
Citation: Xie, X.; Wang, J.; Han, Y.; Li,

W. Knowledge Graph-Based

In-Context Learning for Advanced

Fault Diagnosis in Sensor Networks.

Sensors 2024, 24, 8086. https://

doi.org/10.3390/s24248086

Academic Editors: Md Tanjin Amin

and Rajeevan Arunthavanathan

Received: 31 October 2024

Revised: 5 December 2024

Accepted: 10 December 2024

Published: 18 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Knowledge Graph-Based In-Context Learning for Advanced
Fault Diagnosis in Sensor Networks
Xin Xie 1 , Junbo Wang 1 , Yu Han 1,* and Wenjuan Li 2

1 School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 518107, China;
xiex36@mail2.sysu.edu.cn (X.X.); wangjb33@mail.sysu.edu.cn (J.W.)

2 Department of Mathematics and Information Technology, The Education University of Hong Kong,
Hong Kong SAR, China; wenjuan.li@my.cityu.edu.hk

* Correspondence: hanyu25@mail.sysu.edu.cn

Abstract: This paper introduces a novel approach for enhancing fault diagnosis in industrial equip-
ment systems through the application of sensor network-driven knowledge graph-based in-context
learning (KG-ICL). By focusing on the critical role of sensor data in detecting and isolating faults, we
construct a domain-specific knowledge graph (DSKG) that encapsulates expert knowledge relevant
to industrial equipment. Utilizing a long-length entity similarity (LES) measure, we retrieve rele-
vant information from the DSKG. Our method leverages large language models (LLMs) to conduct
causal analysis on textual data related to equipment faults derived from sensor networks, thereby
significantly enhancing the accuracy and efficiency of fault diagnosis. This paper details a series
of experiments that validate the effectiveness of the KG-ICL method in accurately diagnosing fault
causes and locations of industrial equipment systems. By leveraging LLMs and structured knowledge,
our approach offers a robust tool for condition monitoring and fault management, thereby improving
the reliability and efficiency of operations in industrial sectors.

Keywords: knowledge graph; in-context learning; large language models; fault diagnosis

1. Introduction

In the context of equipment maintenance, sensor networks are increasingly relied
upon to provide critical data for detecting and diagnosing faults. The textual descriptions
of faults derived from sensor data are essential for understanding the operational health
of various industrial equipment. Ensuring the accuracy and reliability of fault diagnosis
results derived from these data is crucial for maintaining operational integrity and efficiency.
Traditional fault diagnosis methods, which often depend on static rules, are insufficient for
addressing the dynamic and complex nature of equipment malfunctions. In recent years, the
development of artificial intelligence, particularly the emergence of large language models
(LLMs), has opened new avenues for interpreting sensor-derived text and enhancing fault
diagnosis capabilities. For instance, prominent LLMs such as ChatGPT and ChatGLM have
demonstrated exceptional proficiency in addressing various downstream tasks within a
broad domain.

When interpreting sensor-derived textual descriptions of faults across various types of
industrial equipment, LLMs may struggle to provide responses that exhibit the necessary
domain expertise [1]. At times, their semantic capabilities fall short in generating answers
that align with the specialized knowledge required for accurate fault diagnosis [2]. This
deficiency in professionalism presents a significant challenge, as the responses generated
by LLMs may lack the ability for precise maintenance and operational decisions. This poses
significant challenges for text analysis and generation in specialized domains. Although
fine-tuning pretrained models by adjusting parameters presents a potential solution, it
becomes increasingly resource-intensive and time-consuming as model scales grow. To
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enhance the capabilities of LLMs for specialized tasks without the resource-intensive
process of parameter updates, we turn to in-context learning (ICL).

ICL is particularly advantageous, as it can enhance the capabilities of LLMs for spe-
cialized tasks without parameter updates. By doing so, the excessive resource consump-
tion issue associated with traditional fine-tuning methods is avoided. While employing
LLMs for domain-specific text analysis, it often results in suboptimal performance without
the guidance of task-related information. By using knowledge from a specific domain,
a domain-specific knowledge graph (DSKG) [3] can be constructed for the analysis of
domain-specific text. The DSKG provides a structured repository of knowledge that can
be integrated with LLMs, thereby supplementing LLMs with high-quality demonstrations
through ICL. This integration is expected to significantly improve the models’ performance
in the specific domain. In this paper, we delve into a specific domain problem—the text-
based analysis of causes behind wind turbine faults. We are motivated to investigate the
applicability of ICL for domain-specific text analysis, questioning whether it can yield
satisfactory results in this domain-specific analysis.

In this paper, we focus on the text-based analysis of causes behind equipment failures,
investigating the applicability of ICL for such domain-specific text analysis. We introduce
the KG-ICL method, a prompt-driven approach [4,5] that enhances the linguistic analytical
capabilities of LLMs by incorporating structured knowledge from a DSKG tailored for
equipment diagnostics [6]. Firstly, the approach begins with the creation of a DSKG, which
serves as the foundation for retrieving specialized information. During the construction
of the DSKG [7], a dilated gated convolutional neural network (DGCNN) is utilized to
perform long-length entity and relationship extraction, particularly tailored to the unique
characteristics of fault texts. Secondly, to retrieve task-relevant subgraphs from the DSKG,
we propose the long-length entity similarity (LES) metric, which enhances the relevance
of the retrieved knowledge. Thirdly, based on defined rules and domain-specific insights,
prompts are generated for the specific domain, forming the basis on which LLMs provide
feedback. Finally, we present various experiments applying the proposed KG-ICL method
to fault cause analysis. We test three different prompt scenarios and nine different LLMs
to validate the effectiveness of the task-relevant prompts generated by our method. The
results demonstrate that with the KG-ICL method, LLMs across different parameter scales
show improved performance, with accuracy increases ranging from 1% to 4.8%, confirming
the effectiveness of our method.

The contributions of this article are as follows.

• We construct a unique fault text dataset that includes domain-specific expertise. This
dataset includes approximately 1000 instances that encompass fault modes, causal
analyses, and maintenance strategies. This dataset summarizes expert diagnostic
knowledge, compensating for the lack of general availability of fault text datasets.

• We introduce KG-ICL, a method designed for fault cause analysis. We employ a
DGCNN to construct a DSKG and use the LES metric to retrieve task-related knowl-
edge. By means of predefined prompt templates, we obtain task-related demon-
strations. Through KG-ICL, the structured knowledge contained in a knowledge
graph (KG) can be provided to LLMs, offering them a referenceable background of
domain-specific expertise for text analysis.

• We apply the KG-ICL method in a specific domain as an example, thereby validating
the feasibility and soundness of the proposed approach in practical applications.
Through a series of experiments, we systematically compare the performance of three
types of prompts—without prompts, domain-relevant but not task-related prompts,
and task-related prompts—using various LLMs.

The remainder of this article is organized as follows. Section 2 reviews related works
on ICL, LLMs, and KGs. In Section 3, we detail the proposed KG-ICL method. Section 4
outlines our experimental settings and the results. In Section 5, we discuss and analyze the
results of the experiments. Finally, Section 6 concludes this paper and highlights avenues
for future research.
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2. Related Work
2.1. LLMs and In-Context Learning

ICL [8] is distinguished by the fact that it does not involve attempting to modify model
parameters but rather focuses on exploring methods that can effectively bring out the
hidden capabilities of LLMs. The challenge here lies in designing appropriate prompts. In
previous research, scholars have pursued two distinct types of prompt mechanisms: soft
prompts and hard prompts [9,10]. Some approaches involve the generation of hard prompts
based on predefined rules [11], while others use generative models to create prompts [12]
that are more finely tuned. The main limitation of hard prompts is their potential to stifle
a model’s creativity, leading to less diverse generated text. Nevertheless, in specialized
domains, the need for diversity in the generated results is not particularly emphasized.
In contrast, continuous prompts (or soft prompts) no longer involve specific tokens but
rather employ pseudotokens [13–15], which lack inherent meaning. Accordingly, such
parameterized continuous prompts may exhibit limitations in terms of both interpretability
and readability.

The design of the verbalizer also significantly influences the performance of an LLM.
With the introduction of a KG, it becomes feasible to bypass manual selection of label words
through the integration of external knowledge [16]. However, the means of introducing
structured knowledge from a KG during prompt generation has yet to be explored.

Regarding on how ICL functions in the prediction process, Min et al. [17] posited that
LLMs acquire patterns of label distribution and data organization from demonstrations.
This occurs independently of the correlation between sample prompts and label words.
However, in subsequent research by Yoo et al. [18], the authors contended that the ground-
truth labels exhibit a significant correlation with the final performance.

2.2. KGs and LLMs

In general, the knowledge in KGs is called structured knowledge, while the knowledge
stored in LLMs is known as parameterized knowledge. In practical applications, there is no
strict upstream–downstream relationship between LLMs and KGs. For instance, pretrained
Transformers can be employed for cross-domain KG completion [19,20]. The integration of
LLMs and KGs can also take different forms, such as KG-enhanced LLMs or collaborative
interaction. DeepKE-LL [21], originating from the fine-tuning of Large Language Model
Meta AI (LLaMA) using low-rank adaptation (LoRA), parses data to accomplish knowledge
extraction tasks. It also constructs an instruction-based fine-tuning dataset to enhance
the capacity of LLMs for domain-specific knowledge extraction. KEPLER [22] adopts a
shared Transformer-based encoder that incorporates a KG. K-BERT [23] introduces triplets
into sentences using a visibility matrix to infuse LLMs with structured knowledge. The
structured domain knowledge of the sentences is introduced in the embedding stage
through the visibility matrix.

ERNIE [24] introduces a dual-stacked encoder to unify heterogeneous information
from tokens and entities into a united space. KagNet [25] enhances input text repre-
sentations by encoding KGs, thereby improving the capabilities of LLMs. REALM [26]
employs knowledge retrieval to assist LLMs in acquiring knowledge from corpora during
pretraining, resulting in notable performance enhancements in open-domain Q&A tasks.

As summarized above, many studies have explored enhancing the performance of
LLMs using KGs from various perspectives. However, in specialized domains where
higher accuracy and deep expertise are essential, general-purpose methods often fall short.
These methods may misinterpret or oversimplify specialized terminology, fail to recognize
uncommon relationships, or overlook critical domain-specific insights. Existing approaches
often struggle to effectively integrate and apply the necessary prior knowledge, leading to
suboptimal performance in tasks that require specialized expertise. Therefore, developing
a more effective approach to integrating KGs with LLMs for domain-specific applications
remains an area worthy of further exploration.
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3. Methodology

In this section, we present the details of the proposed KG-ICL method for fault cause
analysis [27]. The main flowchart is illustrated in Figure 1. We start by presenting the
curation of a new dataset from collected fault records. Then, the design of KG-ICL and
how it works are illustrated. Finally, we demonstrate how we reshape the task format
into a multiple-choice format to streamline the evaluation process and efficiently apply
constraints to the outputs of LLMs.

Figure 1. Process of KG-ICL. This process encompasses KG construction (Step one), relevant subgraph
matching (Step two), and prompt generation (Step three). Ultimately, we utilize the generated
prompts to assist LLMs in arriving at accurate conclusions for fault cause analysis (Step four).

3.1. Dataset

To investigate the application of KG-ICL, we utilize diagnostic text data obtained from
sensor networks. These records, which are made up of fault maintenance narratives pro-
vided by specialized personnel on site, provide a direct insight into the operational health
of the equipment through textual descriptions derived from sensors. A comprehensive
record includes four essential pieces of information: fault mode, cause of the fault, location
of the fault, and maintenance strategy. To build an effective DSKG, the key entities and
relationships within the field are identified.
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The raw fault records comprise a total of 3200 fault texts. Through meticulous manual
screening, we removed incomplete, inaccurate, and duplicated records. Ultimately, we
refined the dataset to consist of 948 curated fault records. The dataset is divided into two
different subsets, with no duplicate data:

• Dg: dataset for DSKG construction.
• Dt: dataset for testing.

The partitioning of these two datasets was carried out in a randomized manner, with
a ratio of approximately 5:1. More precisely, Dg encompasses 760 texts, while Dt contains
188 texts. Using the test data set as an example, we performed a statistical analysis on the
distribution of fault locations within the data set.

3.2. DSKG Construction

Here, we introduce the construction of the DSKG. We design a logically organized
schema layer. In addition, we provide detailed information on the strategies used to retrieve
subgraphs of interest from the DSKG and to generate task-related demonstrations. Finally,
we outline how KG-ICL is employed to address domain-specific practical tasks.

3.2.1. Schema Layer

A top-down approach is adopted to construct the DSKG. During the schema design
process, domain-specific rules [28] and abstract concepts are integrated into a unified frame-
work. We extract information, including fault modes, causes, locations, and maintenance
strategies, from the well-organized Dg dataset to help design the schema layer of the DSKG
based on predefined rules [29]. The schema layer consists of two interacting sublayers: the
equipment-related schema layer and the fault-related schema layer.

We design the equipment-related schema layer to account for the actual equipment
structure of devices. This information is organized within the DSKG in a tree-like structure
that mirrors the actual equipment hierarchy. The fault-related schema layer is composed of
fault entities extracted from the dataset and interacts with the equipment-related schema
layer [30,31], as shown in Figure 2.

Figure 2. Schema layer of the DSKG. The schema layer is divided into two main parts: an equipment-
related sublayer and a fault-related sublayer.

3.2.2. Construction of the DSKG

A KG is typically represented as a set of triples of the form (ei, rk, ej), where ei and ej
denote entities and rk denotes the relationship between them.
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In dataset Dg, each text is represented as X = {x1, x2, x3, ..., xn}, where xi represents
a token in the text. We extract information from the text regarding fault modes em

i , fault
causes ec

i , and maintenance strategies es
i .

E = {em
i , ec

i , es
i } = fNER(X) (1)

R = {rk} = fRE(X) (2)

Considering the existence of long-length entities in Dg, we employ a DGCNN to
extract long-length entities and their relationships. The DGCNN architecture includes a
gating mechanism and dilated convolution to achieve long-length entity extraction.

Gating mechanism:

Y = ConvD1(X)⊗ σ(ConvD2(X)) (3)

Additive self-attention:

x = Encoder(x1, x2, ..., xn) =
n

∑
i=1

λixi (4)

λi = so f tmax(α⊤tanh(Wxi)) (5)

Here, α and W denote trainable parameters. The process of constructing the DSKG is
summarized in Algorithm 1.

Algorithm 1 Process of Building DSKG

Input: Dataset Dg
Output: SPO list of entities and relationships

1: triplets = []
2: for text ∈ Dg do
3: // Tokenizing
4: text_embedding = Tokenizer(text)
5: // Parse the sentence to identify subject, predicate, and object
6: spos = DelitedGatedCNN(text_embedding)
7: for spo ∈ spos do
8: (subject, predicate, object) = spo
9: // Create a triplet and add it to the list

10: triplet = (subject, predicate, object)
11: triplets.append(triplet)
12: end for
13: end for
14: return triplets
15: //Build DSKG using pyneo and Neo4J
16: DSKG_Construction(triplets)

We have already defined the attributes and relationships of nodes within the KG in
the schema layer. After the extraction of entities and relationships, the schema layer is
mapped onto the data layer. The data are stored in a Neo4J graph database, completing the
construction of the DSKG. After the integration of the fault information from the dataset
into a DSKG, the final graph comprises 1800 entities and 3353 relationships [32]. Figure 3
shows a visual representation of the DSKG.
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Figure 3. Part of a DSKG. Different colors in the figure represent different types of nodes, a total of
1800 nodes (⋆), the number of different nodes is also indicated in the legend

3.3. Prompt Construction

After the construction of the DSKG, the next step involves refining the task workflow
for practical applications. For each task in Dt, a relevant subgraph is retrieved from the
DSKG. Furthermore, the task format is adjusted to simplify the evaluation process while
maximizing the utilization of structured information from the DSKG.

3.3.1. Subgraph Retrieval

For practical purposes, potentially relevant information must be extracted from the
DSKG. To this end, we carefully choose the most pertinent parts of the graph through a
subgraph matching process to obtain the subgraph of interest [33], as shown in Figure 4.

The entities pertaining to the test task are extracted utilizing the DGCNN as previously
discussed. Subsequently, BERT-BiLSTM is employed for coarse-grained classification of
these entities to distinguish those that contain fault-related information. This allows us
to obtain fault information about relevant equipment based on segmentation. Additional
details regarding the subgraph retriever are shown in Figure 5.
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Figure 4. Subgraph retrieval. Subgraph retrieval is carried out mainly by means of a subgraph
retriever. The process includes (a) data input, (b) KG query, (c) data filtering, and (d) subgraph
generation. The white nodes represent entities within the knowledge graph, while the yellow and
green nodes denote task-relevant nodes. Among these, the yellow nodes exhibit a higher degree of
relevance to the current task.

Figure 5. Subgraph retriever. (a) Coarse-grained classification is performed on the long-length entities
extracted from the input text to determine whether they contain fault information. (b) Next, we
perform word segmentation to obtain equipment-related information and (c) identify potentially
relevant parts of the DSKG. (d) Finally, the relevant subgraph is obtained based on similarity to
retrieve the information of interest.
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For dealing with long-length entities in the DSKG, the long-length entity similar-
ity (LES) metric is introduced to identify highly relevant matching results. Given a
long-length entity phrase qt and a list of long-length entities to be matched, denoted by
Q = (q1, q2, ..., qn), the similarity score between two entities is calculated as follows:

pi = f (qt, qi) = ε × ζ(qt, qi) + (1 − ε)× γ(qt, qi) (6)

Here, the parameter ε is adjustable. ζ(∗) represents the cosine similarity based on the
sentence embeddings, and γ(∗) denotes the similarity in terms of the longest common
subsequence (LCS):

ζ(qt, qi) = cos(SentenceEmbedding(qt, qi)) (7)

γ(qt, qi) = roughl(qt, qi) (8)

The cosine similarity is a commonly used metric, and the LCS similarity is calculated
as follows:

roughl(qt, qi) =
(1 + β2)× ξ2

m×n
ξ
m + β2 × ξ

n

(9)

Here, ξ represents the length of the longest common subsequence. m represents the
length of qt, and n is the length of qi. In our experiments, the parameter β is set to 1.

3.3.2. Prompt Construction

For the task text to, we organize the retrieved subgraph into k relevant demonstrations
ψ(Ti), which have a format similar to that of the input text.

ψ(Ti) : (t1, N1), (t2, N2), · · · , (tk, Nk) (10)

In each demonstration, N is a set containing the correct answer. Similarly, for the input
text, the subgraph is utilized to generate the corresponding answers Nto [34]. Given the
task-related demonstrations, we expect LLMs to make the correct selection and return the
index of the best answer nto [35–37].

nto = argmaxn∈Nto
P(n|t1, N1, t2, N2, · · · , tk, Nk, to) (11)

The input format for prompts with demonstrations is shown in Figure 6.

Figure 6. Prompt template.
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4. Experiments
4.1. Experimental Setting

To validate the effectiveness of the KG-ICL method, we design a series of experiments
involving LLMs of various sizes and different types of tasks. We compare the performance
of task prompts generated using the KG-ICL method against traditional random prompts.
The experimental results demonstrate the potential of the KG-ICL method to enhance the
causal analysis capabilities of LLMs in the field of equipment diagnostics. In the subgraph
retrieval process, the parameter ε is set to 0.6. Regarding the demonstrations, there are
k = 10 demonstrations corresponding to each text in the test dataset.

In these experiments, demonstrations are generated using the DSKG. We use the
random domain-related demonstrations as an alternative to conventional demonstrations
for experimentation. Demonstrations that are related to the given task are referred to as
task-related demonstrations. Three types of experiments are conducted: no demonstrations,
domain-related demonstrations, and task-related demonstrations.

No demonstrations. All demonstrations are removed to evaluate the performance of
the LLMs when no demonstration data are available.

Domain-related demonstrations. Random demonstrations are used as demonstrations
for tasks, and the scale of the demonstrations for each task is the same as in KG-ICL. This
experiment serves as a control experiment representing common methods without the use
of KGs.

Task-related demonstrations. Task-related demonstrations are generated through
the KG-ICL method, which are highly relevant to the specific task. This experiment is
conducted to evaluate the proposed KG-ICL method.

Considering the available hardware resources at our disposal, we choose a selection
of commonly used LLMs for use in these experiments. To comprehensively evaluate the
performance of the proposed KG-ICL method, we include LLMs with parameter scales
ranging from 700 M to 1.8 T.

Our aim is to illustrate the effectiveness of KG-ICL. Considering differences in archi-
tecture and training corpora, we compare several LLMs, noting their versions, training
strategies, and parameter scales for fair evaluation.

We choose several Chinese LLaMA models, a Chinese Vicuna model that was fine-
tuned based on LLaMA, and Chinese Alpaca models that were further fine-tuned based
on LLaMA with instructions specific to our experiments. In this series of models, 20k
words are added to the original LLaMA dictionary, enhancing the model’s ability to process
and generate.

We also report comparative experiments conducted with the highly acclaimed GPT-4
as well as similar models such as GPT-3.5 and GPT-2-Large [38,39].

The selected LLMs and their parameter scales are listed in Table 1.

Table 1. The LLMs utilized in the experiments, including GPT-2-Large, Chinese Vicuna, Chinese
LLaMA, Chinese Alpaca, GPT-3.5, GPT-4, and the size of their parameters.

Model Params Model Params

GPT-2-Large 774 M Chinese-Alpaca-pro 7 B
Chinese-Vicuna 7 B Chinese-Alpaca-pro 13 B

Chinese-LLaMA-plus 7 B Chinese-Alpaca-pro 33 B
Chinese-LLaMA-plus 13 B ChatGPT (GPT-3.5) 175 B
Chinese-LLaMA-plus 33 B GPT-4 1.8 T

4.2. Evaluation

For the evaluation of the results, we rely on manual assessments performed by domain
experts to determine the accuracy of the outputs. Before presenting the evaluation results,
we first establish a standardized and clear set of criteria to judge the outputs of the LLMs.
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E: Error. The result is entirely incorrect, including both the identification of the fault
cause and the identification of the fault location.

P: Position Correct. The analysis correctly identifies the fault location, but the analysis
of the fault cause is incorrect.

C: Cause Correct. The result is correct, including both the analysis of the fault cause
and the identification of the fault location.

Accuracy of Position Correct:

ACCPositionCorrect =
P + C

P + C + E
(12)

Accuracy of Cause Correct:

ACCCauseCorrect =
C

P + C + E
(13)

4.3. Results

The results of experiments based on different values of k are presented in Table 2.
The LLMs were tested under conditions of k = 1, 3, 5, 8, and 10 [40] to assess the model
performance with varying numbers of demonstrations. We compare the standard ICL
method (domain-related demonstrations) with the task-related demonstrations generated
by our KG-ICL method to examine the impacts of the different types of demonstrations on
model performance.

The results of experiments when k is set to 10 are presented in Table 3 and Figure 7,
encompassing different LLMs and three variations of ICL.

To present the experimental results in a clear way, the confusion matrix derived from
the results [41] is illustrated in Figure 8. This confusion matrix reflects the results of the
experiments when the parameter k is set to 10.

Table 2. Test results with different numbers of demonstrations k.

Model k Method ACCCauseCorrect ACCPositionCorrect Method ACCCauseCorrect ACCPositionCorrect

1-shot 0.307 0.529 0.280 0.540
3-shot 0.275 0.556 0.270 0.561

GPT-2-Large 5-shot ICL 0.270 0.571 KG-ICL 0.259 0.582
8-shot 0.275 0.603 0.270 0.614

10-shot 0.296 0.624 0.291 0.635

1-shot 0.286 0.582 0.286 0.593
3-shot 0.312 0.603 0.296 0.614

Chinese-Vicuna 5-shot ICL 0.360 0.630 KG-ICL 0.413 0.646
8-shot 0.413 0.646 0.354 0.651

10-shot 0.397 0.661 0.407 0.677

1-shot 0.228 0.503 0.254 0.508
3-shot 0.228 0.540 0.259 0.545

Chinese-LLaMA-7B 5-shot ICL 0.275 0.545 KG-ICL 0.243 0.550
8-shot 0.212 0.561 0.243 0.571

10-shot 0.259 0.571 0.280 0.603

1-shot 0.291 0.577 0.286 0.582
3-shot 0.296 0.587 0.275 0.593

Chinese-LLaMA-13B 5-shot ICL 0.254 0.603 KG-ICL 0.270 0.614
8-shot 0.302 0.614 0.333 0.624

10-shot 0.307 0.635 0.317 0.661

1-shot 0.312 0.582 0.270 0.603
3-shot 0.296 0.619 0.280 0.630

Chinese-LLaMA-33B 5-shot ICL 0.333 0.640 KG-ICL 0.296 0.656
8-shot 0.360 0.667 0.333 0.656

10-shot 0.349 0.672 0.376 0.688

1-shot 0.238 0.534 0.243 0.540
3-shot 0.275 0.550 0.280 0.556

Chinese-Alpaca-7B 5-shot ICL 0.243 0.550 KG-ICL 0.238 0.566
8-shot 0.275 0.550 0.286 0.582

10-shot 0.296 0.582 0.317 0.614
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Table 2. Cont.

Model k Method ACCCauseCorrect ACCPositionCorrect Method ACCCauseCorrect ACCPositionCorrect

1-shot 0.323 0.667 0.418 0.677
3-shot 0.349 0.698 0.354 0.704

Chinese-Alpaca-13B 5-shot ICL 0.397 0.709 KG-ICL 0.339 0.720
8-shot 0.360 0.720 0.370 0.725

10-shot 0.386 0.741 0.397 0.767

1-shot 0.360 0.661 0.370 0.667
3-shot 0.354 0.683 0.418 0.688

Chinese-Alpaca-33B 5-shot ICL 0.365 0.693 KG-ICL 0.365 0.704
8-shot 0.402 0.714 0.392 0.720

10-shot 0.418 0.720 0.439 0.735

1-shot 0.386 0.693 0.402 0.720
3-shot 0.354 0.725 0.429 0.730

ChatGPT-3.5 5-shot ICL 0.365 0.741 KG-ICL 0.429 0.746
8-shot 0.418 0.746 0.413 0.757

10-shot 0.418 0.772 0.429 0.783

1-shot 0.455 0.741 0.423 0.751
3-shot 0.429 0.772 0.450 0.767

GPT-4 5-shot ICL 0.450 0.772 KG-ICL 0.434 0.783
8-shot 0.466 0.794 0.476 0.794

10-shot 0.460 0.799 0.476 0.831

Table 3. Results with no demonstrations, domain-related demonstrations (ICL), and task-related
demonstrations (KG-ICL) (10-shot prompts).

Accuracy Method GPT-2-Large Chinese-Vicuna LLaMA-7B

ACCCauseCorrect

No demonstrations 0.254 0.296 0.212
ICL 0.249 0.360 0.243

KG-ICL 0.270 0.397 0.275

ACCPositionCorrect

No demonstrations 0.513 0.614 0.534
ICL 0.556 0.630 0.571

KG-ICL 0.577 0.661 0.635

Accuracy Method LLaMA-13B LLaMA-33B Alpaca-7B

ACCCauseCorrect

No demonstrations 0.148 0.328 0.249
ICL 0.238 0.349 0.259

KG-ICL 0.265 0.376 0.270

ACCPositionCorrect

No demonstrations 0.593 0.577 0.656
ICL 0.640 0.672 0.667

KG-ICL 0.667 0.688 0.683

Accuracy Method Alpaca-13B Alpaca-33B GPT-3.5

ACCCauseCorrect

No demonstrations 0.296 0.360 0.386
ICL 0.365 0.370 0.365

KG-ICL 0.397 0.392 0.413

ACCPositionCorrect

No demonstrations 0.630 0.651 0.677
ICL 0.698 0.667 0.741

KG-ICL 0.709 0.709 0.757

Accuracy Method GPT-4

ACCCauseCorrect

No demonstrations 0.413
ICL 0.460

KG-ICL 0.476

ACCPositionCorrect

No demonstrations 0.730
ICL 0.799

KG-ICL 0.831
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Figure 7. Accuracy in terms of Position Correct and Cause Correct outcomes (k = 10).

(a) GPT-2-Large (ICL) (b) GPT-2-Large (KG-ICL) (c) Vicuna (ICL) (d) Vicuna (KG-ICL)

(e) LLaMA-7B (ICL) (f) LLaMA-7B (KG-ICL) (g) LLaMA-13B (ICL) (h) LLaMA-13B (KG-ICL)

Figure 8. Cont.
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(i) LLaMA-33B (ICL) (j) LLaMA-33B (KG-ICL) (k) Alpaca-7B (ICL) (l) Alpaca-7B (KG-ICL)

(m) Alpaca-13B (ICL) (n) Alpaca-13B (KG-ICL) (o) Alpaca-33B (ICL) (p) Alpaca-33B (KG-ICL)

(q) GPT-3.5 (ICL) (r) GPT3.5 (KG-ICL) (s) GPT-4 (ICL) (t) GPT-4 (KG-ICL)

Figure 8. The confusion matrix of the results (k = 10). A more intense blue color signifies a higher proportion.

5. Discussion

The results in Table 2 show an improvement in the model performance with an
increase in the number of demonstrations. This indicates a positive correlation between
model performance and the quantity of demonstrations provided. Additionally, under the
same number of demonstrations, the models perform better when the KG-ICL method is
introduced. Next, to compare the enhancement in model performance enabled by KG-ICL,
we specifically analyze and compare our results based on the condition of k = 10.

As shown in Table 3, there is a consistent increase in precision with an increasing
number of model parameters, which is in line with our expectations. However, our primary
focus lies in understanding how LLMs perform under different variations in the ICL.
Thus, we wish to assess the extent to which our proposed KG-ICL method enhances the
performance of LLMs in domain-specific applications.

Table 4 presents the performance of the LLMs under the three different ICL variations—
no demonstrations, domain-related demonstrations, and task-related demonstrations—
based on the Position Correct criterion. Table 4 shows that under the Position Correct
criterion, the performance of LLMs with domain-related demonstrations is 1.0–11.6% better
than the performance with no demonstrations. Consequently, under the proposed KG-ICL
method, the performance of the LLMs given tasks-related demonstrations is higher than
that of domain-related demonstrations, with enhancements ranging from 1.1% to 6.9%.
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Table 4. Results in terms of the Position Correct criterion (10-shot prompts). ↑ indicates the percentage
of the result improvement, and the ↓ indicates the opposite.

Models Domain-Related vs. No (%) Task-Related (KG-ICL) vs.
Domain-Related

GPT-2-Large ↑ 11.6 ↑1.1
Chinese-Vicuna ↑1.0 ↑1.6

Chinese-LLaMA-7B ↑1.0 ↑3.2
Chinese-LLaMA-13B ↑9.5 ↑2.6
Chinese-LLaMA-33B ↑9.5 ↑1.6
Chinese-Alpaca-7B ↑6.3 ↑3.2
Chinese-Alpaca-13B ↑11.1 ↑2.6
Chinese-Alpaca-33B ↑6.9 ↑6.9

GPT-3.5 ↑9.5 ↑1.1
GPT-4 ↑6.9 ↑3.2

Similarly, Table 5 presents the performance of the LLMs based on the Cause Correct
criterion. In Table 5, we can again observe that under the Cause Correct criterion, the
performance of the LLMs with domain-related demonstrations is 2.1–12.7% better than with
no demonstrations. Consequently, under the proposed KG-ICL method, the performance
of the LLMs given tasks-related demonstrations is higher than that of domain-related
demonstrations, with enhancements ranging from 1.0% to 2.7%. In particular, for GPT-
2-Large, there is almost no discernible difference in performance between the conditions
of no demonstrations and task-related demonstrations. We attribute this phenomenon
to the relatively small parameter scale of this model, which limits the extent to which
higher-quality demonstrations can enhance its performance.

In the specialized domain, the LLMs consistently exhibit good performance. Em-
ploying a DSKG for prompt generation significantly streamlines the process of prompt
design. These experiments demonstrate that the proposed KG-ICL method excels not only
in delivering demonstrations of the same format but also in generating prompts that are
well aligned with the specific task at hand. Through the utilization of KG-ICL to construct
demonstrations and prompts, a cooperative link between the structured knowledge stored
in a KG and the parameterized knowledge of LLMs can be established for domain-specific
applications.

Table 5. Results in terms of the Cause Correct criterion (10-shot prompts). ↑ indicates the percentage
of the result improvement, and the ↓ indicates the opposite.

Models Domain-Related vs. No (%) Task-Related (KG-ICL) vs.
Domain-Related

GPT-2-Large ↑7.9 ↓0.5
Chinese-Vicuna ↑12.7 ↑1.0

Chinese-LLaMA-7B ↑1.6 ↑2.1
Chinese-LLaMA-13B ↑4.2 ↑1.0
Chinese-LLaMA-33B ↑2.1 ↑2.7
Chinese-Alpaca-7B ↑9.0 ↑2.1
Chinese-Alpaca-13B ↑9.0 ↑1.1
Chinese-Alpaca-33B ↑5.8 ↑2.1

GPT-3.5 ↑3.2 ↑1.1
GPT-4 ↑4.7 ↑1.6

5.1. Cross-Validation Experiments

To further validate the robustness of our KG-ICL method, we have incorporated
cross-validation experiments. These experiments involve partitioning the dataset into four
different subsets, with each subset being utilized as a test set in turn, while the others are
employed for DSKG construction.

Experiments are executed using the Chinese-Alpaca-33B, with four different test
datasets drawn at random without repetition. These experiments consistently align with
our previous results, as detailed in Table 6.
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Table 6. Cross-validation experiments.

Dataset ACCCause Correct ACCPosition Correct

D_g, D_t 0.439 0.735
D_g1, D_t1 0.444 0.741
D_g2, D_t2 0.434 0.730
D_g3, D_t3 0.444 0.725

5.2. Ablation Study on the LES Component

The proposed LES component plays an important role in the KG-ICL method proposed
in this study, aiming to enhance KG retrieval for specialized-domain texts by considering
the similarity between long-length domain entities. To validate the effectiveness and
necessity of the LES calculation, a series of ablation experiments were conducted.

We designed a comparative experiment by removing the LES component from the
KG-ICL method and instead using the similarity of sentence embedding. In this scenario,
the model fails to fully capture the semantic relationships between entities, potentially
leading to suboptimal performance in text analysis.

Subsequently, we conducted comparisons across multiple LLMs, comparing the per-
formance of the KG-ICL method with and without the inclusion of the LES component,
as shown in Table 7. The introduction of the LES significantly improves the accuracy and
relevance of KG retrieval, especially when dealing with entities from a specialized domain,
achieving enhanced effects compared to traditional methods.

These ablation experiment results confirm the indispensability of the LES component
in the KG-ICL method, demonstrating its effectiveness for text analysis.

Table 7. Ablation experiments on the LES component.

Model
1-Shot 3-Shot 5-Shot 8-Shot 10-Shot

KG-ICL KG-ICL
(LES) KG-ICL KG-ICL

(LES) KG-ICL KG-ICL
(LES) KG-ICL KG-ICL

(LES) KG-ICL KG-ICL
(LES)

GPT-2-Large 0.513 0.540 0.556 0.561 0.561 0.582 0.587 0.614 0.603 0.635
Chinese-Vicuna 0.571 0.593 0.603 0.614 0.624 0.646 0.646 0.651 0.661 0.677

LLaMa-7B 0.492 0.508 0.503 0.545 0.534 0.550 0.556 0.571 0.566 0.603
LLaMa-13B 0.556 0.582 0.577 0.593 0.593 0.614 0.603 0.624 0.640 0.661
LLaMa-33B 0.571 0.603 0.624 0.630 0.640 0.656 0.651 0.656 0.677 0.688
Alpaca-7B 0.524 0.540 0.550 0.556 0.556 0.566 0.577 0.582 0.608 0.614

Alpaca-13B 0.640 0.667 0.693 0.704 0.704 0.720 0.709 0.725 0.741 0.767
Alpaca-33B 0.651 0.667 0.677 0.688 0.683 0.704 0.709 0.720 0.714 0.735

GPT-3.5 0.693 0.720 0.725 0.730 0.741 0.746 0.751 0.757 0.767 0.783
GPT-4 0.735 0.751 0.757 0.767 0.772 0.783 0.794 0.794 0.815 0.831

6. Conclusions

This paper presents an innovative KG-ICL method, designed to enhance the causal
analysis capabilities of LLMs for processing texts within the equipment diagnostics do-
main. By constructing a DSKG and integrating an LES, our approach provides LLMs
with structured knowledge, significantly improving their accuracy and efficiency in equip-
ment diagnostics. The performances of nine different LLMs are compared in experiments
employing three distinct types of ICL demonstrations.

Our experimental results demonstrate that, compared to traditional ICL methods, the
KG-ICL method consistently outperforms across various tasks, confirming its effectiveness
and feasibility in practical applications.

Our study offers some helpful insights regarding the use of KGs and LLMs in domain-
specific applications:

• Enriching prompt templates with KGs yields superior results in terms of demonstra-
tion quality compared to manual approaches.

• The integration of KGs when generating prompts leads to more task-relevant prompts.
• The integration of structured knowledge from KGs into prompts enhances the accuracy

of the content generated by LLMs.
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In conclusion, our research presents an approach that facilitates the integration of KGs
and LLMs. Through this method, we have successfully demonstrated the application of
KG-enhanced prompts for LLMs in specialized domains, achieving satisfactory results in
equipment diagnostics. The KG-ICL method introduces a new technological tool for text
analysis within this domain, providing an innovative solution for equipment maintenance.
Furthermore, the modular and flexible design of this method ensures its high scalability and
adaptability, enabling it to address the ever-evolving challenges in equipment diagnostics.
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