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Abstract: Existing autonomous driving systems face challenges in accurately capturing
drivers’ cognitive states, often resulting in decisions misaligned with drivers’ intentions.
To address this limitation, this study introduces a pioneering human-centric spatial cog-
nition detecting system based on drivers’ electroencephalogram (EEG) signals. Unlike
conventional EEG-based systems that focus on intention recognition or hazard perception,
the proposed system can further extract drivers’ spatial cognition across two dimensions:
relative distance and relative orientation. It consists of two components: EEG signal pre-
processing and spatial cognition decoding, enabling the autonomous driving system to
make more contextually aligned decisions regarding the targets drivers focus on. To en-
hance the detection accuracy of drivers’ spatial cognition, we designed a novel EEG signal
decoding method called a Dual-Time-Feature Network (DTFNet). This approach integrates
coarse-grained and fine-grained temporal features of EEG signals across different scales and
incorporates a Squeeze-and-Excitation module to evaluate the importance of electrodes.
The DTFNet outperforms existing methods, achieving 65.67% and 50.65% accuracy in
three-class tasks and 84.46% and 70.50% in binary tasks. Furthermore, we investigated the
temporal dynamics of drivers’ spatial cognition and observed that drivers’ perception of
relative distance occurs slightly later than their perception of relative orientation, providing
valuable insights into the temporal aspects of cognitive processing.

Keywords: electroencephalogram (EEG); automatic driving; spatial cognition; human–
machine cooperation

1. Introduction
With the rapid development of autonomous driving technology, its application has

become feasible in relatively simple environments. However, there are still many prob-
lems with autonomous driving technology, and it is still a long way from being fully
applied [1–5]. For instance, current autonomous driving systems are highly susceptible to
adverse weather conditions [1,2]. Moreover, when confronted with unexpected obstacles
or emergencies on the road, these systems often struggle to make accurate judgments and
respond promptly [3]. Failures in software or hardware components can further lead to
severe safety risks [4]. These technical limitations necessitate human intervention in current
autonomous driving systems [5]. In addition to safety challenges, existing autonomous
driving technologies frequently fall short in ensuring driver comfort, particularly in achiev-
ing “human-like” driving behaviors. This disconnect can result in discrepancies between
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system decisions and driver expectations, leading to discomfort, anxiety, or even traffic
accidents [6].

To address these challenges, a promising solution involves developing human-centric
assistant driving systems based on electroencephalogram (EEG) signals [7]. By introducing
the cognition of drivers into the driving system, it is possible to enhance both the safety
and comfort of autonomous driving [8,9]. EEG, as a commonly utilized physiological
signal, captures valuable cognitive information about drivers. It reflects their perception
and understanding of the environment, offering insights into processes such as perception,
judgment, and decision-making. As a reliable source of reference for autonomous driving
systems, EEG data can effectively compensate for the limitations of onboard sensors [10].

Several studies about the EEG-based human-centric assistant driving system have been
published in recent years [11–26], and most of them focus on drivers’ intention detection
and hazard perception. Haufe et al. achieved a prediction 130 ms before the actual braking
event using a linear discriminant analysis (LDA) classifier [11]. Zhang et al. proposed a
model that includes hypergraph convolution for feature extraction, which outperforms
the baseline in detecting various types of driving intentions, with an accuracy rate of
74.40% [13]. Teng et al. proposed an LDA model based on spatial-frequency features of
EEG for detecting emergency braking intentions, achieving an accuracy of up to 94% [16].
As for driver’s hazard perception, a hazard perception classifier based on EEG signals
was developed for the scenario where pedestrians cross the road [19]. The low-frequency
activities in EEG signals were found to increase when a vehicle cut in, which could be
used to predict the cutting-in behavior of other vehicles [21]. Zhang et al. proposed an
improved neural network intersection collision prediction model based on EEG indicators
and driving behaviors [24].

However, focusing only on these two aspects is far from enough to help the driving
system make effective decisions and improve ride comfort. With the development of
relevant research, researchers found that hazards occurring in different locations can also
trigger different neural responses. Li et al. found that hazards in the peripheral visual
area can induce larger amplitude EEG signal components than those in the central visual
area [27]. Wang et al. found that the brain activities triggered by lateral risks are stronger
than those triggered by longitudinal risks using fNIRS [28]. These studies indicate that the
spatial cognition of drivers can be reflected in neuroimaging techniques.

This study established a human-centric spatial cognition detecting system based on
drivers’ electroencephalogram signals for autonomous driving. By decoding the drivers’
spatial cognition, the driving system can set a more comfortable following distance and
keep the vehicle within the safe range perceived by the drivers based on the position of the
target that the driver is paying attention to. And it is no longer necessary to decode the
drivers’ intention and hazard perception. However, there is no current research on spatial
cognition detecting in driving scenarios based on EEG signals. Most of the EEG-based
spatial cognition studies are based on simple scenes [29–32]. Kastrati et al. proposed
EEGEyeNet, which is an EEG signal dataset for decoding gaze positions; by establishing
the mapping relationship between EEG signals and annotated positions, it is possible to
initially detect human spatial cognition [29]. Himmelberg et al. discovered that EEG signals
can be utilized to decode the 3D movement direction of the observed target [31]. These
studies have confirmed the feasibility of detecting spatial cognition from EEG signals.

To the best of our knowledge, this study is the first to explore and investigate the
extraction of drivers’ spatial cognition based on EEG signals, addressing a critical gap in
this research domain. We demonstrate the feasibility of detecting drivers’ spatial cognition,
establishing a foundation for future advancements in this field. The key contributions of
this study are as follows:
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• Pioneering a human-centric spatial cognition detecting system based on EEG signals:
This study introduces an EEG-based driver spatial cognition detecting system for
the first time, which can equip the autonomous driving technology with high-level
human spatial cognition to enhance its human likeness and comfort. The system can
automatically preprocess EEG signals and decode drivers’ spatial cognition along two
dimensions, namely relative orientation and relative distance, with two components:
EEG signal preprocessing and spatial cognition decoding.

• Proposing an innovative EEG decoding method called a Dual-Time-Feature Net-
work: We designed a novel Dual-Time-Feature Network (DTFNet), which employs a
convolutional module and a gated recurrent unit (GRU) module to extract local and
global temporal features from EEG signals, respectively. Furthermore, DTFNet incor-
porates a Squeeze-and-Excitation (SE) module to assess the importance of different
electrodes, enhancing its ability to capture relevant spatial cognition features.

• Comprehensive evaluation: We conducted comparative experiments across different
traffic environments with varying directions and distances, exploring the temporal
dynamics of drivers’ spatial cognition. To rigorously validate the performance of the
proposed method, we applied a five-fold cross-validation technique to evaluate its
classification effectiveness against multiple baseline approaches.

The rest of this paper is structured as follows: Section 2 introduces the experimen-
tal setup and data process. Section 3 designs the methodology. Section 4 analyzes the
experimental results. Section 5 draws the conclusion and discusses future research.

2. Experimental Procedure and Data Processing
The complete experimental process is shown in Figure 1. Firstly, we recorded both EEG

signals and operational data from participants while they engaged in the spatial cognition
task within a simulated traffic environment. Next, the EEG signals were preprocessed and
divided into epochs, with labels generated based on the operation data and the stimuli.
Finally, we classified the EEG signals using both traditional machine learning models and
deep learning models. For the traditional machine learning models, additional feature
extraction was performed on the EEG signals prior to classification, whereas deep learning
models classified the signals directly. Each procedure of the experimental process is detailed
in the following content.
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Figure 1. Flow diagram of experiment.

2.1. Experimental Platform and Experiment Design
2.1.1. Experimental Platform

As shown in Figure 2a, the experimental platform consists of two computers, an
EEG acquisition device, and a keyboard. Computer 1 operates the driving simulation
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environment, where participants interact using a keyboard to record operational data. The
participants’ EEG signals, which provide insights into their cognitive states, are collected
via the EEG acquisition device. The EEG data are then transmitted to Computer 2 via
Bluetooth for storage and further analysis. To ensure data synchronization between the
two computers and the EEG device, we used the NTP (Network Time Protocol). For this
study, we utilized the CARLA software (Version: Carla 0.9.15) [33] as the driving simulation
environment and designed a circular three-lane map as the experimental setting, as shown
in Figure 2b.
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Figure 2. Driver-in-loop experimental platform. (a) Components of experimental platform and
(b) driving simulation environment in CARLA.

Our EEG acquisition device is the FLEX 2 Gel-32 Channel Wireless EEG Head Cap
System by EMOTIV, which operates at a sampling frequency of 128 Hz and includes
32 acquisition channels. The accompanying software system incorporates a timestamp
correction algorithm that, under optimal wireless connection conditions, reduces corrected
timestamp errors to within ±0.5 ms, with a systemic error of approximately ±5 ms.

2.1.2. Experimental Scene Design

We developed a spatial cognition experiment to collect and analyze participants’ EEG
signals during the driving process. In the experiment, participants drove an autonomous
vehicle from a first-person perspective while maintaining a speed of 30 km/h on the circular
three-lane map for 10 min. The first-person driving perspective is depicted in Figure 2b.
During the experiment, a randomly generated observed vehicle appeared on one of the
three lanes ahead of the autonomous vehicle. Participants were instructed to record their
spatial cognition of the observed vehicle using the keyboard.

The experiment focused on recording data only when the autonomous vehicle was
traveling on straight sections of the map. Participants were allowed to rest while navigating
the curved sections. Each observed vehicle was displayed for 2 s before disappearing, and
the next vehicle was generated after a 0.1 s interval.

As shown in Figure 3, a Cartesian coordinate system was established with the map’s
center as the origin. The coordinates corresponding to the centerlines of the straight sections
of the three lanes on the map are designated as y0, y1, and y2, respectively. The position of
the autonomous vehicle occupied by the participant is designated as (x0, y1), indicating
that the vehicle is always driving in the middle lane. Let the relative distance between
the generated observed vehicle and the autonomous vehicle be denoted as ∆x, and let the
lane be any of the three lanes. The position of the observed vehicle can be represented as
(x0 + ∆x, yk, k ∈ {1, 2, 3}).
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To balance the occurrence probabilities among the three relative distance groups—
short, medium, and long—we defined these categories based on factors such as braking
distance, safe following distance, and observation range during driving [34–37]. The rela-
tive distances were categorized as follows: short range (1–10 m), medium range (10–30 m),
and long range (30–100 m). For each generated observed vehicle, one of these groups
was randomly selected, and the specific relative distance (∆x) was drawn from a uniform
distribution within the selected range.

In this paper, we decoded two spatial cognition dimensions, namely relative distance
and relative orientation simultaneously. Considering that EEG signals contain significant
noise and have a relatively low signal-to-noise ratio [38], we simplified the decoding
tasks to reduce complexity. The relative distance decoding task was framed as a three-class
classification problem—short, medium, and long distance. Similarly, the relative orientation
decoding task was reduced to a three-class classification problem involving the left side,
front, and right side.

2.1.3. Participants

A total of 20 individuals participated in this study. The group consisted of 12 males and
8 females, aged 23 to 30 years. All participants had normal vision and hearing or corrected-
to-normal vision and hearing, with no history of psychiatric or neurological disorders.
Prior to the experiment, participants abstained from consuming any medications, tobacco,
alcohol, or caffeine. Participation was entirely voluntary and conducted during regular
working hours. Participants were informed that they had the right to withdraw from the
study at any time without facing any penalties.

2.1.4. Data Collection

Given that different participants possess varying levels of spatial cognition, we re-
quired participants to indicate their perception of the current relative distance after each
observed vehicle was generated by pressing a key on the keyboard. Keys 1, 2, and 3 corre-
sponded to perceptions of short, medium, and long distances, respectively. Additionally,
we recorded the generation time, disappearance time, and the position coordinates of
both the autonomous vehicle and the observed vehicle for each instance. On average, the
number of valid data collected from each participant is 170.5 epochs.
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2.2. Data Preprocessing and Annotation

The raw EEG data collected during the experiment contained substantial noise, ne-
cessitating preprocessing to enhance data quality [39,40]. Additionally, the EEG signals
were segmented into epochs and annotated to facilitate subsequent analyses and related
experiments.

2.2.1. EEG Data Preprocessing

The preprocessing of EEG data in this study involved data selection, electrode local-
ization, bandpass filtering to remove noise, re-referencing, and independent component
analysis (ICA) for artifact removal.

(1) Data selection and electrode localization: The data exported from our EEG device
includes 116 channels, covering electrode connection quality, frequency data, and
other metrics. For our analysis, we removed extraneous information and selected only
the voltage data from 32 channels, with electrode positions determined according to
the International 10–20 System.

(2) Band-pass filtering for noise removal: A finite impulse response (FIR) filter was
applied to perform bandpass filtering in the range of 0.5 to 40 Hz, reducing noise
interference. For a given input time series, the output of an N-order finite impulse
response filter was calculated in the following manner:

y(n) =
N−1

∑
k=0

h(k)x(n − k) (1)

where h(k) represents the filter coefficients.
(3) Re-referencing: All electrodes in this study were symmetrically distributed. To

minimize the impact of the reference electrode on the experimental data, the EEG data
were re-referenced using the average signal from all electrodes.

(4) ICA for artifact removal: ICA, based on the statistical properties of signals, effectively
separates overlapping EEG signals, removing noise and artifacts from the original
EEG data to enhance data quality.

2.2.2. Data Annotation

After preprocessing the EEG signals, the data were segmented and annotated for
subsequent spatial cognition detecting experiments. The EEG signals were segmented using
the disappearance time of each observed vehicle as the starting time step. A 1.5 s segment,
consisting of 192 time steps including the starting step, was treated as a single dataset.
Next, relative distance labels (short, medium, long) were assigned to the EEG data based
on the participants’ marked distance perceptions. Additionally, relative orientation labels
(left, front, right) were assigned using the recorded positional data of the observed vehicles.

3. Methodology
As described above, our spatial cognition recognition experiment involved two classi-

fication tasks: a three-class classification of relative distance (short, medium, long) and a
three-class classification of relative orientation (left, front, right). To address these tasks,
we designed a novel neural network, DTFNet, to decode the EEG signals effectively.
For comparison, we selected three traditional machine learning methods and three deep
learning-based methods as baselines for the experiments.
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3.1. EEG Feature Extraction

Since traditional machine learning algorithms face challenges in directly processing
high-dimensional data such as raw EEG signals [41], we performed feature extraction on
the EEG signals to reduce the dimensionality of the data. As shown in Figure 4, the EEG
electrodes were evenly distributed across the brain, with each electrode corresponding
to a specific brain region. Based on their positions, the electrodes were categorized into
four regions: frontal, parietal, occipital, and temporal lobes [42]. The specific electrodes
corresponding to each region are listed in Table 1.
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Table 1. Electrode partition.

Region Electrode

Frontal lobe ‘Fp1’, ‘Fp2’, ‘Fz’, ‘F3’, ‘F4’, ‘F7’, ‘F8’, ‘FC1’, ‘FC2’, ‘FC5’, ‘FC6’, ‘FT9’, ‘FT10’
Parietal lobe ‘Cz’, ‘C3’, ‘C4’, ‘CP1’, ‘CP2’, ‘CP5’, ‘CP6’, ‘Pz’, ‘P3’, ‘P4’, ‘P7’, ‘P8’

Occipital lobe ‘Oz’, ‘O1’, ‘O2’, ‘PO9’, ‘PO10’
Temporal lobe ‘T7’, ‘T8’

EEG signals can be divided into frequency bands, including Theta waves (3–8 Hz),
Alpha waves (8–12 Hz), Beta waves (12–27 Hz), and Gamma waves (27 Hz and above) [43].
Among these, Alpha waves have been shown to correlate with spatial cognition and spatial
attention abilities [29]. Therefore, we calculated the power spectral density (PSD) of the
Alpha frequency band for the four brain regions to extract features relevant to the driver’s
spatial cognition recognition task. This resulted in the extraction of four features for each
set of EEG signals [44].

We took 96 or 128 time steps as a sampling window and calculated the power spectral
density of each channel for the data in each sampling window. For each partition, the
average power spectral density of all channels within the partition was used as a feature.
Regarding a discrete-time signal that has a length of N, the approach for computing its PSD
is as follows:

Ŝx( f ) =
1
N
|XN( f )|2 (2)

Here, XN( f ) refers to the discrete Fourier transform (DFT) of x[n].
In this research, in order to mitigate the influence of spectral leakage, each segment of

the signal was dealt with by applying a Hann window prior to calculating the PSD. The
Hann window function is defined in this way:

w(n) = 0.5(1 − cos(
2πn

N − 1
)), n = 0, 1, . . . , N − 1 (3)
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The overall power within a particular frequency band can be acquired by adding up
the PSD values across the intended frequency range, which is expressed as

Pband =
f2

∑
f1

Ŝx( f )∆ f (4)

In the above formula, f1 and f2 stand for the lower and upper frequency limits,
respectively, and ∆ f represents the frequency resolution.

3.2. Traditional Machine Learning Algorithms

Using the extracted features as input, we employed three traditional machine learning
algorithms to perform the driver’s spatial cognition detecting task: K-Nearest Neighbors
(KNNs) [45], Support Vector Machine (SVM) [46], and Random Forest (RF) [47]. The
parameters of these algorithms are detailed in Table 2.

Table 2. Parameters of the three methods.

Method Parameters

K-Nearest Neighbors (KNNs) K = 30
Support Vector Machine (SVM) Kernel = ‘poly’, C = 10, random_state = 42

Random Forest (RF) Trees = 1000, Max depth = None, random_state = 42

3.3. Deep Learning Algorithms

With the advancement of deep learning algorithms, many studies on EEG signal de-
coding have shifted away from manual feature extraction. Instead, they focus on designing
neural networks to automatically extract features and perform decoding. In this study, three
neural networks specifically designed for EEG signal processing were employed for feature
extraction and classification: MLP [48], EEGNet [49], and ConvNet [50]. Additionally, we
propose a novel neural network based on dual-time feature fusion, which achieves the best
decoding performance. The following sections provide a detailed introduction to these
neural networks.

3.3.1. MLP-Based Model

This study constructs two spatial cognition decoding models based on the Multi-Layer
Perceptron (MLP). The primary distinction between the two models lies in whether the
EEG signals in the input dataset have undergone frequency domain feature extraction. Both
models share a similar basic architecture, consisting of a fully connected network with four
hidden layers. To prevent overfitting and enhance generalization, the dropout technique is
applied for regularization. Assume that the input of the model is x ∈ Rn and the output of
the model is y ∈ Rm. Then, the MLP model can be represented as

y = f (Wx + b) (5)

where W ∈ Rn×m is the weight matrix, b is the bias, and f is the nonlinear activation
function.

The input size of the raw EEG signals is either 32 × 96 or 32 × 128, representing
the number of channels and time steps, respectively. For manually extracted features,
the input size is 1 × 4, corresponding to the four features derived from the Alpha band
power spectral density of different brain regions. These two MLP models were used to
compare the impact of manual feature extraction versus direct feature extraction using deep
learning models on the final classification performance of EEG signals. This comparison
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highlights the effectiveness of automated feature extraction in decoding spatial cognition
from EEG data.

3.3.2. EEGNet

The spatial cognition decoding from the EEG task introduced in this paper is a novel
task. As no neural network models specifically designed for this task currently exist, we
have chosen general EEG signal decoding models for evaluation.

The first model selected is EEGNet, a compact convolutional neural network tai-
lored for EEG signal decoding tasks. EEGNet features a unique convolutional structure,
incorporating depthwise convolution, separable convolution, and pointwise convolu-
tion, enabling it to efficiently extract EEG signal features. This model combines high
efficiency—characterized by a small number of parameters, low computational complexity,
and suitability for real-time applications—with strong generalization capabilities, perform-
ing effectively across diverse brain–computer interface paradigms. EEGNet is considered a
baseline in many EEG signal decoding studies. The specific structure and parameters of
EEGNet utilized in this study are presented in Table 3.

Table 3. The model structure and parameters of EEGNet.

Layer Parameters Activation

Conv2D input = 1, output = 16, kernel_size = (1, 64), padding = ‘same’ -
BatchNorm 8 -

Conv2D input = 16, output = 2 × 16, kernel_size = (32, 1), groups = 8, max_norm = 1 -
BatchNorm 16 ELU

AveragePool2D kernel_size = (1, 4) -
Dropout 0.25 -
Conv2D input = 2 × 16, output = 32, kernel_size = (1, 16), groups = 16, padding = ‘same’ -
Conv2D input = 32, output = 32, kernel_size = 1 -

BatchNorm 32 ELU
AveragePool2D kernel_size = (1, 8) -

Dropout 0.25 -
Flatten - -

FC input = 64, output = 3, max_norm = 0.25 Softmax

3.3.3. ConvNet

ConvNet, proposed by R. Schirrmeister et al. [50], is a neural network designed for EEG
signal classification tasks. The authors introduced two architectures, ShallowConvNet and
DeepConvNet, which achieved state-of-the-art performance in distinguishing pathological
EEG signals from normal ones. These architectures have since been established as general-
purpose neural networks for EEG signal decoding.

In this study, both ShallowConvNet and DeepConvNet were employed to perform
the spatial cognition decoding task. The detailed parameters of these two networks are
presented in Tables 4 and 5, respectively.

Table 4. The model structure and parameters of ShallowConvNet.

Layer Parameters Activation

Conv2D input = 1, output = 25, kernel_size = (1, 25) -
Conv2D input = 25, output = 25, kernel_size = (32, 1) -

BatchNorm 25 ELU
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Table 4. Cont.

Layer Parameters Activation

AveragePool2D kernel_size= (1, 15), stride = 5 -
Dropout 0.4 -
Flatten - -

FC input = 450, output = 3 Softmax

Table 5. The model structure and parameters of DeepConvNet.

Layer Parameters Activation

Conv2D input = 1, output = 25, kernel_size = (1, 5), stride = (1, 2) -
Conv2D input = 25, output = 25, kernel_size = (32, 1), -

BatchNorm 25 ELU
MaxPool2D kernel_size = (1, 3), stride = 1 -

Dropout 0.4 -
Conv2D input = 25, output = 50, kernel_size = (1, 5), stride = (1, 2) -

BatchNorm 50 ELU
MaxPool2D kernel_size = (1, 3), stride = 1 -

Dropout 0.4 -
Conv2D input = 50, output = 100, kernel_size = (1, 5), stride = (1, 2) -

BatchNorm 100 ELU
MaxPool2D kernel_size = (1, 3), stride = 1 -

Dropout 0.4 -
Flatten - -

FC input = 200, output = 3 Softmax

3.3.4. DTFNet

In this study, we developed a novel neural network, Dual-Time-Feature Net (DTFNet),
to address the spatial cognition decoding task. The model is divided into two main
modules: a temporal processing module and a spatial processing module. The structure
and components of these two modules are introduced below.

(1) Temporal Processing Module: The temporal processing module comprises a time-
dimension convolutional module and a GRU module. Considering that convolutional
modules often struggle to capture long-term dependencies in EEG signals, the GRU
module [51] is incorporated to extract fine-grained temporal features for each EEG
channel. These features are then fused with the coarse-grained temporal features
extracted by the convolutional module, enabling the model to effectively handle both
short-term and long-term temporal dependencies.

(2) Spatial Processing Module: The spatial processing module is designed to address
the challenge of determining which of the 32 EEG channels contain the most relevant
information. To achieve this, we utilize the Squeeze-and-Excitation (SE) module [52],
which computes channel attention to distinguish the contributions of different chan-
nels. Afterward, the features from all channels are fused using a spatial dimension
convolutional module to generate the final spatiotemporal features. These features
are passed to a fully connected layer to produce the final prediction results.

By integrating temporal features at two scales and leveraging spatial attention mecha-
nisms, DTFNet demonstrates superior performance compared to general EEG decoding
models in spatial cognition decoding tasks, making it a robust and efficient solution for
decoding drivers’ spatial cognition from EEG signals. The architecture of DTFNet is illus-
trated in Figure 5, and the parameters of the model are detailed in Table 6, offering a clear
understanding of the network’s design and implementation.
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Table 6. The parameters of the DTFNet.

Layer Parameters Activation

GRU input = 1, hidden_size = 64, num_layers = 1 ELU
Conv2D_1 Input = 1, output = 16, kernel_size = (1, 64), padding = ‘same’ -
BatchNorm 16 ELU

AveragePool2D (1, 2) -
Dropout 0.5 -

Conv2D_2 input = 1, output = 16, kernel_size = (1, 128) -
BatchNorm 16 ELU

Dropout 0.5 -
AveragePool2D (None, 1) -

Flatten - -
Dense input = 32, output = 16 ReLU
Dense input = 16, output = 32 Sigmoid

Dropout 0.5 -
Conv2D_3 input = 1, output = 16, kernel_size = (32, 1) -
BatchNorm 16 ELU

Flatten - -
FC input = 256, output = 3 Softmax

For a given input x ∈ RC×T , it is first processed through two temporal feature extrac-
tion modules to obtain coarse-grained temporal features and fine-grained temporal features.

Featurecoarse = ELU(Avg(Conv2d_1(x))) (6)

Feature f ine = ELU(GRU(x)) (7)

Next, the coarse-grained and fine-grained temporal features are concatenated and
passed through a convolutional layer to perform feature fusion. This process integrates the
complementary information from both feature types, resulting in a unified representation
of the temporal features.

Featuretemporal = ELU(Conv2d_2(Concat (Featurecoarse, Feature f ine))
)

(8)

To effectively fuse the features of the EEG signals along the spatial dimension, we
employ the SE module. This module starts by averaging the features of each channel
through an average pooling layer, generating a global descriptor for each channel. These
descriptors are then passed through two fully connected layers with an activation function
in between, producing channel-specific weights. Finally, these weights are applied to the
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original features via element-wise multiplication, amplifying the contributions of relevant
channels and reducing the influence of less informative ones.

Weightchannel = Sigmoid (FC (ReLU (FC (Avg (Featuretemporal))))) (9)

Featurechannel = Weightchannel ⊙ Featuretemporal (10)

After the SE module, a convolutional layer is applied to fuse the features across the
channel scale, resulting in the final spatiotemporal feature representation. Finally, these
features are passed through a fully connected layer to generate the prediction results.

Featurespatiotemporal = ELU(Conv2d_3(Featurechannel)) (11)

Output = FC(Featurespatiotemporal) (12)

4. Experimental Results
This section presents the classification results for the spatial cognition decoding task.

For traditional machine learning models and one of the MLP models, the inputs are
EEG signals that have undergone feature extraction. In contrast, the inputs for the other
deep learning models consist of EEG signals that have been preprocessed but not feature-
extracted. We employed the five-fold cross-validation method to rigorously evaluate the
classification performance of all models in this study. Five-fold cross-validation divides
the dataset into five subsets. For each iteration, one subset is used as the test set, while
the remaining four subsets are used to train the model. This approach provides a robust
evaluation of model performance by ensuring that all data are used for both training and
testing across the five iterations.

The models were implemented using the PyTorch (Version 1.8.1) framework and
the Scikit-learn library. All training was conducted on an NVIDIA GeForce GTX TITAN
GPU. A learning rate of 0.0001 was applied to all models, and each model was trained for
500 epochs. To evaluate the classification performance, we adopted four standard metrics:
accuracy, precision, recall, and F1 ccore. These metrics provide a comprehensive assessment
of the models’ effectiveness in the spatial cognition decoding task.

4.1. Relative Orientation Classification Task

We first conducted the relative orientation classification task, and the experimental
results are presented in Table 7. This task evaluates the spatial cognition of drivers in
the orientation dimension. Successfully decoding drivers’ relative orientation cognition
of a target from EEG signals can provide valuable insights for autonomous driving sys-
tems. By accurately understanding the orientation of the target that the driver is focusing
on, the driving system can make informed and reasonable decisions that align with the
driver’s intentions. This helps to prevent situations where the autonomous driving sys-
tem’s actions contradict the driver’s expectations, thereby enhancing system reliability and
driver satisfaction.

Table 7. The results of the relative orientation classification task.

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

KNN 37.30 37.62 37.30 37.01
SVM 38.22 40.31 38.22 31.46
RF 34.63 35.23 34.62 34.59

MLP_feature 32.78 32.70 32.79 32.18
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Table 7. Cont.

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

MLP_raw 49.32 48.41 49.30 46.92
EEGNet 62.63 62.43 62.25 62.03

ShallowConvNet 58.85 59.18 58.90 58.78
DeepConvNet 54.19 55.75 54.53 54.00
DTFNet (ours) 65.67 65.90 65.72 65.61

The relative orientation decoding task was simplified into a three-class classification
task involving the categories left, front, and right, resulting in a chance-level probability of
33.33% for the classification task. For this task, a time window size of 96 was selected for
the EEG signals, meaning that the input size is x ∈ R32×96. The rationale for selecting this
specific time window size will be discussed in detail in the Section 4.3.

From the results presented in Table 7, it can be observed that, with the exception of the
feature-based MLP classifier, the classification performance of all other models surpasses
the chance probability. We attribute the failure of the feature-based MLP classifier to
the low dimensionality of the extracted features, which likely hindered effective training
of the neural network. When comparing traditional machine learning algorithms with
deep learning algorithms, it is evident that deep learning approaches achieve superior
classification performance. This difference can be explained by two factors:

(1) Limited Relative Spatial Cognition Information in Extracted Features: The features
obtained through manual extraction contain relatively sparse information about
relative orientation, which negatively impacts classification performance.

(2) Superior Feature Extraction and Learning Capabilities of Deep Learning Models:
Deep learning algorithms demonstrate more robust capabilities in automatically ex-
tracting and learning relevant features directly from EEG signals, leading to improved
classification outcomes.

Our proposed algorithm achieves the best classification performance, with an accuracy
of 65.67%, precision of 65.90%, recall of 65.72%, and an F1 score of 65.61%. These results
highlight the effectiveness of our approach for the relative orientation decoding task.

4.2. Relative Distance Classification Task

The relative distance decoding task, similar to the relative orientation decoding task,
was also simplified into a three-class classification problem, involving the categories close,
medium, and far. This task, however, is more challenging than the relative orientation
decoding task because the perception of relative distance is inherently more subjective.
Upon analyzing the collected data, we identified a certain degree of overlap between the
actual distances corresponding to the perceived categories of close, medium, and far. To
address this issue, we excluded data with cognitive ambiguity before proceeding with the
decoding task. Successfully decoding individuals’ perception of relative distance from
EEG signals can assist autonomous driving systems in better adjusting safe distances and
improving driver comfort. For this task, a time window size of 128 was selected for the
EEG signals; that is, the input is x ∈ R32×128.

From the experimental results presented in Table 8, it can be observed that although
decoding relative distance from EEG signals is inherently challenging, the classification
accuracy of most models exceeds the chance probability, demonstrating the feasibility of
decoding spatial cognition from EEG signals. Among the models, deep learning approaches
consistently outperform traditional machine learning models, with the exception of the
MLP model, which failed to achieve competitive classification performance. This highlights
the superior capability of deep learning algorithms in feature extraction and learning from
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raw EEG signals. Our proposed model achieved the best classification performance, with
an accuracy of 50.65%, precision of 50.68%, recall of 50.64%, and an F1 score of 49.91%.
These results validate the effectiveness of our model for addressing the relative distance
decoding task.

Table 8. The results of the relative distance classification task.

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

KNN 40.10 41.55 40.10 41.07
SVM 36.29 41.52 36.29 29.55
RF 39.99 40.87 39.99 39.91

MLP_feature 33.89 34.27 33.89 33.40

MLP_raw 35.09 35.02 35.01 34.90
EEGNet 47.02 46.68 46.98 45.99

ShallowConvNet 45.33 45.31 45.26 45.04
DeepConvNet 43.59 48.80 43.81 40.99
DTFNet (ours) 50.65 50.68 50.64 49.91

4.3. Further Discussion

To gain deeper insights into the experimental results, we decomposed the three-class
classification problem into three binary classification problems. This approach allowed us
to analyze the classification performance for each pair of categories individually, providing
a more granular understanding of the challenges and strengths associated with decoding
spatial cognition from EEG signals.

Furthermore, we explored the temporal dynamics of drivers’ spatial detection, ex-
amining how drivers’ spatial cognition evolves over time. This temporal analysis offers
valuable insights into the relationship between EEG signals and drivers’ perception of
relative distances, which may further inform the development of adaptive and responsive
autonomous driving systems.

We also provided an in-depth analysis of the challenges this system may face in real-
world applications. Additionally, we proposed potential solutions to these challenges and
identified promising avenues for future research.

4.3.1. Binary Classification Results

To further analyze the two spatial cognition decoding tasks, we simplified the three-
class classification problems into multiple binary classification tasks. For instance, in the
relative orientation classification problem, the task was divided into the following binary
classification problems: Left vs. Front, Left vs. Right, and Front vs. Right. This division
allows for a more detailed assessment of the performance of various methods on specific
pairwise comparisons, offering deeper insights into their strengths and weaknesses. The
classification accuracies of different methods for these binary classification problems are
presented below.

(1) Binary classification results of relative orientation

The binary classification results for the relative orientation decoding task are displayed
on Figure 6a. The results indicate that all models achieved classification accuracies exceed-
ing the chance probability of 50%. From the figure, it is evident that the left-right binary
classification task yields the best performance. This aligns with our hypothesis, as the
cognitive distinction between left and right orientations is significantly greater than that
for the other two binary classification tasks. For the left-front and front-right binary classifi-
cation tasks, the classification performances are nearly identical, reflecting the symmetrical
experimental scenarios used in these cases.
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In summary, the results demonstrate that drivers’ spatial cognition of relative ori-
entation can be effectively decoded from EEG signals. Moreover, the findings indicate
that drivers’ cognitive processing of left and right orientations does not exhibit a strong
inherent bias. Finally, while the performance differences among several deep learning
models are minimal across the binary classification tasks, our proposed model consistently
achieves the best classification performance, highlighting its effectiveness in detecting
drivers’ spatial cognition.

(2) Binary classification results of relative distance

The binary classification results for the relative distance decoding task are displayed
in Figure 6b. As shown, the decoding performance for relative distance is inferior to that
for relative orientation, consistent with the findings of the three-class classification study
discussed earlier. Similar to the binary classification results for relative orientation, the
short-long group achieves the best classification performance among the relative distance
tasks. However, unlike relative orientation, relative distance is not a symmetrical scenario,
and the decoding performance for the short-medium and medium-long groups differs
significantly. The figure shows that the decoding performance for the short-medium group
is better than that for the medium-long group. This result aligns with the cognitive patterns
of human drivers. During driving, drivers tend to focus more on targets that are closer
to them, as closer targets pose a higher potential danger. Conversely, targets at medium
and long distances are less likely to pose an immediate threat, resulting in less pronounced
differences in EEG signals for these group.

4.3.2. Temporal Dynamics of Drivers’ Spatial Cognition

We analyzed the temporal dynamics of drivers’ spatial cognition using EEG signals.
The sampling frequency of our EEG acquisition instrument is 128 Hz, meaning that 128 time
steps correspond to 1 s in real time. EEG decoding began with 64 time steps and was
repeated at intervals of 32 additional time steps, up to 192 time steps. The decoding results
for relative orientation and relative distance are shown in Figure 7a,b, respectively. From
the figures, it is evident that when the time step length is 64, it is difficult to extract effective
spatial cognition information from EEG signals. This is likely because spatial cognition
requires a certain amount of processing time. After visual stimuli are received by the
retina, they must be transmitted to the visual processing cortex, where spatial cognition is
formed [53]. And by comparing the results for the two tasks, the following observations
can be made:
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(1) Relative Orientation Decoding Task: The best decoding performance is achieved
when the EEG signal time step length is 96. Increasing the time window size beyond 96
does not significantly enhance classification performance, suggesting that orientation
cognition stabilizes within this time frame.

(2) Relative Distance Decoding Task: The optimal decoding performance is achieved
at a time step length of 128, indicating that the perception of relative distance occurs
slightly later than that of orientation.
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Additionally, across all time step lengths, our proposed model consistently outper-
forms the other models in classification accuracy. This demonstrates the robustness and
effectiveness of our model for decoding drivers’ spatial cognition in both relative orientation
and relative distance tasks.

4.3.3. Application Analysis and Limitations

Although our designed human-centric spatial cognition detecting system can detect
the spatial perception of drivers, enabling the driving system to establish a more comfort-
able following distance and maintain the vehicle within the safe range perceived by the
drivers based on the position of the target they are focusing on, there is still a gap before it
can be applied in real-world scenarios, and several challenges remain to be addressed.

The first challenge lies in the significant gap between the simulated scenarios used in
our study and real-world driving conditions. In real driving scenarios, drivers encounter
multiple targets moving continuously, and the resulting neural signals may differ from
those observed in our simulated environment. However, even in real-world scenarios,
drivers still engage in relative orientation and distance cognition of targets. Therefore,
we believe that the EEG signals should not differ substantially. In the future, we plan to
further refine our simulated scenarios to make them more closely resemble real-world
conditions and conduct experiments in real driving environments to collect and analyze
data for further research.

Another challenge is the real-time decoding of EEG signals. Unlike the current ex-
periments, where EEG signals are segmented and then decoded, practical applications
require real-time analysis. Real-time EEG decoding is an active area of research in the field
of brain–computer interfaces, but it is not the primary focus of this study. In the future,
we could explore integrating a real-time EEG decoding system into our framework. This
would enable continuous analysis of EEG signals, allowing us to provide ongoing outputs
of the driver’s spatial perception, thereby contributing to the decision-making process of
the driving system.

The driver’s state can also affect the detecting performance. In real-world scenarios,
drivers may experience fatigue during driving. In cases of mild fatigue, the detection of
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spatial cognition—being a fundamental cognitive ability—may not be significantly affected.
However, in cases of moderate to severe fatigue, further processing of the EEG signals will
be necessary before detection. We consider using preprocessing algorithms, such as wavelet
transform, or integrating existing driver fatigue detection algorithms to design a denoising
module based on deep learning. Additionally, during actual driving, the driver’s head
movements and driving actions can introduce more artifacts, degrading the quality of the
EEG signals. We plan to apply ICA or deep learning algorithms to remove these artifacts
and improve the decoding algorithm to enhance performance on low-quality EEG signals.

In the future, we will conduct further research on the three challenges mentioned
above, improving the existing simulation environment to make it more closely resemble
real-world scenarios. At the same time, we will strive to enhance the robustness and
accuracy of the driver’s spatial cognition detecting system.

5. Conclusions
In response to the limitations of existing autonomous driving systems, particularly

their limited ability to mimic human-like decision-making, this paper proposes a human-
centric spatial cognition detection system based on drivers’ signals for autonomous driving.
The system decodes two critical dimensions of drivers’ spatial cognition—relative distance
and relative orientation—from EEG signals. Our findings demonstrate that spatial cog-
nition can be effectively extracted from EEG data. To achieve this, we propose a novel
EEG signal decoding neural network, DTFNet, which integrates temporal features at mul-
tiple scales. The proposed network achieves superior performance compared to other
general-purpose EEG decoding models in spatial cognition tasks. Binary classification
experiments reveal that drivers focus more on closer targets, while exhibiting no significant
directional preference. Furthermore, our exploration of the temporal dynamics of drivers’
spatial cognition indicates that drivers perceive relative orientation slightly earlier than
relative distance.

In the future, our work will be carried out in two main directions. On the one hand, we
will enhance the complexity of experimental scenarios to better simulate real-world driving
conditions and collect a larger and more diverse dataset of drivers’ spatial cognition to
improve the system’s robustness and generalizability. On the other hand, we will develop
EEG signal decoding algorithms specifically tailored to spatial cognition tasks, focusing
on improving the accuracy and effectiveness of decoding drivers’ spatial cognition and
addressing the unique challenges posed by this application.
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