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Abstract: BACKGROUND: This study aims to continue research on the objective analysis of er-
gonomic conditions in robotic-assisted surgery (RAS), seeking innovative solutions for the analysis
and prevention of ergonomic problems in surgical practice. METHODS: Four different robotic-
assisted tasks were performed by groups of surgeons with different surgical experiences. Different
wearable technologies were used to record surgeons’ posture and muscle activity during surgical prac-
tice, for which the correlation between them was analyzed. A predictive model was generated for each
task based on the surgeons’ level of experience and type of surgery. Two preprocessing techniques
(scaling and normalization) and two artificial intelligence techniques were tested. RESULTS: Overall,
a positive correlation between prolonged maintenance of an ergonomically inadequate posture during
RAS and increased accumulated muscle activation was found. Novice surgeons showed improved
posture when performing RAS compared to expert surgeons. The predictive model obtained high
accuracy for cutting, peg transfer, and labyrinth tasks. CONCLUSIONS: This study expands on the
existing ergonomic analysis of the lead surgeon during RAS and develops predictive models for
future prevention of ergonomic risk situations. Both posture and muscle loading are highly related to
the surgeon’s previous experience.

Keywords: minimally invasive surgery; robotic surgery; robotic-assisted surgery; ergonomics; motion
analysis; predictive model; artificial intelligence

1. Introduction

Laparoscopic robotic-assisted surgery (RAS) has grown rapidly over the past decades
and has become a standard in several surgical procedures [1]. Although RAS has well-
known advantages, such as precision in the performance of surgical procedures, three-
dimensional visualization of the surgical field, or reduced hospital stays [2], it remains
a physically and mentally demanding technique for surgeons. These limitations can be
detrimental to surgeons’ health and have an impact on the quality of surgical procedures
and patient care [3,4]. Studies reflect that 56.1% of regularly practicing robotic surgeons
continue to experience related physical symptoms or discomfort, including neck stiffness,
finger fatigue, and eye fatigue, among the most common [5]. Although ergonomic con-
ditions are considered to be improved in RAS compared to conventional laparoscopic
surgery, mainly for the lead surgeon operating from the console, scientific evidence remains
scarce [6]. Therefore, further studies remain to be carried out regarding the comprehensive
analysis of ergonomics in the field of minimally invasive surgery (MIS) and mainly in
robotic-assisted surgery, allowing us to precisely identify possible ergonomic deficiencies,
design possible solutions and recommendations, and adapt training programs according to
these needs.

Different techniques, both subjective and objective, have been used to assess er-
gonomics during robotic-assisted laparoscopic surgery to evaluate different physiological
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and cognitive factors. Some studies employ traditional methods of subjective assessment of
the workload, both mental and physical, of surgeons during their robotic surgical activity,
such as the SURG-TLX scale [7]. Dixon et al. compared the workload between robotic-
assisted surgery and conventional laparoscopic surgery, concluding that robotic surgery
with an open console system reduces ergonomic risk scores and cognitive strain in col-
orectal surgery relative to conventional laparoscopic surgery [8]. However, this subjective
assessment method should be reinforced with objective ergonomic evaluation techniques.

On the other hand, photogrammetry studies make it possible to evaluate the surgeon’s
posture during surgery to assess possible musculoskeletal risks. In the study by Brunner
et al., the Cologne Ergonomic Measurement Setup for Robotic Surgery (CEMRobSurg)
method was used to evaluate the surgeon’s posture during surgery with the HugoTM RAS
System [9]. Different parameters related to ergonomic posture were evaluated in subjects
with different levels of surgical experience, who were asked to perform standardized virtual
robotic training exercises (Peg Board, Rope Walk, and Ring Walk) using the HugoTM RAS
console. During the activity, the posture of the surgeon operating the console was recorded
by means of a camera placed in a fixed position. Frames taken from the side of the console
were evaluated using OpenPose, a machine learning model that estimates body pose in
an image. However, this evaluation method is limited by the evaluation of the posture
based on a 2D projection of the body segments, the detection of joint rotations, and possible
occlusions. In the study, a risky positioning of the neck and elbow was observed in medical
students and in the knee and hip region for expert surgeons.

Other studies used 3D capture systems such as the Xbox Connect camera to assess the
surgeon’s posture during robotic practice [10]. Subsequently, they performed a correlation
of the calculated results with ergonomic assessment methods such as Rapid Whole-Body
Assessment (REBA) and Rapid Upper Limb Assessment (RULA). In this study, four robotic
surgeries were observed with the da VinciTM Xi model for a minimum of 30 min each: two
cholecystectomies, one partial colectomy, and one appendectomy. The results obtained
for the RULA and REBA scores indicated a medium musculoskeletal risk with the recom-
mendation that measures needed to be taken to improve surgeon ergonomics. However,
as with most image-based postural analysis methods, this system is prone to occlusion
problems in crowded environments such as operating rooms.

The evolution and miniaturization of sensors have allowed the increasing incorpo-
ration of wearable technology in ergonomic and physiological analysis in the surgical
environment, which has facilitated objective solutions without interrupting the surgeons’
surgical practice and avoiding possible occlusion problems during surgery and without
interfering with the sterile environment. Within these assessment systems, we highlight
the systems for recording and analyzing movement based on inertial measurement units
(IMU) [11], the systems for analyzing electromyographic (EMG) signals, and the level
of stress through the examination of electrocardiogram (ECG) or electrodermal activity
(EDA) signals.

Previous studies with these technologies concluded that the console could limit pos-
tures, causing static loads that have been associated with musculoskeletal symptoms for the
surgeon’s neck, torso, and shoulders [11]. On the other hand, other studies indicated that
laparoscopic practice presented more forearm muscle fatigue compared to robotic-assisted
laparoscopic surgery [12]. Regarding the analysis of stress during RAS practice, it was
observed that surgeons with better experience showed higher levels of stress than expert
surgeons [9]. In previous studies focused on the comparison of ergonomics between la-
paroscopic surgery and RAS, our results indicated that robotic-assisted procedures showed
better ergonomic outcomes for the lead surgeon compared to conventional laparoscopic
surgery [13], using different wearable technologies to record the surgeons’ posture, muscle
activity, EDA, and electrocardiographic signal during surgical practice.

The integration of artificial intelligence (AI) in healthcare has seen remarkable growth,
expanding across various applications [14]. These AI algorithms utilize complex processes
to uncover valuable insights hidden within data [15]. Among the diverse AI techniques,
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several algorithms facilitate the creation of predictive models. It is essential to distinguish
these from machine learning models, which are associated with convolutional neural
networks (CNNs) and deep learning models (DLMs). These latter models assess the
outcomes of previous predictive models and learn from them [16].

In the realm of ergonomics during surgical practice, predictive models offer extensive
possibilities for predicting risk situations that could affect a surgeon’s health, such as poor
posture, muscle fatigue, or high stress levels. In previous studies, we successfully designed
and implemented predictive models to identify high stress levels in minimally invasive
surgery (MIS) by analyzing EDA data [17]. The linear models proposed in these studies
were validated, demonstrating their potential to predict factors that can enhance surgeon
health during operations. By predicting and mitigating these risky situations, we can
potentially improve surgeons’ well-being and, consequently, the quality of surgical practice.

The main novelties of this study focus on improving the understanding of ergonomic
risks during the practice of RAS, presenting a significant advance by correlating muscle
activity with forced postures for the related joints. Similarly, we highlight the development
of predictive models to enhance surgical training programs, improving the quality of
the surgical procedure and patient care. Finally, these findings contribute to defining
ergonomic guidelines for surgical practice, with the aim of reducing musculoskeletal risks
and benefiting the surgeon’s health.

The article is organized as follows: Section 2 presents a brief description of the method-
ology applied in this study. Section 3 presents the main results obtained. Section 4 contains
a discussion of the results extracted in the present study and the comparison with studies
in the scientific literature. Section 5 summarizes the main conclusions of this research.

Consequently, the present study aims to advance the objective analysis of ergonomic
challenges in RAS and to develop innovative solutions for their prevention in surgical
practice. The relationship between the muscle activity of various muscle groups and the
musculoskeletal risk of surgeons during RAS will be investigated. Likewise, this study aims
to design and implement predictive models for the future prediction of musculoskeletal
risk situations during MIS.

2. Materials and Methods
2.1. Setup

This study was carried out using the VersiusTM surgical platform (CMR Surgical;
Cambridge, UK) for robotic-assisted surgical practice (Figure 1A). It is a modular robotic
platform with an open console and three-dimensional vision.
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All participants received a training session on the use of the robotic platform to learn
the basics of its use, the handling of the controls, and its main functionalities in order to be
able to perform safe surgeries.

To ensure the same ergonomic conditions for all surgeons, the height of the screen and
console was adjusted before the study according to the height of their eyes and forearms.

This study involved three groups of surgeons: Surgeons experienced in laparoscopy
(more than 100 laparoscopic procedures performed), surgeons experienced in microsurgery
(more than 100 microsurgical procedures performed), and novice surgeons in both surgical
disciplines (less than 10 surgical procedures performed).

2.2. Surgical Tasks

The participants carried out the following tasks with the robotic platform:
Peg transfer. The eye–hand coordination task consists of transferring rubber pieces in

the form of elongated toroids from one pole to another by passing the piece from one hand
to the other. Two fenestrated forceps were used for the dominant and non-dominant hands.
A repetition was considered when the surgeon moved all three pieces to the three target
poles. Participants were asked to complete two repetitions with a limit of 10 min.

Cutting. In this task, the surgeon was asked to cut two cutting templates consisting
of a straight line with an arc in the center and a circular one. Half of each template was
cut with the scissors of the dominant hand and the other half with the scissors of the
non-dominant hand. A scissor and a Maryland dissector were used. A time limit of five
minutes was set for each cutting template.

Labyrinth (needle passing). In this task, it is necessary to thread a needle through a
circuit with holes in order and in different directions. This task aims to force uncomfortable
postures, especially in the wrists, to evaluate the surgeon’s skill and the ease of returning to
a correct posture. It is necessary to insert the needle with the dominant hand and remove
it from the other side with the non-dominant hand. A needle holder was used in the
dominant hand, and a Maryland dissector in the non-dominant hand. Participants were
asked to complete the entire circuit within 10 min of the limit.

Suture. Finally, participants were asked to perform a suture on a simulated tissue
model. To do so, they had to pass the needle through two specific entry and exit points and
perform a double knot and two single knots in opposite directions. A needle holder was
used in the dominant hand, and a Maryland dissector in the non-dominant hand. A time
limit of ten minutes was set for the task.

2.3. Kynematic Recording Systems

The Xsens motion analysis system (Movella Inc.; Henderson, NV, USA) was used to
record the surgeons’ body movements. This system consists of 17 inertial sensors to record
the movements of the subject’s body segments in real-time, with a refresh rate of up to
60 Hz per sensor. The sensors were placed on the hands, forearms, arms, feet, legs, upper
legs, lumbar and thoracic regions, shoulders, and head (Figure 1B).

In addition, the TRIGNO™ Avanti wireless EMG system from DELSYS (Natick, MA,
USA) was used to record the surgeons’ muscle activity using electromyography (EMG)
signals. This system has up to 16 sensors with a sampling rate of 2148 Hz. A trigger
system was used to synchronize the recording between the Xsens and Delsys systems. The
EMG signal was recorded bilaterally from the following muscle groups: upper trapezius,
middle trapezius, deltoid, and brachioradialis, related to the activity of joints undergoing
workload associated with laparoscopic procedures such as the neck, arms, and wrists,
respectively [18]. EMG sensors were placed in each muscle group following SENIAM
guidelines [19,20]. Before placing each sensor, the skin was cleaned by gently rubbing it
with 70% isopropyl alcohol. The raw EMG signals were processed using a 20–450 Hz band-
pass filter with a range of 11 mV (±5.5 mV). The filtered EMG signal was then smoothed
with a 140 ms moving window, removing an offset from the signal, and calculated as a
root mean square (RMS) value. To normalize the results for each subject, EMG values were
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presented as a percentage of maximal voluntary contraction (%MVC). MVC was performed
separately for each muscle group just before each test by asking each subject to perform
specific maximal contractions against a fixed resistance.

2.4. Data Analysis

Regarding the surgeon’s posture, the joints considered most representative in the anal-
ysis of the surgeon’s posture in robotic-assisted surgical practice were analyzed [18]: Shoul-
der, wrist, and neck flexion/extension; shoulder abduction/adduction and internal/external
rotation; ulnar/radial deviation and pronation/supination of both wrists; axial flexion of
the neck. Degree values were obtained for each joint and were compared with the EMG
amplitude signal with regard to the three study groups.

2.4.1. Body Posture Assessment

The rapid upper limb assessment (RULA) method [21] was used to assess the er-
gonomic risk of the surgeon’s body posture. RULA gives a musculoskeletal risk score for
the posture of the neck, arms, and wrists, as well as an overall posture score for the subject.
RULA scores were assessed only for the joints considered in the present study. Lower
extremity analysis was not taken into account, as the surgeons were seated throughout
the activity.

2.4.2. Correlation Analysis

The sample set was assumed to be non-parametric due to the small number of sub-
jects [22,23]. The Wilcoxon signed-rank test was used to evaluate significant differences
for paired samples, like the relation between the anatomical structures (muscle activity
and joint angles) with shared functionalities; meanwhile, the Mann–Whitney U Test was
selected for those independent sample sets. Jamovi (Jamovi Project, 2024, Version 2.5)
software platform was used for data and statistical analysis according to biostatistical
literature [24–26].

2.4.3. Predictive Analysis

From all the RULA data collected in this study, 15 datasets with 142,598 records were
generated. The original datasets were then transformed by applying scale preprocessing
and normalization techniques, resulting in 30 datasets. These pre-processed datasets were
divided into 60 datasets: 80% of the data from each dataset for calibration and 20% of the
data from each dataset for validation [27].

The scaled preprocessing technique allows each parameter to be described on a scale
between 0 and 1 [28]. To do this, each value is subtracted from the minimum value and
then divided by the interval between the maximum and minimum values (Equation (1)).
In this way, all values of each RULA parameter are bounded between 0 and 1.

Valuenew =
Valuecurrent − min

max − min
(1)

where valuenew indicates the pre-processed value, valuecurrent represents the raw value from
each dataset, min shows the minimum value for each parameter, and max indicates the
maximum value for each parameter.

For the normalized preprocessing technique, the mean of each value is subtracted
and divided by the standard deviation [28] (Equation (2)). This technique transforms the
dataset into a more integrated and robust one with fewer redundancies.

Valuenew =
Valuecurrent − Valueaverage

Valuest.deviation
(2)

where valuenew indicates the pre-processed value, valuecurrent represents the raw value from
each dataset, valueaverage shows the average value for each parameter, and valuest.deviation
indicates the standard deviation value for each parameter.
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2.4.4. Artificial Intelligence

The free software WEKA (Waikato Environment for Knowledge Analysis, Hamilton,
New Zealand, version 3.8.6) [29] was used to develop the predictive model. Two different
AI predictive techniques have been applied to the calibration dataset to generate predictive
models: Multiple Linear Regression (MLR) and Multilayer Perceptron (MLP).

MLR was applied as a linear predictive approach to the datasets. MLR shows the linear
relationship between a dependent variable and several independent variables (Equation (3)).
This technique arrives at a linear regression equation that can be used to predict future
values. In this study, the M5 method of attribute selection was applied. This method cycles
through the attributes, eliminating the one with the lowest standardized coefficient until no
improvement in error estimation is observed. A peak value of 1.0 × 10−4 was applied [30].

y = ∑n
i=1 ωi·xi (3)

where y indicates the predicted value, xi represents the pre-processed value for each
parameter, and wi shows the weights for each parameter.

MLP was applied as a predictive machine learning approach to datasets. MLPs are
a type of artificial neural network model that are developed using neural organization
principles [31]. Thus, different numbers of neurons are grouped into layers. The different
layers can perform different transformations on their inputs. Signals travel from the first
layer (the input layer) to the last (the output layer), possibly after passing through the
layers several times. In the present study, the default configuration was used, with the
learning rate equal to 0.3, the number of epochs equal to 500, the threshold equal to 20, and
30 nodes in the first hidden layer, 10 nodes in the second hidden layer, and 3 nodes in the
third hidden layer.

To validate the generated models, a 10-fold cross-validation was carried out, in which
the calibration dataset was divided into ten equally sized partitions. Each time a subset
was tested, the remaining data were used to fit the model. The process was repeated
sequentially until all subsets were tested. Therefore, all data were used for both calibration
and validation. Although this method requires an analysis of ten replicates, it is a robust
method [32]. Finally, the test dataset was used for external validation of the predictive
models on the test dataset. The R2 coefficient was used to assess the goodness of fit of the
prediction and for validation, according to the rules given by Colton [33], where R2 of 0
to 0.25 is considered as a poor to no relationship; 0.25 to 0.50 indicates a weak degree of
relationship; 0.50 to 0.75 designates a moderate to good relationship; and 0.75 to 1 shows
a very good to excellent relationship. The root mean square error (RMSE) was also used
to validate the prediction results [34]. RMSE measures the difference between actual and
predicted values. RMSE values of less than 0.05 are considered adequate [34].

3. Results

Seven surgeons participated in this study: three experts in laparoscopic surgery, two
experts in microsurgery, and two novices in both specialties.

3.1. Kynematic Correlations

The correlations between the joint postures and their muscle activity (amplitude of
the EMG signal) are shown by means of scatter plots. The results of cutting (Figure 2), peg
transfer (Figure 3), labyrinth (Figure 4), and suturing (Figure 5) tasks are shown.

The most relevant results of the cutting task, due to the relationship between exercise
needs and anatomical structures, are shown in Figure 2. Each pair of graphs consists of the
same task performed with the non-dominant or dominant hand, the latter corresponding to
the right hand for all subjects in the study. Attending to the shoulder flexion (Figure 2A,B),
as a rule, all study groups experimented with an increase in the flexion with the right-
handed task, with a corresponding increase in muscle activity. Shoulder abduction was
evaluated considering both deltoid and middle trapezius activity. During the adduction,
represented with negative values, an increase in the deltoid contraction (Figure 2D) against
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the hyperextension assumed by the middle trapezius (Figure 2F). On the other hand, the
muscle activity during shoulder abduction was higher for the middle trapezius than the
deltoid (Figure 2C,E), demonstrating the fundamental relationship between the activity of
the middle trapezius and the abduction movement of the arms.
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During the peg transfer task, each surgeon had to perform the same activity with both
hands, represented by shoulder flexion in both arms (Figure 3A,B). However, to analyze
neck flexion, both trapezius muscle groups were considered (Figure 3C,D). Comparing the
shoulder flexion and extension shown during the cutting task (Figure 2A,B) in contrast
to the peg transfer (Figure 3A,B), the overall muscle loading was slightly reduced for the
latter task, showing a decrease in shoulder flexion of the dominant hand for the expert
laparoscopists (Figure 3B). As for neck flexion (indicated by negative values), the upper
trapezius experienced a higher level than the middle trapezius, being noticeable for both
novice surgeons and expert microsurgeons.
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In the case of the labyrinth task, the relationship between shoulder posture and
deltoid muscle loading was analyzed, as well as the relationship between wrist posture and
brachioradialis muscle activity (Figure 4). The results of the shoulder flexion analysis were
similar between the peg transfer and the labyrinth tasks (Figures 3A,B and 4A,B), with the
posture being more strained in the microsurgery expert group of surgeons. Similarly, wrist
activity recorded a large range of motion with increased muscle loading with the left hand
in the novice group of surgeons (Figure 4C) and was even greater for the microsurgery
expert group of surgeons with the dominant (right) hand compared to the other groups
(Figure 4D).
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Figure 5. Correlation analysis for the suturing task. Results comparing (1) the brachioradialis
amplitude signal and the wrist ulnar/radial deviation. Results for the suturing task with the non-
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For three surgeons’ groups: novice surgeons (orange), expert surgeons in conventional laparoscopic
surgery (blue), and expert surgeons in microsurgery (dark grey).

The results for the suturing task show that, when passing the needle with the dominant
hand and withdrawing it with the non-dominant hand, a similar behavior is presented for
the labyrinth task (Figure 4C,D). The movement of the non-dominant wrist is irregular, and
reports increased brachioradialis activity in the novice group of surgeons (Figure 5A), but
the workload when passing the needle is higher in the experienced subjects (Figure 5B).
Moreover, the activity of the middle and upper trapezius is slightly higher during the
suturing task (Figure 5C,D) than during peg transfer (Figure 3C,D). However, the muscles
respond in the same way, with activation of the middle trapezius during neck extension
(Figure 5C) versus the upper trapezius during neck flexion (Figure 5D), showing how the
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activity of the medial trapezius can sometimes be increased by neck movements outside of
neutral postures, except in hyperflexion.

Attending to the correlation analysis, assuming the null hypothesis, all p-values for
the graphs above were less than 0.001, particularly for the Wilcoxon signed rank test
where paired samples were analyzed, resulting in the absence of significant differences.
However, the Mann–Whitney U Test for independent samples showed p-value = 0.004 in
the middle trapezius during the peg transfer task comparing expert laparoscopists and
expert microsurgeons’ results, as well as p-value = 0.007 in the upper trapezius for the same
task between laparoscopic expert surgeons and novice surgeons, yet having sufficiently
significant similarities. In all other cases, p-values were below 0.002.

3.2. Musculoskeletal Risk Assessment

Table 1 shows the results of the musculoskeletal risk assessment using the RULA
method for the neck, arms, and wrists of the study groups during the performance of
the training tasks. Ergonomics results are shown in mean values between 1 and 6, with a
detrimental posture from 5 and upwards. In general, novice surgeons reflected better results
with the arms than experienced subjects. Moreover, both novice surgeons and laparoscopic
expert surgeons showed an ergonomic posture in the neck with values below 4. Finally,
microsurgery expert surgeons were less careful about posture in the neck but moved
further away than the rest of the experience groups from risky postures when working
with their wrists.

Table 1. Total RULA results related to every experience level, task, and joint recorded.

Neck Arms Wrists

Experience Task Mean ± SD Mean ± SD Mean ± SD

Novel Right Cut 3.17 ± 1.459 2.23 ± 0.447 4.92 ± 0.920
Left Cut 3.37 ± 1.399 2.14 ± 0.361 5.66 ± 0.560

Peg Transfer 3.32 ± 1.489 2.02 ± 0.147 4.67 ± 0.809
Labyrinth 3.87 ± 1.418 2.43 ± 0.581 5.19 ± 0.831

Suture 3.61 ± 1.375 2.41 ± 0.648 5.15 ± 0.834
Exp. Mic. Right Cut 4.22 ± 1.319 3.00 ± 0.000 5.46 ± 0.604

Left Cut 4.47 ± 1.143 3.21 ± 0.407 4.35 ± 0.880
Peg Transfer 4.29 ± 1.277 2.99 ± 0.115 4.92 ± 0.736

Labyrinth 4.67 ± 0.942 3.56 ± 0.561 4.79 ± 0.835
Suture 4.79 ± 0.770 3.92 ± 0.288 4.59 ± 0.864

Exp. Lap. Right Cut 3.58 ± 1.106 3.00 ± 0.642 5.21 ± 0.859
Left Cut 3.11 ± 0.918 3.31 ± 0.798 5.20 ± 0.774

Peg Transfer 3.44 ± 1.068 3.25 ± 0.824 4.83 ± 0.985
Labyrinth 3.20 ± 1.154 3.41 ± 0.663 4.48 ± 0.890

Suture 3.08 ± 0.905 3.30 ± 0.679 4.17 ± 0.801
Exp. Mic.: Expert surgeons on microsurgery. Exp. Lap.: Expert surgeons on laparoscopic.

3.3. Predictive Models

The prediction results of the training dataset are shown in Figure 6 for the differ-
ent tasks performed. In general, MLR showed slightly higher values than MLP for the
R2 coefficient (R2 > 0.85) with a low RMSE error (RMSE < 0.05) for both cases. As for the pre-
processing techniques, scaled achieved slightly higher values than scaled and normalized
for the R2 coefficient. In general, the results obtained in the present study are satisfactory
according to the standards given by Colton [33], reaching correlations (R2) close to 1 and
RMSE close to 0 for all the movements studied.

It is worth highlighting the values of the R2 coefficient for the following body postures
in each task and study group: for the left cutting task (Figure 6A), we highlight the right
wrist deviation (R2 = 0.9955 and RMSE = 0.0035) for the group of novice surgeons; right
shoulder rotation (R2 = 0.9941 and RMSE = 0.0059) for expert surgeons on microsurgery;
and right (R2 = 0.9943 and RMSE = 0.0057) and left (R2 = 0.9984 and RMSE = 0.0006) shoul-
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der rotation; right (R2 = 0.9951 and RMSE = 0.0039) and left (R2 = 0.9966 and RMSE = 0.0024)
shoulder abduction; and neck rotation (R2 = 0.9987 and RMSE = 0.0003) for the expert
group of laparoscopic surgeons. For the right cutting task (Figure 6B), we underline the
left shoulder rotation (R2 = 0.9994 and RMSE = 0.0004), left wrist flexion (R2 = 0.9994 and
RMSE = 0.0004), and left wrist pronation (R2 = 0.9983 and RMSE = 0.0007) for novice
surgeons; right shoulder flexion (R2 = 0.9989 and RMSE = 0.0006), left shoulder rotation
(R2 = 0.9987 and RMSE = 0.0008), right shoulder abduction (R2 = 0.9983 and RMSE = 0.0007),
right (R2 = 0.9962 and RMSE = 0.0028) and left (R2 = 0.9997 and RMSE = 0.0007) wrist
deviation, and left wrist pronation (R2 = 0.9947 and RMSE = 0.0053) for expert micro-
surgeons; and left shoulder flexion (R2 = 0.9957), left shoulder rotation (R2 = 0.9988 and
RMSE = 0.0007), left wrist deviation (R2 = 0.9948 and RMSE = 0.0052), and neck rotation
(R2 = 0.9964 and RMSE = 0.0026) for surgeons skilled in conventional laparoscopic surgery.
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Figure 6. Results from the calibration dataset indicating the R2 values applying MLR as a predictive
technique and scaling as a preprocessing technique in each case on five simulator tasks: (A) left cutting,
(B) right cutting, (C) labyrinth, (D) peg transfer, and (E) suturing. For the three surgeon groups as a
function of the surgical type and the surgeons’ level of expertise, being novice surgeons (red), expert
surgeons on conventional laparoscopic surgery (blue), and expert surgeons on microsurgery (green).

For the labyrinth task (Figure 6C), we highlight the left shoulder rotation (R2 = 0.9994
and RMSE = 0.0006), left wrist flexion (R2 = 0.9994 and RMSE = 0.0006), neck flexion
(R2 = 0.9958 and RMSE = 0.0032), and rotation (R2 = 0.9961 and RMSE = 0.0029) for the
novice group of surgeons.

For the peg transfer task (Figure 6D), we underline the left shoulder rotation (R2 = 0.9994
and RMSE = 0.0006), left shoulder abduction (R2 = 0.9951 and RMSE = 0.0039), left wrist
flexion (R2 = 0.9994 and RMSE = 0.0006), and neck rotation (R2 = 0.9959 and RMSE = 0.0031)
for the novice group of surgeons; right shoulder rotation (R2 = 0.9945 and RMSE = 0.0055)
and left shoulder rotation (R2 = 0.9965 and RMSE = 0.0025) and neck flexion (R2 = 0.9961
and RMSE = 0.0029) for the expert group of microsurgeons; and right shoulder rotation
(R2 = 0.9988 and RMSE = 0.0007) for the expert group of laparoscopic surgeons.

Finally, for the suturing task (Figure 6E), we emphasize the right (R2 = 0.9955 and
RMSE = 0.0035) and left (R2 = 0.9994 and RMSE = 0.0006) shoulder flexion, left wrist flexion
(R2 = 0.9994 and RMSE = 0.0006), and neck rotation (R2 = 0.9948 and RMSE = 0.0052) for the
group of novice surgeons; and right shoulder abduction (R2 = 0.9972 and RMSE = 0.0028)
in the expert group of surgeons in microsurgery.

The prediction results of the cross-validation are shown in Figure 7 for the different
tasks and study groups. In general, MLR showed slightly higher values than MLP for
the R2 coefficient (R2 > 0.75) with a low RMSE error (RMSE < 0.05) for both cases. As
for the preprocessing techniques, scaled achieved slightly higher values than scaled and
normalized for the R2 coefficient. The results obtained in the present study are satisfactory
according to the standards given by Colton [33].
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Noteworthy are the R2 coefficient values for the following body postures in each task
and study group: for the left cutting task (Figure 7A), we highlight the right wrist pronation
(R2 = 0.8853 and RMSE = 0.0164), left shoulder flexion (R2 = 0.8864 and RMSE = 0.0142),
and left shoulder abduction (R2 = 0.8919 and RMSE = 0.0051) for the novice surgeon group;
and left shoulder rotation (R2 = 0.8924 and RMSE = 0.0046), left wrist flexion (R2 = 0.8805
and RMSE = 0.0260) and neck rotation (R2 = 0.8827 and RMSE = 0.0216), for the expert
microsurgeons and expert laparoscopic surgeons. For the right cutting task (Figure 7B),
we point out the left shoulder rotation (R2 = 0.8948 and RMSE = 0.0022), right (R2 = 0.8837
and RMSE = 0.0196), and left (R2 = 0.8823 and RMSE = 0.0224) wrist pronation for novice
surgeons; left shoulder flexion (R2 = 0.8865 and RMSE = 0.0140), right shoulder abduction
(R2 = 0.8823 and RMSE = 0.0224), right wrist deviation (R2 = 0.8902 and RMSE = 0.0068),
and neck flexion (R2 = 0.8849 and RMSE = 0.0152) for expert microsurgeons; and left
shoulder rotation (R2 = 0.8928 and RMSE = 0.0042), left wrist flexion (R2 = 0.8843 and
RMSE = 0.0184), and neck rotation (R2 = 0.8804 and RMSE = 0.0262) for the expert group of
laparoscopic surgeons.
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Figure 7. Prediction results from cross-validation on the calibration dataset indicating the R2 values
applying MLR as a predictive technique and scaling as a preprocessing technique in each case on five
simulator tasks: (A) left cutting, (B) right cutting, (C) labyrinth, (D) peg transfer, and (E) suturing.
For the three surgeon groups as a function of the surgical type and the surgeons’ level of expertise,
being novice surgeons (red), expert surgeons on conventional laparoscopic surgery (blue), and expert
surgeons on microsurgery (green).

For the labyrinth task (Figure 7C), we highlight left shoulder rotation (R2 = 0.8907 and
RMSE = 0.0063) and neck rotation (R2 = 0.8901 and RMSE = 0.0069) for the novice surgeon
group; left shoulder flexion (R2 = 0.8806 and RMSE = 0.0258) and abduction (R2 = 0.8867
and RMSE = 0.0136) for the expert microsurgeons; and left shoulder rotation (R2 = 0.8864
and RMSE = 0.0142) and neck rotation (R2 = 0.8805 and RMSE = 0.0260) for the expert
laparoscopic surgeons.

For the peg transfer task (Figure 7D), we underline the neck rotation (R2 = 0.8869 and
RMSE = 0.0132) for novice surgeons; left shoulder abduction (R2 = 0.8894 and RMSE = 0.0082),
right wrist deviation (R2 = 0.8811 and RMSE = 0.0248), and neck flexion (R2 = 0.8931 and
RMSE = 0.0039) for expert microsurgeons; and right shoulder flexion (R2 = 0.8852 and
RMSE = 0.0166) and left shoulder rotation (R2 = 0.8847 and RMSE = 0.0176) for surgeons
skilled in laparoscopic surgery. Finally, for the suturing task (Figure 7E), we highlight the
neck rotation (R2 = 0.8888 and RMSE = 0.0094) for the novice surgeons and right shoulder
abduction (R2 = 0.8812 and RMSE = 0.0246) for the expert group of microsurgeons.

The results of the validation dataset are shown in Figure 8 for the different tasks
and study groups. In general, MLR showed slightly higher values than MLP for the R2

coefficient with a low RMSE error (RMSE < 0.05) for both cases. As for the preprocessing
techniques, scaled achieved slightly higher values than scaled and normalized for the R2

coefficient. Good to excellent correlations (R2 > 0.6) close to 1 and RMSE close to 0 were
achieved for all the postures studied.

Of note are the R2 coefficient values for the following postures in each task and study
group: for the left cutting task (Figure 8A), we highlight the right shoulder rotation (R2 = 0.7695
and RMSE = 0.0305), right wrist pronation (R2 = 0.7672 and RMSE = 0.0328), and neck
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rotation (R2 = 0.7848 and RMSE = 0.0224) for the novice surgeons; right shoulder abduction
(R2 = 0.7772 and RMSE = 0.0228) and left shoulder abduction (R2 = 0.7681 and RMSE = 0.0319)
and neck rotation (R2 = 0.7681 and RMSE = 0.0319) for novice surgeons; right (R2 = 0.7772
and RMSE = 0.0228) and left (R2 = 0.7681 and RMSE = 0.0319) shoulder abduction and neck
rotation (R2 = 0.7686 and RMSE = 0.0314) for expert microsurgeons; and right shoulder flexion
(R2 = 0.7738 and RMSE = 0.0262) for expert laparoscopic surgeons. For the right cutting task
(Figure 8B), we point out the left shoulder flexion (R2 = 0.7757 and RMSE = 0.0243) and rotation
(R2 = 0.7848 and RMSE = 0.0224), left wrist flexion (R2 = 0.7823 and RMSE = 0.0212), and
neck rotation (R2 = 0.7664 and RMSE = 0.0336) for the novice group of surgeons; left shoulder
flexion (R2 = 0.7745 and RMSE = 0.0255) and rotation (R2 = 0.7657 and RMSE = 0.0343), right
(R2 = 0.7783 and RMSE = 0.0217) and left (R2 = 0.7681 and RMSE = 0.0319) shoulder abduction,
right wrist deviation (R2 = 0.7782 and RMSE = 0.0218), left wrist pronation (R2 = 0.7747 and
RMSE = 0.0253), and neck flexion (R2 = 0.7789 and RMSE = 0.0211) for the expert group
of microsurgeons; and left shoulder flexion (R2 = 0.7757 and RMSE = 0.0243) and rotation
(R2 = 0.7848 and RMSE = 0.0224), left wrist flexion (R2 = 0.7823 and RMSE = 0.0212), and neck
rotation (R2 = 0.7664 and RMSE = 0.0336) for the expert group of laparoscopic surgeons.
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Figure 8. Results from the validation dataset indicating the R2 values applying MLR as a predictive
technique and scaling as a preprocessing technique in each case on five simulator tasks: (A) left cutting,
(B) right cutting, (C) labyrinth, (D) peg transfer, and (E) suturing. For the three surgeon groups as a
function of the surgical type and the surgeons’ level of expertise, being novice surgeons (red), expert
surgeons on conventional laparoscopic surgery (blue), and expert surgeons on microsurgery (green).

For the labyrinth task (Figure 8C), we highlight the left shoulder rotation (R2 = 0.7787
and RMSE = 0.0213) and neck rotation (R2 = 0.7861 and RMSE = 0.0230) for novice surgeons;
left shoulder flexion (R2 = 0.7686 and RMSE = 0.0314), right shoulder flexion (R2 = 0.7685
and RMSE = 0.0315), left shoulder abduction (R2 = 0.7807 and RMSE = 0.0203), and neck
flexion (R2 = 0.7666 and RMSE = 0.0334) for expert microsurgeons; and right (R2 = 0.7663
and RMSE = 0.0337) and left (R2 = 0.7656 and RMSE = 0.0344) shoulder flexion, left shoulder
rotation (R2 = 0.7784 and RMSE = 0.0216), and neck rotation (R2 = 0.7665 and RMSE = 0.0335)
for expert laparoscopic surgeons.

For the peg transfer task (Figure 8D), right wrist flexion (R2 = 0.7684 and RMSE = 0.0316)
and neck rotation (R2 = 0.7829 and RMSE = 0.0214) are notable for the novice group of
surgeons; left shoulder abduction (R2 = 0.7834 and RMSE = 0.0217), right wrist deviation
(R2 = 0.7691 and RMSE = 0.0309), and neck flexion (R2 = 0.7871 and RMSE = 0.0179) for the
expert group of microsurgeons; and right shoulder flexion (R2 = 0.7832 and RMSE = 0.0216),
left shoulder rotation (R2 = 0.7832 and RMSE = 0.0216), right wrist deviation (R2 = 0.7691
and RMSE = 0.0309), and neck flexion (R2 = 0.7871 and RMSE = 0.0189) for the group of expe-
rienced microsurgery surgeons, and left shoulder rotation (R2 = 0.7767 and RMSE = 0.0233)
and left wrist flexion (R2 = 0.7668 and RMSE = 0.0332) for the expert laparoscopic surgeons.

Finally, for the suturing task (Figure 8E), we highlight the right shoulder rotation
(R2 = 0.7695 and RMSE = 0.0305), right wrist pronation (R2 = 0.7672 and RMSE = 0.0328),
and neck rotation (R2 = 0.7848 and RMSE = 0.0224) for novice surgeons; right (R2 = 0.7772
and RMSE = 0.0228) and left (R2 = 0.7681 and RMSE = 0.0319) shoulder abduction and neck
rotation (R2 = 0.7686 and RMSE = 0.0314) for expert microsurgeons; and right shoulder
flexion (R2 = 0.7738 and RMSE = 0.0262) for the expert group of laparoscopic surgeons.
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4. Discussion

The advent of robotic-assisted surgery has brought a revolution in terms of the preci-
sion of surgical procedures, surgical maneuverability, and improved working conditions
for the main surgeon, who can operate in a seated position with a three-dimensional view
of the surgical field. However, there are still ergonomic constraints for surgeons that need
to be addressed. Surveys reported that 56.1% of regularly practicing robotic surgeons
continue to experience related physical symptoms or discomfort, mainly neck stiffness and
finger and eye fatigue [5].

To carry out an exhaustive analysis of the surgeon’s ergonomic conditions, it is nec-
essary to analyze several factors, such as posture [11], muscle activity [35], stress, or the
subjective perception of the physical and mental load [7,36], among others. Previous studies
have been able to analyze some of these factors, concluding that robotic-assisted surgery
improves the surgeon’s ergonomic conditions compared to conventional laparoscopic
surgery [13,37]. However, studies report that ergonomic deficiencies still exist in surgical
robotics and that there is a need to improve the ergonomics of surgeon posture [5,10]. Al-
though during robotic-assisted surgery the surgeon sits during the procedure, this posture
leads to more back flexion compared to conventional laparoscopic surgery [3]. However,
this flexion is usually less than 15 degrees and is therefore not highly detrimental from an
ergonomic point of view.

Understanding how surgeons move during procedures allows us to improve and adapt
robotic platform designs, better organize operating theatres, and consequently improve
surgeon posture during surgical practice. Ergonomic guidelines, including training pro-
grams, for robotic surgery could be considerably improved if motion analysis is considered.
To this end, methods for objective analysis of surgeon posture have evolved dramatically in
recent years, from photogrammetry-based methods [38] to infrared camera systems [10] to
studies completed using Xbox Connect Camera [39]. However, these camera-based systems
are severely limited by occlusions and are therefore not suitable for complex and crowded
environments such as an operating theater. Apart from the surgeon’s posture, it is essential
to know and analyze the surgeon’s muscle activity to ensure proper ergonomics, as well
as to ensure optimal use of instruments, which translates into precise movements during
surgery. A previous study comparing RAS and conventional laparoscopic surgery found
differences in muscle activation patterns [35], reporting that, in general, RAS requires lower
levels of muscle activation in the neck and shoulder region. Wearable systems, such as the
ones used in this work for recording the surgeon’s posture and muscle activity, offer highly
versatile solutions for use in the operating theatre, unaffected by occlusions and respecting
the surgeon’s freedom of movement and sterile conditions.

Regarding the cutting task, the increased muscle load shown in the right deltoid com-
pared to the left deltoid in all study groups seems to be associated with increased joint range
of shoulder flexion. This supports the potential evidence of a positive correlation between
ergonomically incorrect posture and possible short-term muscle injury [40]. Shoulder ab-
duction that occurs when seeking the proper posture during the cutting task was assessed
with two different muscle groups (deltoid and middle trapezius) to analyze the level of
involvement of each one. In this way, it was seen that shoulder abduction over-activates the
middle trapezius, while it is shoulder adduction that relates to the deltoid, demonstrating
that both muscle groups were worth analyzing with respect to this specific joint.

For the peg transfer task, shoulder flexion was significantly reduced compared to the
cutting task. This may be due to not being required to seek complex postures in order to
complete this basic task. The best adaptation to this task was by experienced laparoscopists,
who significantly reduced the muscular load on the deltoid. The novice surgeons continued
to maintain more appropriate postures than the expert microsurgeons, as the latter were
probably not used to working so much with their arms but more with their forearms and
wrists. For neck flexion, all subjects moved mainly in a range close to 0 degrees, with an
increase in flexion in microsurgeons, possibly due to the habit of working with a microscope.
Laparoscopists, on the other hand, occasionally experience neck extensions. In the case of
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the loading of the middle trapezius muscle in laparoscopists, it is in agreement with the
results obtained in previous studies [41–43].

As for the labyrinth task, the degree of shoulder flexion was similar to that shown
in the previous cutting and peg transfer tasks, although in this case, the muscular load
progressively increased in the deltoids with respect to the cutting task. This task had
an average of 30% MVC compared to the 10% MVC of the cutting task. This increased
workload on the deltoids is accentuated in the case of the dominant hand due to the
difficulty of completing the needle passage through the rings. The correlation between non-
ergonomic posture and excessive muscle activation is notable in this task, as its duration was
longer, and it presented an isometric load when maintaining an inadequate posture for a
certain time. As for the brachioradialis muscle group, regardless of the position of the wrists,
its muscular load was accentuated during the passing of the needle for the microsurgeons
and when picking up the needle for the group of novice surgeons. Similarly, this increased
muscle load may also be related to the stress and difficulty associated with the task for
these groups with less experience in conducting these surgical maneuvers. These results
are similar to those obtained in previous studies [13], in which novice surgeons showed
increased muscle activity in several muscle groups, including the brachioradialis, during
robotic-assisted surgery. It is important to highlight the importance of the brachioradialis
muscle for the performance of surgical tasks, whose main action is to flex the forearm at
the elbow joint and assist in pronation and supination of the forearm, which are crucial
movements in laparoscopic and robotic surgical procedures.

As for the suturing task, with respect to the activation of the right brachioradialis, it
is observed that while maintaining a range of wrist movement values similar to the maze
task, as well as the same execution time limit, an increase in muscle load and the possible
appearance of localized muscle fatigue is observed as a consequence. Therefore, it is shown
that in this case, this increase is due to effort and not to body posture, perhaps because the
task is considered the most complex and closer to real clinical practice.

In the case of neck flexion, it was observed that the progression of posture and the load
suffered in this part of the body during all tasks concluded with the progressive reduction
in neck extension by the laparoscopists as opposed to the tendency to increase the neck
flexion in the microsurgeons group. Despite the time spent with incorrect postures during
the analyzed tasks, muscle activity had hardly been observed to overload, with only a few
values above 50% of the MVC in the upper trapezius muscle during neck flexion for the
novice group of surgeons. Thus, we can conclude that robotic-assisted surgery allows a
considerably optimal posture of the cervical spine. We believe this is due to the location
of the screen and that it is only visible in 3D (through polarized glasses) if it is placed at
eye level.

Taking into account the results obtained in previous studies [13,39] together with those
presented in this work concerning the ergonomic risk analysis of surgeons during robotic
practice (Table 1), it is concluded that there is a low ergonomic risk in neck and arm posture
for novice surgeons and a medium ergonomic risk for experienced surgeons, although
a medium-high ergonomic risk persists for the wrist posture in all study groups. These
results, therefore, support the recommendation that surgeon posture needs to be improved
during robotic-assisted surgery. The results obtained suggest that novice surgeons showed
better ergonomic results compared to more experienced surgeons. Therefore, it appears
that the influence of previous experience may be a determining factor in the ergonomic
appropriateness of posture when performing robotic surgery. These results help us to
identify possible ergonomic recommendations for each study group. In this case, microsur-
geons should consider improving neck posture by avoiding cervical flexion, while novice
microsurgeons should pay attention to the use of the non-dominant hand.

When it comes to adjusting the surgeon’s posture, one of the advantages of the
RAS over conventional laparoscopic surgery is the adjustment possibilities offered by the
platform with respect to the surgeon’s physical characteristics, allowing the height and
proximity of the monitor, as well as the height of the controls and armrests, to be adopted.



Sensors 2024, 24, 7721 20 of 23

This allows surgeons to adapt their posture, mainly of the back, arms, and neck, to improve
their ergonomics during surgery. It is important to comply with this adjustment in the
use of the platform, especially for expert laparoscopists who often do not use the armrest
correctly, which causes uncomfortable postures. The use of the clutch system is crucial to
ensure correct postures during the entire surgical procedure, so intensive training in its use
is essential.

Regardless of the different results between experience groups, there is hardly any
progressive increase in muscle load when using the robotic platform, except for the arms.
Therefore, it is recommended not to separate the arms from the armrests, avoiding abduc-
tions, although a learning period is necessary to acquire these skills and to completely
avoid non-ergonomic arm postures, an objective that has already been achieved with the
cervical vertebrae due to the design characteristics of the console.

Considering the results for the development and validation of the predictive model
(R2 > 0.85 on the training dataset, R2 > 0.75 on the cross-validation, and R2 > 0.6 on the
test dataset), the results are in agreement with those obtained in previous studies, showing
a slightly higher R2 coefficient for MLR and the scaling preprocessing technique [17] for
the training, cross-validation, and test datasets with values of R2 higher than 0.75. These
results could be related to the variability of the surgeon’s surgical experience and the stress
generated during the performance of surgical activities [43].

For the results of the training dataset, a high to excellent ratio (R2 > 0.75) was achieved
in almost all cases, with expert laparoscopic surgeons being more accurate in the left
cutting task, expert microsurgeons achieving the highest R2 values for most parameters
in the right cut and peg transfer tasks, and novice surgeons being more reliable in the
labyrinth and suture tasks. For the results of the cross-validation dataset, a high to excellent
ratio (R2 > 0.75) was achieved in almost all cases, highlighting that expert microsurgeons
were more reliable for the left and right cutting, peg transfer, and suturing tasks, and
novice surgeons achieved the highest R2 values for most parameters in the labyrinth task.
Furthermore, considering the results of the test dataset, as in the previous cases, a good
to excellent ratio (R2 > 0.6) was achieved in almost all cases, with expert microsurgeons
being more accurate in the left and right cutting and suturing tasks and novice surgeons
achieving the highest R2 values for the labyrinth and peg transfer tasks.

As we have been able to observe in the results of this study, ergonomics in the field of
surgical robotics continues to be an aspect that remains to be solved. Therefore, it would be
advisable to include ergonomic recommendations in RAS training programs, promoting
the reduction in musculoskeletal problems, the improvement of the surgeon’s health, and
the consequent improvement of the quality of surgical practice. The predictive models that
were developed shed light on the design of tools for the prevention of these musculoskeletal
risk factors during the development of surgical activities. However, it would be necessary
to include additional studies of more complex surgical procedures in order to obtain more
accurate results.

Among the limitations of this study is the reduced number of participants. As this is
a preliminary study, the number of participants in each study group was not remarkably
high; there were only seven surgeons. For future work, efforts will be made to include a
larger number of surgeons in each group, at least four in each group, as well as to include
a group with experience in robotic surgery to obtain more conclusive and representative
results. Similarly, this study only included basic laparoscopic surgery training tasks. It
would be desirable to include more complex surgical tasks or procedures with a longer
duration and different specialties, such as urology, gynecology, or general surgery, which
are more representative of a real clinical situation. On the other hand, it would be of
interest to increase the number of muscles studied since there are some, such as the triceps,
that could have an influence on the development of surgical procedures. Similarly, it
would be advisable to extend the range of AI algorithms analyzed in order to improve
the prediction models, eliminating errors and biases. With accurate predictive models,
it would be possible to reduce localized muscle fatigue, forced body postures, and other
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musculoskeletal risks, optimizing surgeons’ response and health. However, the advances
presented in this study allow us to make steady progress in the search for a comprehensive
analysis and better understanding of ergonomic conditions in minimally invasive surgery,
as well as the development of innovative solutions to predict and improve surgeons’ health
during surgical practice.

For future work, it is proposed to increase the number of participants, the muscle
groups, the experience groups, and the type of robotic platforms used in order to obtain
more conclusive results. Similarly, it would be desirable to include other assessment factors,
such as physiological stress. In addition, the quality of surgical performance will be tested
to see if musculoskeletal risk factors in surgical practice have an impact on surgical results.

5. Conclusions

This work contributes to the understanding of ergonomic risks in RAS, presenting
a significant advance in the integration of wearable technology and the implementation
of predictive models of musculoskeletal risks. The results of this work could significantly
enhance surgical training programs in RAS, the design of ergonomic surgical tools, and
improve surgeon health. These findings highlight the need for specific training programs
based on the surgeon’s level of experience and comprehensive knowledge of ergonomic
risks during surgical practice.

During this study, results have highlighted the overall positive correlation between
prolonged maintenance of ergonomically inadequate posture during RAS and increased
cumulative muscle activation that led to muscle fatigue and potential musculoskeletal
problems. Specific relationships have also been identified, such as activation of the middle
trapezius for both neck control and specific shoulder movements. In terms of experience
groups, the ability of novice surgeons to work in RAS stands out compared to experienced
surgeons. The values for laparoscopic expert surgeons are equally positive, in contrast to
expert microsurgeons, who must adapt to a quite different surgical environment.

For the prediction models, the highest R2 coefficients were achieved by applying MLR
as an artificial intelligence technique and scaling as a preprocessing technique, all the
results reaching a good to excellent correlation ratio (R2 > 0.6). Considering the different
groups and the different surgical tasks, the most accurate and reliable results were achieved
by the expert group of microsurgeons for the cutting and suturing tasks and by the novice
surgeons for the peg transfer and maze tasks. These results demonstrate the goodness
and accuracy of the predictive models and are the starting point to reaching an exhaustive
knowledge of the ergonomic risks of RAS.

Author Contributions: Conceptualization, M.J.P.-S., D.C., J.A.S.-M. and F.M.S.-M.; data curation,
M.J.P.-S., D.C. and J.A.S.-M.; formal analysis, M.J.P.-S., D.C., J.A.S.-M. and F.M.S.-M.; funding acqui-
sition, J.A.S.-M. and F.M.S.-M.; investigation, M.J.P.-S., D.C., J.A.S.-M. and F.M.S.-M.; methodology,
M.J.P.-S., D.C., J.A.S.-M. and F.M.S.-M.; project administrator, M.J.P.-S., D.C., J.A.S.-M. and F.M.S.-M.;
resources, M.J.P.-S., D.C., J.A.S.-M. and F.M.S.-M.; software, M.J.P.-S., D.C. and J.A.S.-M.; supervision,
J.A.S.-M. and F.M.S.-M.; validation, M.J.P.-S., D.C., J.A.S.-M. and F.M.S.-M.; visualization, M.J.P.-S.,
D.C. and J.A.S.-M.; writing—original draft preparation, M.J.P.-S., D.C. and J.A.S.-M.; writing—review
and editing, M.J.P.-S., D.C., J.A.S.-M. and F.M.S.-M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been funded by the European Union Next Generation EU, from the Recovery,
Transformation and Resilience Plan (PRTR-C17.I1) and the European Regional Development Fund
(ERDF) of Extremadura Operational Program 2021–2027.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data are available on request due to restrictions, e.g., privacy or ethics.



Sensors 2024, 24, 7721 22 of 23

Acknowledgments: The authors would like to thank the colleagues who collaborated in this study
(Elena Abellán, Laura Pires, Javier Vela, José Luis Campos, Carlos Sánchez, Javier Salas, David Durán,
Ramón González, Lucía Salazar, Ignacio Sánchez, and Nuria González).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hurley, A.M.; Kennedy, P.J.; O’Connor, L.; Dinan, T.G.; Cryan, J.F.; Boylan, G.; O’Reilly, B. SOS save our surgeons: Stress levels

reduced by robotic surgery. Gynecol. Surg. 2023, 12, 197–206. [CrossRef]
2. Rivero-Moreno, Y.; Echevarria, S.; Vidal-Valderrama, C.; Pianetti, L.; Cordova-Guilarte, J.; Navarro-Gonzalez, J.; Acevedo-

Rodríguez, J.; Dorado-Avila, G.; Osorio-Romero, L.; Chavez-Campos, C.; et al. Robotic Surgery: A Comprehensive Review of the
Literature and Current Trends. Cureus 2023, 15, e42370. [CrossRef] [PubMed]

3. Gabrielson, A.T.; Clifton, M.M.; Pavlovich, C.P.; Biles, M.J.; Huang, M.; Agnew, J.; Pierorazio, P.M.; Matlaga, B.R.; Bajic, P.; Schwen,
Z.R. Surgical ergonomics for urologists: A practical guide. Nat. Rev. Urol. 2021, 18, 160–169. [CrossRef]

4. Kaplan, J.R.; Lee, Z.; Eun, D.D.; Reese, A.C. Complications of minimally invasive surgery and their management. Curr. Urol. Rep.
2016, 17, 47. [CrossRef]

5. Lee, G.I.; Lee, M.R.; Green, I.; Allaf, M.; Marohn, M.R. Surgeons’ physical discomfort and symptoms during robotic surgery: A
comprehensive ergonomic survey study. Surg. Endosc. 2017, 31, 1697–1706. [CrossRef]

6. Müller, D.T.; Ahn, J.; Brunner, S.; Poggemeier, J.; Storms, C.; Reisewitz, A.; Schmidt, T.; Bruns, C.J.; Fuchs, H.F. Ergonomics in
robot-assisted surgery in comparison to open or conventional laparoendoscopic surgery: A narrative review. Int. J. Abdom. Wall
Hernia Surg. 2023, 6, 61. [CrossRef]

7. Wilson, M.R.; Poolton, J.M.; Malhotra, N.; Ngo, K.; Bright, E.; Masters, R.S. Development and validation of a surgical workload
measure: The surgery task load index (SURG-TLX). World J. Surg. 2011, 35, 1961–1969. [CrossRef]

8. Dixon, F.; Vitish-Sharma, P.; Khanna, A.; Keeler, B.D.; on behalf of VOLCANO Trial Group. Robotic assisted surgery reduces
ergonomic risk during minimally invasive colorectal resection: The VOLCANO randomised controlled trial. Langenbecks. Arch.
Surg. 2024, 409, 142. [CrossRef]

9. Brunner, S.; Müller, D.; Krauss, D.T.; Datta, R.R.; Eckhoff, J.A.; Storms, C.; Von Reis, B.; Chon, S.H.; Schmidt, T.; Bruns, C.J.; et al.
Cologne ergonomic measurement for robotic surgery (CEMRobSurg) using the Hugo™ RAS System. Surg. Endosc. 2024, 38,
6128–6138. [CrossRef]

10. Dwyer, A.; Huckleby, J.; Kabbani, M.; Delano, A.; De Sutter, M.; Crawford, D. Ergonomic assessment of robotic general surgeons:
A pilot study. J. Robot. Surg. 2020, 14, 387–392. [CrossRef]

11. Yu, D.; Dural, C.; Morrow, M.M.B.; Yang, L.; Collins, J.W.; Hallbeck, S.; Kjellman, M.; Forsman, M. Intraoperative workload in
robotic surgery assessed by wearable motion tracking sensors and questionnaires. Surg. Endosc. 2017, 31, 877–886. [CrossRef]
[PubMed]

12. Armijo, P.R.; Huang, C.K.; High, R.; Leon, M.; Siu, K.C.; Oleynikov, D. Ergonomics of minimally invasive surgery: An analysis of
muscle effort and fatigue in the operating room between laparoscopic and robotic surgery. Surg. Endosc. 2019, 33, 2323–2331.
[PubMed]

13. Pérez-Salazar, M.J.; Caballero, D.; Sánchez-Margallo, J.A.; Sánchez-Margallo, F.M. Comparative Study of Ergonomics in Conven-
tional and Robotic-Assisted Laparoscopic Surgery. Sensors 2024, 24, 3840. [CrossRef] [PubMed]

14. Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin
Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ.
2023, 23, 689.

15. Ávila-Tomás, J.F.; Mayer-Pujadas, M.A.; Quesada-Varela, V.J. La inteligencia artificial y sus aplicaciones en medicina I: Introduc-
cion y antecedentes a la IA y robótica. Aten. Primaria 2020, 52, 778–784.

16. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Elctron. Mark. 2021, 31, 685–695. [CrossRef]
17. Caballero, D.; Pérez-Salazar, M.J.; Sánchez-Margallo, J.A.; Sánchez-Margallo, F.M. Applying artificial intelligence on EDA sensor

data to predict stress on minimally invasive robotic-assisted surgery. Int. J. Comput. Assist. Radiol. Surg. 2024, 19, 1953–1963.
[CrossRef]

18. Netter, F.H. Atlas de Anatomía Humana, 3rd ed.; Masson: Issy-les-Moulineaux, France, 2003; ISBN 84-458-1297-1.
19. Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor

placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [CrossRef]
20. SENIAM Project (Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles). 2006. Available online: http://www.

seniam.org/ (accessed on 1 December 2024).
21. Kakaraparthi, V.N.; Vishwanathan, K.; Gadhavi, B.; Reddy, R.S.; Tedla, J.S.; Samuel, P.S.; Dixit, S.; Alshahrani, M.S.; Gannamaneni,

V.K. Application of the rapid upper limb assessment tool to assess the level of ergonomic risk among health care professionals: A
systematic review. Work 2022, 71, 551–564.

22. Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 5th ed.; CRC Press: Boca Raton, FL, USA, 2011;
ISBN 978-0-42918-619-6.

https://doi.org/10.1007/s10397-015-0891-7
https://doi.org/10.7759/cureus.42370
https://www.ncbi.nlm.nih.gov/pubmed/37621804
https://doi.org/10.1038/s41585-020-00414-4
https://doi.org/10.1007/s11934-016-0602-6
https://doi.org/10.1007/s00464-016-5160-y
https://doi.org/10.4103/ijawhs.IJAWHS_52_22
https://doi.org/10.1007/s00268-011-1141-4
https://doi.org/10.1007/s00423-024-03322-y
https://doi.org/10.1007/s00464-024-11129-7
https://doi.org/10.1007/s11701-019-00996-1
https://doi.org/10.1007/s00464-016-5047-y
https://www.ncbi.nlm.nih.gov/pubmed/27495330
https://www.ncbi.nlm.nih.gov/pubmed/30341653
https://doi.org/10.3390/s24123840
https://www.ncbi.nlm.nih.gov/pubmed/38931624
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1007/s11548-024-03218-8
https://doi.org/10.1016/S1050-6411(00)00027-4
http://www.seniam.org/
http://www.seniam.org/


Sensors 2024, 24, 7721 23 of 23

23. Siegel, S.; Castellan, N.J. Nonparametric Statistical for the Behavioral Sciences, 1st ed.; McGraw-Hill: New York, NY, USA, 1988;
ISBN 978-0-07057-357-4.

24. Borysiuk, Z.; Blaszczyszyn, M.; Piechota, K.; Nowicki, T. Movement Patterns of Polish National Paralympic Team Wheelchair
Fencers with Regard to Muscle Activity and Co-Activation Time. J. Hum. Kinet. 2022, 82, 223–232. [CrossRef]

25. The Jamovi Project (Jamovi Version 2.3 Computer Software). 2022. Available online: https://www.jamovi.org (accessed on 1
December 2024).

26. Varghese, J.J.; Aithal, V.U.; Sharan, K.; Devaraja, K.; Philip, S.J.; Guddattu, V.; Rajashekhar, B. Comparison of Submental Surface
Electromyography during Dry Swallow between Irradiated Head and Neck Cancer Survivors and Normal Individuals. Folia
Phoniatr. Logop. 2024, 76, 588–600. [CrossRef] [PubMed]

27. Dietterich, T. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 1998, 10,
1895–1923. [CrossRef] [PubMed]

28. Oka, M. Interpreting a standardized and normalized measure of neighborhood socioeconomic status for a better understanding
of health differences. Arch. Public Health 2021, 79, 226. [CrossRef] [PubMed]

29. Frank, E.; Hall, M.A.; Witten, I.H. The WEKA workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and
Techniques, 2nd ed.; Morgan Kaufmann: Burlington, MA, USA, 2016; ISBN 0-12-088407-0.

30. Caballero, D.; Caro, A.; Dahl, A.B.; Ersboll, B.K.; Amigo, J.M.; Pérez-Palacios, T.; Antequera, T. Comparison of different image
analysis algorithms on MRI to predict physico-chemical and sensory attributes of loin. Chemom. Intell. Lab. Syst. 2018, 180, 54–63.
[CrossRef]

31. Wu, X.; Kumar, V.; Ross-Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; Mclachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10
algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]

32. Grossman, R.; Seni, G.; Elder, J.; Agarwal, N.; Liu, H. Ensemble Methods in Data Mining: Improving Accuracy Through Combining
Predictions, 1st ed.; Morgan and Claypool Publishers: San Rafael, CA, USA, 2010; ISBN 978-1-60845-284-2.

33. Colton, T. Statistics in Medicine; Little Brown and, Co.: Boston, MA, USA, 1974; ISBN 978-0-31615-249-5.
34. Hyndman, R.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast 2006, 22, 679–688. [CrossRef]
35. Szeto, G.P.Y.; Poon, J.T.C.; Law, W.L. A comparison of surgeon’s postural muscle activity during robotic-assisted and laparoscopic

rectal surgery. J. Robot. Surg. 2013, 7, 305–308. [CrossRef]
36. Guzmán-García, C.; Sánchez-González, P.; Sánchez-Margallo, J.A.; Snoriguzzi, N.; Rabazo, J.C.; Sánchez-Margallo, F.M.; Gómez,

E.J.; Oropesa, I. Correlating Personal Resourcefulness and Psychomotor Skills: An Analysis of Stress, Visual Attention and
Technical Metrics. Sensors 2022, 22, 837. [CrossRef]

37. Dalsgaard, T.; Jensen, M.D.; Hartwell, D.; Mosgaard, B.J.; Jørgensen, A.; Jensen, B.R. Robotic Surgery Is Less Physically Demanding
Than Laparoscopic Surgery: Paired Cross Sectional Study. Ann. Surg. 2020, 1, 106–113. [CrossRef]

38. Sánchez-Margallo, F.M.; Sánchez-Margallo, J.A. Assessment of Postural Ergonomics and Surgical Performance in Laparoendo-
scopic Single-Site Surgery Using a Handheld Robotic Device. Surg. Innov. 2018, 25, 208–217. [CrossRef]

39. Stefanidis, D.; Hope, W.W.; Scott, D.J. Robotic suturing on the FLS model possesses construct validity, is less physically demanding,
and is favoured by more surgeons compared with laparoscopy. Surg. Endosc. 2011, 25, 2141–2146. [CrossRef] [PubMed]

40. Schlussel, A.T.; Maykel, J.A. Ergonomics and Musculoskeletal Health of the Surgeon. Clin. Colon Rectal Surg. 2019, 2, 424–434.
[CrossRef] [PubMed]

41. Pérez-Duarte, F.J.; Lucas-Hernández, M.; Matos-Azevedo, A.; Sánchez-Margallo, J.A.; Díaz-Güemes, I.; Sánchez-Margallo, F.M.
Objective analysis of surgeons’ ergonomy during laparoendoscopic single-site surgery through the use of surface electromyogra-
phy and a motion capture data glove. Surg. Endosc. 2014, 28, 1314–1320. [CrossRef] [PubMed]

42. Hubert, N.; Gilles, M.; Desbrosses, K.; Meyer, J.P.; Felblinger, J.; Hubert, J. Ergonomic assessment of the surgeon’s physical
workload during standard and robotic assisted laparoscopic procedures. Int. J. Med. Robot. 2013, 9, 142–147. [CrossRef]

43. Amairhanayagam, A.; Zecca, M.; Barber, S.; Singh, B.; Moss, E.L. Impact of minimally invasive surgery on surgeon health (issue)
study: Protocol of a single-arm observational study conducted in the live surgery setting. BMJ Open 2023, 13, 066765.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.2478/hukin-2022-0064
https://www.jamovi.org
https://doi.org/10.1159/000538732
https://www.ncbi.nlm.nih.gov/pubmed/38599192
https://doi.org/10.1162/089976698300017197
https://www.ncbi.nlm.nih.gov/pubmed/9744903
https://doi.org/10.1186/s13690-021-00750-w
https://www.ncbi.nlm.nih.gov/pubmed/34911564
https://doi.org/10.1016/j.chemolab.2018.04.008
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1007/s11701-012-0374-z
https://doi.org/10.3390/s22030837
https://doi.org/10.1097/SLA.0000000000002845
https://doi.org/10.1177/1553350618759768
https://doi.org/10.1007/s00464-010-1512-1
https://www.ncbi.nlm.nih.gov/pubmed/21184110
https://doi.org/10.1055/s-0039-1693026
https://www.ncbi.nlm.nih.gov/pubmed/31686994
https://doi.org/10.1007/s00464-013-3334-4
https://www.ncbi.nlm.nih.gov/pubmed/24337915
https://doi.org/10.1002/rcs.1489

	Introduction 
	Materials and Methods 
	Setup 
	Surgical Tasks 
	Kynematic Recording Systems 
	Data Analysis 
	Body Posture Assessment 
	Correlation Analysis 
	Predictive Analysis 
	Artificial Intelligence 


	Results 
	Kynematic Correlations 
	Musculoskeletal Risk Assessment 
	Predictive Models 

	Discussion 
	Conclusions 
	References

