective Optimization Model

This model consists of objective functions and constraint conditions. Firstly, the
specific expressions of travel time, energy consumption, and smoothness are shown in
(45)–(47). It is assumed that the trajectory of each joint of the Puma560 is divided into m
segments, which means that each joint is assigned m + 1 angle values in turn.

Sensors 2024, 24, 7663 8 of 17

The total travel time of the robot is the sum of the travel time of each trajectory, so its
expression is

S1 = T =
m

∑
j=1

∆tj =
m

∑
j=1

(
tj − tj−1

)
(45)

where tj−1, tj, ∆tj are, respectively, the starting time, ending time, and travel time of the
jth trajectory, and T is the total travel time.

The average accelerations of joints represent the energy consumption

S2 =
6

∑
i=1

√√√√√ 1
T

T∫
0

..
θ

2
i dt (46)

where
..
θi is the acceleration of the ith joint.

The average jerks of joints measure the smoothness

S3 =
6

∑
i=1

√√√√√ 1
T

T∫
0

...
θ

2
i dt (47)

where
...
θ i is the jerk of the ith joint.

Constraints of kinematics and dynamics of the robot need to be considered when the
robot performs tasks. Kinematic constraints mainly include the limitation of joint angle,
velocity, and acceleration. Dynamic constraints mostly refer to the restriction of the joint
torque. Therefore, the multi-objective optimization model can be established as

Minimize
S = [S1, S2, S3]

T

Subject to
gi,1 = θmin

i − min(θi(t)) ≤ 0
gi,2 = max(θi(t))− θmax

i ≤ 0

gi,3 =
.
θ

min
i − min

(.
θi(t)

)
≤ 0

gi,4 = max
(.

θi(t)
)
−

.
θ

max
i ≤ 0

gi,5 =
..
θ

min
i − min

(..
θi(t)

)
≤ 0

gi,6 = max
(..

θi(t)
)
−

..
θ

max
i ≤ 0

gi,7 = τmin
i − min(τi(t)) ≤ 0

gi,8 = max(τi(t))− τmax
i ≤ 0.

(48)

where θi(t),
.
θi(t),

..
θi(t), τi(t) are, respectively, the angle, velocity, acceleration, and driving

torque of the ith joint at t time, and θmax
i , θmin

i ,
.
θ

max
i ,

.
θ

min
i ,

..
θ

max
i ,

..
θ

min
i , τmax

i , τmin
i are,

respectively, the upper and lower limits of the angle, velocity, acceleration, and driving
torque of the ith joint.

3.3. Solving the Multi-Objective Optimization Model

The three optimization objectives conflict with each other, and there is a complex
balance between them, so they cannot achieve the best solution simultaneously. When
the improved MOPSO algorithm is used to solve the previous model, the result is no
longer a single optimal solution, but an optimal solution set called the Pareto optimal
solution set [36]. There is no good or bad solution in the Pareto optimal solution set, and
the appropriate solution can be selected according to the actual engineering needs.

The MOPSO algorithm [37] originated from the study of bird foraging behavior and
has the advantages of fast convergence speed, strong global search capability, and a wide

Sensors 2024, 24, 7663 9 of 17

range of application. In this algorithm, each particle’s position represents a solution to
the problem. Under the influence of the individual optimal position and group optimal
position, particles update their velocity and position

vk+1
id = wvk

id + c1r1

(
pk

id,pbest − xk
id

)
+ c2r2

(
pk

d,gbest − xk
id

)
(49)

xk+1
id = xk

id + vk+1
id (50)

where w is the inertia weight, c1 and c2 are the individual and group learning factors, r1
and r2 are random numbers in the range of [0,1], k is the current iteration number, d is
the vector’s dimension number, xk

id and vk
id are the position and velocity of particle i, and

pk
id,pbest and pk

d,gbest are the optimal position of individual and group.
Furthermore, the algorithm determines the dominance relationship between particles

by comparing the objective function values of particles. To better manage and preserve the
non-dominated solution, it is saved to the external archive.

The traditional MOPSO algorithm determines the global leader and deletes the redun-
dant particles in the external archive by random selection. The convergence, distribution
uniformity, and accuracy of the Pareto front are not good. When facing complex problems,
the algorithm easily falls into the local optimum.

In order to solve these problems, this paper uses the adaptive grid technology and
roulette strategy to change the selection of the global leader and redundant particles in
the external archive, applies the adaptive mutation technique to the position of particles,
and makes the inertia weight, individual, and group learning factors change nonlinearly
with the iterations number. The workflow flow chart of the improved MOPSO algorithm is
show in Figure 3.

Sensors 2024, 24, 7663 11 of 18

Figure 3. The improved MOPSO algorithm.

The combination of the adaptive grid technology and roulette strategy enables the
algorithm to select particles in a suitable sub-grid. For each iteration, the maximum value

maxif and minimum value minif of the ith objective function on all particles are found as
the upper and lower bounds of the initial grid. In order to cover the boundary particles,
the range of the grid is expanded according to

() ()min max min max max mini i i i i ii iLB f f UB f ff fα α= − − = + −, (51)

where i iLB UB, are the new upper and lower bounds of the grid, and α is the expan-
sion ratio.

The number of grids for each dimension is set to dn , and the grid is equally divided
into e

dn sub-grids, where e is the number of objective function. Figure 4 shows the gen-
eral process of adaptive grid technology.

(a) (b) (c)

Figure 4. The adaptive grid technology in two-dimensional case. (a) The minimum and maximum
values of each objective function; (b) the enlarged grid range; (c) the uniform distribution of grids
when 3dn = .

Figure 3. The improved MOPSO algorithm.

The combination of the adaptive grid technology and roulette strategy enables the
algorithm to select particles in a suitable sub-grid. For each iteration, the maximum value
fimax and minimum value fimin of the ith objective function on all particles are found as the

Sensors 2024, 24, 7663 10 of 17

upper and lower bounds of the initial grid. In order to cover the boundary particles, the
range of the grid is expanded according to

LBi = fimin − α(fimax − fimin), UBi = fimax + α(fimax − fimin) (51)

where LBi, UBi are the new upper and lower bounds of the grid, and α is the expansion ratio.
The number of grids for each dimension is set to nd, and the grid is equally divided

into ne
d sub-grids, where e is the number of objective function. Figure 4 shows the general

process of adaptive grid technology.

Sensors 2024, 24, 7663 11 of 18

Figure 3. The improved MOPSO algorithm.

The combination of the adaptive grid technology and roulette strategy enables the
algorithm to select particles in a suitable sub-grid. For each iteration, the maximum value

maxif and minimum value minif of the ith objective function on all particles are found as
the upper and lower bounds of the initial grid. In order to cover the boundary particles,
the range of the grid is expanded according to

() ()min max min max max mini i i i i ii iLB f f UB f ff fα α= − − = + −, (51)

where i iLB UB, are the new upper and lower bounds of the grid, and α is the expan-
sion ratio.

The number of grids for each dimension is set to dn , and the grid is equally divided
into e

dn sub-grids, where e is the number of objective function. Figure 4 shows the gen-
eral process of adaptive grid technology.

(a) (b) (c)

Figure 4. The adaptive grid technology in two-dimensional case. (a) The minimum and maximum
values of each objective function; (b) the enlarged grid range; (c) the uniform distribution of grids
when 3dn = .

Figure 4. The adaptive grid technology in two-dimensional case. (a) The minimum and maximum
values of each objective function; (b) the enlarged grid range; (c) the uniform distribution of grids
when nd = 3.

Suppose that there are ns sub-grids containing particles, and the number of particles
in the ith sub-grid is Ni. When selecting the global leader of particles, the probability that
the ith sub-grid is selected is

Pi,1 =
e−βNi

e−βN1 + e−βN2 + · · ·+ e−βNb
(52)

where i = 1, 2, . . . , ns, and β is a non-negative leader selection pressure parameter. It can be
seen from (52) that the global leader of particles is more likely to come from sub-grids with
fewer particles, which encourages the algorithm to explore areas that have been searched
less before and increase the diversity of solutions.

When the number of particles in the external archive is greater than the set number,
it is necessary to delete the redundant particles. At this time, the probability that the ith
sub-grid is selected is

Pi,2 =
eσNi

eσN1 + eσN2 + · · ·+ eσNb
(53)

where σ is a non-negative delete selection pressure parameter. It can be seen from (63)
that the deleted redundant particles are more likely to come from the sub-grids with more
particles, promoting the uniform distribution of the solutions.

Expressions (52)–(53) are the individual selection probabilities in the roulette strategy,
and the cumulative probabilities of each grid are defined as

Qi,1 =
i

∑
j=1

Pj,1, Qi,2 =
i

∑
j=1

Pj,2. (54)

The individual selection strategy is to generate a random number r ∈ [0, 1], compare
it with Qi,1 or Qi,2, find the first cumulative probability exceeding r, and select its sub-grid.

When the particle’s velocity and position are updated, the particle’s position is adap-
tively mutated. The mutation rate in the kth iteration is

pmk =

(
1 − k − 1

M − 1

) 1
h

(55)

Sensors 2024, 24, 7663 11 of 17

where k is the current iteration number, M is the maximum iteration number, and h is a
given constant.

The mutation step of the particle i is defined as

∆xk
i = pmk · (xmax − xmin) (56)

where xmax, xmin are the limit values of particle position. When pmk decreases nonlinearly
with the increase in the iterations number, ∆xk

i also decreases.
Now, it is randomly specified that the dth dimensional component xk

id of the position
vector is mutated. The upper and lower bounds of the range of mutation are

lb = xk
id − ∆xk

i , ub = xk
id + ∆xk

i (57)

A random number is generated in the continuous distribution of lb and ub as the value
of the position vector after mutation in this dimension. This makes the algorithm jump out
of the local optimum in the early stage and converge to the global optimal solution better
in the later stage.

The relationship between the inertia weight and the number of iterations is

w = wmax − (wmax − wmin)

(
k
M

)2
(58)

where wmax, wmin are the upper and lower limits of w. As the number of iterations k
increases, the inertia weight decreases nonlinearly.

The individual and group learning factors are defined as

c1 = c1s + (c1e − c1s) sin
(

πk
2M

)
, c2 = c2s + (c2e − c2s) sin

(
πk
2M

)
(59)

where c1s and c2s are, respectively, the initial values of c1 and c2, and c1e and c2e are,
respectively, the final values of c1 and c2. As the number of iterations increases, c1 decreases
from large to small, and c2 is the opposite.

These give the particle a strong global search capability at the beginning of the algo-
rithm iterations to avoid falling into local optimum and a strong local search capability at
the later stages to improve convergence accuracy.

4. Simulation

In this section, the multi-objective trajectory planning simulation of the Puma560 robot
is carried out in MATLAB. The constraints of each joint are shown in Table 2.

Table 2. Kinematic and dynamic constraints.

Constraints Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Angle/(rad) 3.100 3.100 3.100 3.100 3.100 3.100
Velocity/

(
rad · s−1) 0.876 0.876 1.598 0.876 0.926 0.926

Acceleration/
(
rad · s−2) 0.725 0.725 2.378 0.725 1.450 1.450

Torque/(N · m) 44.940 44.940 8.866 44.940 0.050 0.050

The target captured by the robot is a small ball moving at a constant speed of 0.5 m/s
along the Z-axis, and its trajectory is known. Six key positions of each joint in the process
of catching the ball are given, as shown in Table 3.

Sensors 2024, 24, 7663 12 of 17

Table 3. Position sequence of each joint.

Node Joint 1/(rad) Joint 2/(rad) Joint 3/(rad) Joint 4/(rad) Joint 5/(rad) Joint 6/(rad)

1 0.5821 −0.3805 −0.8168 0.6283 −0.9390 0.2531
2 0.4829 −0.3735 −0.7981 0.6299 −0.9245 0.2621
3 0.0383 −0.1212 0.0608 0.4289 −0.4005 0.6502
4 −0.5872 0.1770 1.0702 0.1995 0.2189 1.1091
5 −1.0317 0.3890 1.7877 0.0364 0.6592 1.4352
6 −1.1310 0.4363 1.9478 0 0.7547 1.5080

The MOPSO algorithm takes the time interval of each trajectory ∆tj as the decision
variable, which is in the range of [0.75, 7]. The population size and the maximum iteration
number of the traditional and improved MOPSO algorithms are both 200, and the size
of the Pareto optimal solution set is 100. In addition, this paper sets nd in the improved
MOPSO algorithm to 5, β to 2, and σ to 2.

The Pareto front obtained by the traditional MOPSO algorithm is shown in Figure 5a.
It falls into the local optimum, and the distribution and convergence of the Pareto front
are also poor. The Pareto front obtained by the improved MOPSO algorithm is shown in
Figure 5b. It jumps out of the local optimum, and the convergence and distribution are
significantly improved, which proves the effectiveness of the improved MOPSO algorithm.

Sensors 2024, 24, 7663 14 of 18

significantly improved, which proves the effectiveness of the improved MOPSO algo-
rithm.

(a) (b)

Figure 5. The Pareto front. (a) The traditional MOPSO algorithm and (b) the improved MOPSO
algorithm.

Four points are taken on the Pareto front, which, from top to bottom, are A, B, C, and
D. The closer to A, the shorter the travel time, the more the energy consumption, and the
greater the jerk; the closer to D, the less the energy consumption, the smaller the jerk, and
the longer the travel time. It follows that smoothness is positively correlated with energy
consumption, while they are negatively correlated with travel time. The values of the three
objective functions for A, B, C, and D are shown in Table 4.

Table 4. The partial optimum solution.

Solution Travel Time/(s) Energy Consummation/(⋅ -2rad s) Jerk/(⋅ -3rad s)
A 3.7566 3.2251 8.2585
B 4.8760 1.6688 3.0157
C 9.0883 0.4932 0.4656
D 39.5825 0.0286 0.0069

Taking B and C points as examples, the travel time of point B is 4.8760 s, 46.35% less
than that of point C. The energy consumption of point C is 0.4932 2rad s−⋅ , 70.45% lower
than that of point B. The jerk of point C is 0.4932 3rad s−⋅ , 70.45% lower than that of point
B.

C is selected as the actual solution of the project, and its time series is [0, 1.1990,
3.6445, 5.3612, 7.2749, 9.0883]. As shown in Figure 6, the curves of joint angles, velocities,
accelerations, and jerks varying with time can be obtained by interpolating fifth-order B-
spline curves.

Figure 5. The Pareto front. (a) The traditional MOPSO algorithm and (b) the improved MOPSO algorithm.

Four points are taken on the Pareto front, which, from top to bottom, are A, B, C, and
D. The closer to A, the shorter the travel time, the more the energy consumption, and the
greater the jerk; the closer to D, the less the energy consumption, the smaller the jerk, and
the longer the travel time. It follows that smoothness is positively correlated with energy
consumption, while they are negatively correlated with travel time. The values of the three
objective functions for A, B, C, and D are shown in Table 4.

Table 4. The partial optimum solution.

Solution Travel Time/(s) Energy Consummation/(rad·s−2) Jerk/(rad·s−3)

A 3.7566 3.2251 8.2585
B 4.8760 1.6688 3.0157
C 9.0883 0.4932 0.4656
D 39.5825 0.0286 0.0069

Sensors 2024, 24, 7663 13 of 17

Taking B and C points as examples, the travel time of point B is 4.8760 s, 46.35% less
than that of point C. The energy consumption of point C is 0.4932 rad · s−2, 70.45% lower
than that of point B. The jerk of point C is 0.4932 rad · s−3, 70.45% lower than that of point B.

C is selected as the actual solution of the project, and its time series is [0, 1.1990,
3.6445, 5.3612, 7.2749, 9.0883]. As shown in Figure 6, the curves of joint angles, velocities,
accelerations, and jerks varying with time can be obtained by interpolating fifth-order
B-spline curves.

Sensors 2024, 24, 7663 15 of 18

(a) (b)

(c) (d)

Figure 6. (a–d) are the angle, velocity, acceleration, and jerk curves of the joints under solution C.

A dominant solution E is randomly selected outside the Pareto optimal solution set
as the time series [0, 1.3, 2.4, 5.3, 8.4, 10.4] before the trajectory optimization. Under this
time series, the three performance indexes of the robot are shown in Table 5.

Table 5. Comparison before and after optimization.

Solution Travel Time/(s) Energy Consumption/(−⋅ 2rad s) Jerk/(−⋅ 3rad s)
C 9.0883 0.4932 0.4656
E 10.4000 1.1457 1.8733

According to the data in Table 5, the travel time of point C is 12.61% higher than that
of E, the energy consumption is increased by 56.95%, and the jerk is increased by 75.15%.
The three objective function values of point C are better than the results before optimiza-
tion, improving the robot’s comprehensive performance.

Taking robot joint 2 as an example, Figure 7 shows that the trajectories after optimi-
zation are smoother and more continuous than before optimization, especially the curves
of joint velocity, acceleration, and jerk.

Figure 6. (a–d) are the angle, velocity, acceleration, and jerk curves of the joints under solution C.

A dominant solution E is randomly selected outside the Pareto optimal solution set as
the time series [0, 1.3, 2.4, 5.3, 8.4, 10.4] before the trajectory optimization. Under this time
series, the three performance indexes of the robot are shown in Table 5.

Table 5. Comparison before and after optimization.

Solution Travel Time/(s) Energy Consumption/(rad·s−2) Jerk/(rad·s−3)

C 9.0883 0.4932 0.4656
E 10.4000 1.1457 1.8733

According to the data in Table 5, the travel time of point C is 12.61% higher than that of
E, the energy consumption is increased by 56.95%, and the jerk is increased by 75.15%. The
three objective function values of point C are better than the results before optimization,
improving the robot’s comprehensive performance.

Sensors 2024, 24, 7663 14 of 17

Taking robot joint 2 as an example, Figure 7 shows that the trajectories after optimiza-
tion are smoother and more continuous than before optimization, especially the curves of
joint velocity, acceleration, and jerk.

Sensors 2024, 24, 7663 16 of 18

(a) (b)

(c) (d)

Figure 7. (a–d) show the curves of angle, velocity, acceleration, and jerk of robot joint 2 before and
after optimization.

An optimal solution is randomly selected in the Pareto optimal solution set, called D,
and its time series is [0, 1.7255, 4.5821, 6.1810, 7.7798, 10.0000]. The motion of the Puma560
robot under this solution can be visualized by the Robot Toolbox of MATLAB, as shown
in Figure 8.

(a) (b) (c)

Figure 8. (a) The pose of the robot at the start moment; (b) the pose of the robot at the middle mo-
ment; and (c) the pose of the robot at the end moment.

5. Conclusions
This paper investigates a trajectory planning method for a robot which enables it to

reach a comprehensive optimal state of travel time, energy consumption, and smoothness
when executing a task. In order to fully understand the kinematics and dynamics charac-
teristics of the robot and lay a solid theoretical foundation for follow-up research, this
paper first deduces the position and orientation of the end-effector relative to the base and

Figure 7. (a–d) show the curves of angle, velocity, acceleration, and jerk of robot joint 2 before and
after optimization.

An optimal solution is randomly selected in the Pareto optimal solution set, called D,
and its time series is [0, 1.7255, 4.5821, 6.1810, 7.7798, 10.0000]. The motion of the Puma560
robot under this solution can be visualized by the Robot Toolbox of MATLAB, as shown in
Figure 8.

Sensors 2024, 24, 7663 16 of 18

(a) (b)

(c) (d)

Figure 7. (a–d) show the curves of angle, velocity, acceleration, and jerk of robot joint 2 before and
after optimization.

An optimal solution is randomly selected in the Pareto optimal solution set, called D,
and its time series is [0, 1.7255, 4.5821, 6.1810, 7.7798, 10.0000]. The motion of the Puma560
robot under this solution can be visualized by the Robot Toolbox of MATLAB, as shown
in Figure 8.

(a) (b) (c)

Figure 8. (a) The pose of the robot at the start moment; (b) the pose of the robot at the middle mo-
ment; and (c) the pose of the robot at the end moment.

5. Conclusions
This paper investigates a trajectory planning method for a robot which enables it to

reach a comprehensive optimal state of travel time, energy consumption, and smoothness
when executing a task. In order to fully understand the kinematics and dynamics charac-
teristics of the robot and lay a solid theoretical foundation for follow-up research, this
paper first deduces the position and orientation of the end-effector relative to the base and

Figure 8. (a) The pose of the robot at the start moment; (b) the pose of the robot at the middle moment;
and (c) the pose of the robot at the end moment.

5. Conclusions

This paper investigates a trajectory planning method for a robot which enables it to
reach a comprehensive optimal state of travel time, energy consumption, and smooth-

Sensors 2024, 24, 7663 15 of 17

ness when executing a task. In order to fully understand the kinematics and dynamics
characteristics of the robot and lay a solid theoretical foundation for follow-up research,
this paper first deduces the position and orientation of the end-effector relative to the
base and uses the Pieper method to calculate the closed solutions of the inverse kinemat-
ics. Finally, the dynamic model of the robot is established by the iterative Newton–Euler
dynamics algorithm.

The joint space trajectory of the Puma560 robot is constructed using fifth-order B-spline
curves, which has the advantages of continuous jerk and zero velocity and acceleration
at the start/stop time. Then, the improved MOPSO algorithm is used to optimize the
trajectory of the robot with the time interval between the path points as the decision
variable. The convergence and distribution of the Pareto front are good, and the different
solutions in the Pareto optimal solution set correspond to different engineering needs.
In addition, by comparing the robot’s travel time, energy consumption, and smoothness
before and after optimization, it can be seen that its three performances have improved.
This paper also visualizes the robot movement according to the planned trajectory in the
Robot Toolbox of MATLAB.

Author Contributions: Conceptualization, J.W. (Jiahui Wang) and Y.Z.; methodology, J.W. (Jiahui Wang);
software, J.W. (Jiahui Wang); validation, J.W. (Jiahui Wang), Y.Z. and S.Z.; formal analysis, J.W.
(Jiahui Wang); investigation, J.W. (Jiahui Wang); resources, J.W. (Jiahui Wang) and S.Z.; data curation,
J.W. (Jiahui Wang); writing—original draft preparation, J.W. (Jiahui Wang); writing—review and edit-
ing, J.W. (Jiahui Wang), Y.Z. and J.W. (Junling Wang); visualization, J.W. (Jiahui Wang); supervision,
Y.Z.; project administration, Y.Z.; funding acquisition, Y.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Science, Technology and Innovation Commission of Shenzhen
Municipality, grant number No. JCYJ20200109141201714 (“Research on Flight Test Methods for
Aerodynamics and Flight Control of Shipborne UAV”).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lan, J.; Xie, Y.; Liu, G.; Cao, M. A Multi-Objective Trajectory Planning Method for Collaborative Robot. Electronics 2020, 9, 859.

[CrossRef]
2. Bailon, W.P.; Cardiel, E.B.; Campos, I.J.; Paz, A.R. Mechanical energy optimization in trajectory planning for six DOF robot

manipulators based on eighth-degree polynomial functions and a genetic algorithm. In Proceedings of the 7th International
Conference on Electrical Engineering Computing Science and Automatic Control, Tuxtla Gutierrez, Mexico, 8–10 September 2010;
pp. 446–451.

3. Liu, J.; Wang, H.; Li, X.; Chen, K.; Li, C. Robotic arm trajectory optimization based on multiverse algorithm. Math. Biosci. Eng.
2023, 20, 2776–2792. [CrossRef] [PubMed]

4. Machmudah, A.; Parman, S.; Zainuddin, A.; Chacko, S. Polynomial joint angle arm robot motion planning in complex geometrical
obstacles. Appl. Soft Comput. 2013, 13, 1099–1109. [CrossRef]

5. Porawagama, C.D.; Munasinghe, S.R. Reduced jerk joint space trajectory planning method using 5-3-5 spline for robot manipula-
tors. In Proceedings of the 7th International Conference on Information and Automation for Sustainability, Colombo, Sri Lanka,
22–24 December 2014; pp. 1–6.

6. Kim, K.W.; Kim, H.S.; Choi, Y.K.; Park, J.H. Optimization of cubic polynomial joint trajectories and sliding mode controllers for
robots using evolution strategy. In Proceedings of the IECON’97 23rd International Conference on Industrial Electronics, Control,
and Instrumentation, New Orleans, LA, USA, 14 November 1997; pp. 1444–1447.

7. Lu, S.; Ding, B.; Li, Y. Minimum-jerk trajectory planning pertaining to a translational 3-degree-of-freedom parallel manipulator
through piecewise quintic polynomials interpolation. Adv. Mech. Eng. 2020, 12, 1687814020913667. [CrossRef]

8. Boryga, M.; Grabo, A. Planning of manipulator motion trajectory with higher-degree polynomials use. Mech. Mach. Theory 2009,
44, 1400–1419. [CrossRef]

9. Chen, D.; Li, S.; Wang, J.; Feng, Y.; Liu, Y. A multi-objective trajectory planning method based on the improved immune clonal
selection algorithm. Robot. Comput. Integr. Manuf. 2019, 59, 431–442. [CrossRef]

https://doi.org/10.3390/electronics9050859
https://doi.org/10.3934/mbe.2023130
https://www.ncbi.nlm.nih.gov/pubmed/36899557
https://doi.org/10.1016/j.asoc.2012.09.025
https://doi.org/10.1177/1687814020913667
https://doi.org/10.1016/j.mechmachtheory.2008.11.003
https://doi.org/10.1016/j.rcim.2019.04.016

Sensors 2024, 24, 7663 16 of 17

10. Gasparetto, A.; Zanotto, V. Optimal trajectory planning for industrial robots. Adv. Eng. Softw. 2010, 41, 548–556. [CrossRef]
11. Wang, Z.; Li, Y.; Sun, P.; Luo, Y.; Chen, B.; Zhu, W. A multi-objective approach for the trajectory planning of a 7-DOF serial-parallel

hybrid humanoid arm. Mech. Mach. Theory 2021, 165, 104423. [CrossRef]
12. Gao, Y.; Xie, W.; Li, Q.; Li, X.; Hu, M.; Zhao, L. Time-Jerk Optimal Trajectory Planning of Industrial Robot based on Hybrid

Particle Swarm Optimization Algorithm. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24
October 2021; pp. 6327–6331.

13. Hansen, C.; Öltjen, J.; Meike, D.; Ortmaier, T. Enhanced approach for energy-efficient trajectory generation of industrial robots. In
Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), Seoul, Republic of Korea,
20–24 August 2012; pp. 1–7.

14. Shi, B.; Zeng, H. Time-Optimal Trajectory Planning for Industrial Robot based on Improved Hybrid-PSO. In Proceedings of the
40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 3888–3893.

15. Gasparetto, A.; Zanotto, V. A new method for smooth trajectory planning of robot manipulators. Mech. Mach. Theory 2007, 42,
455–471. [CrossRef]

16. Yao, J.; Sun, C.; Zhang, L.; Xiao, C.; Yang, M.; Zhang, S. Time optimal trajectory planning based on simulated annealing algorithm
for a train uncoupling robot. In Proceedings of the 29th Chinese Control and Decision Conference (CCDC), Chongqing, China,
28–30 May 2017; pp. 5781–5785.

17. Bianco, C.G.L.; Piazzi, A. A genetic/interval approach to optimal trajectory planning of industrial robots under torque constraints.
In Proceedings of the 1999 European Control Conference (ECC), Karlsruhe, Germany, 31 August–3 September 1999; pp. 942–947.

18. Mora, P.R. On the Time-optimal Trajectory Planning along Predetermined Geometric Paths and Optimal Control Synthesis for
Trajectory Tracking of Robot Manipulators. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2013.

19. Abu-Dakka, F.J.; Assad, I.F.; Alkhdour, R.M. Statistical evaluation of an evolutionary algorithm for minimum time trajectory
planning problem for industrial robots. Int. J. Adv. Manuf. Technol. 2017, 89, 389–406. [CrossRef]

20. Zhang, W.; Fu, S. Time-optimal Trajectory Planning of Dulcimer Music Robot Based on PSO Algorithm. In Proceedings of the
2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 4769–4774.

21. Lin, H.I. A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization. J. Intell.
Robot. Syst. Theory Appl. 2014, 75, 379–392. [CrossRef]

22. Zhou, Y.; Han, G.; Wei, Z.; Huang, Z.; Chen, X.; Wu, J. Optimal trajectory planning of robot energy consumption based on
improved sparrow search algorithm. Meas. Control 2024, 57, 1014–1021. [CrossRef]

23. Yokose, Y. Energy-saving trajectory planning for robots using the genetic algorithm with assistant chromosomes. Artif. Life Robot.
2020, 25, 89–93. [CrossRef]

24. Luo, L.-P.; Yuan, C.; Yan, R.-J.; Yuan, Q.; Wu, J.; Shin, K.-S.; Han, C.-S. Trajectory planning for energy minimization of industry
robotic manipulators using the Lagrange interpolation method. Int. J. Precis. Eng. Manuf. 2015, 16, 911–917. [CrossRef]

25. Mohammed, A.; Schmidt, B.; Wang, L.; Gao, L. Minimizing Energy Consumption for Robot Arm Movement. Procedia CIRP 2014,
25, 400–405. [CrossRef]

26. Paes, K.; Dewulf, W.; Elst, K.V. Energy efficient trajectories for an industrial ABB robot. Procedia CIRP 2014, 15, 105–110. [CrossRef]
27. Ye, J.; Hao, L.; Cheng, H. Multi-objective optimal trajectory planning for robot manipulator attention to end-effector path

limitation. Robotica 2024, 42, 1761–1780. [CrossRef]
28. Chen, W.; Wang, H.; Liu, Z.; Jiang, K. Time-energy-jerk optimal trajectory planning for high-speed parallel manipulator based

on quantum-behaved particle swarm optimization algorithm and quintic B-spline. Eng. Appl. Artif. Intell. 2023, 126, 107223.
[CrossRef]

29. Cao, X.; Yan, H.; Huang, Z.; Ai, S.; Xu, Y.; Fu, R.; Zou, X. A Multi-Objective Particle Swarm Optimization for Trajectory Planning
of Fruit Picking Manipulator. Agronomy 2021, 11, 2286. [CrossRef]

30. Saravanan, R.; Ramabalan, S. Evolutionary Minimum Cost Trajectory Planning for Industrial Robots. J. Intell. Robot. Syst. 2008,
52, 45–77. [CrossRef]

31. Shi, X.; Fang, H.; Guo, L. Multi-objective optimal trajectory planning of manipulators based on quintic NURBS. In Proceedings of
the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016.

32. Craig, J.J. Introduction to Robotics: Mechanics and Control, 3rd ed.; Pearson Education, Inc.: London, UK, 2005; pp. 73–76.
33. Pieper, D.L. The Kinematics of Manipulators Under Computer Control. Ph.D. Thesis, Stanford University, Stanford, CA,

USA, 1968.
34. Luh, J.Y.S.; Walker, M.W.; Paul, R.P.C. On-Line Computational Scheme for Mechanical Manipulators. ASME J. Dyn. Sys. Meas.

Control 1980, 102, 69–76. [CrossRef]
35. Piegl, L.; Tiller, W. The Nurbs Book, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 81–100.
36. Sathiya, V.; Chinnadurai, M. Evolutionary Algorithms-Based Multi-Objective Optimal Mobile Robot Trajectory Planning. Robotica

2019, 37, 1363–1382. [CrossRef]
37. Coello, C.A.C.; Lechuga, M.S. MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002

Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002.

https://doi.org/10.1016/j.advengsoft.2009.11.001
https://doi.org/10.1016/j.mechmachtheory.2021.104423
https://doi.org/10.1016/j.mechmachtheory.2006.04.002
https://doi.org/10.1007/s00170-016-9050-1
https://doi.org/10.1007/s10846-013-9982-8
https://doi.org/10.1177/00202940231220080
https://doi.org/10.1007/s10015-019-00556-8
https://doi.org/10.1007/s12541-015-0119-9
https://doi.org/10.1016/j.procir.2014.10.055
https://doi.org/10.1016/j.procir.2014.06.043
https://doi.org/10.1017/S0263574724000481
https://doi.org/10.1016/j.engappai.2023.107223
https://doi.org/10.3390/agronomy11112286
https://doi.org/10.1007/s10846-008-9202-0
https://doi.org/10.1115/1.3149599
https://doi.org/10.1017/S026357471800156X

Sensors 2024, 24, 7663 17 of 17

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Kinematics and Dynamics Analysis
	Kinematics Analysis
	Forward Kinematics Analysis
	Inverse Kinematics Analysis

	Dynamics Analysis

	Multi-Objective Trajectory Planning
	Construction of Joint Space Trajectory
	Establishing the Multi-Objective Optimization Model
	Solving the Multi-Objective Optimization Model

	Simulation
	Conclusions
	References

