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Abstract: To address the issues of insufficient samples, limited scene diversity, missing
perspectives, and low resolution in existing UAV-based pedestrian detection datasets, this
paper proposes a novel UAV-based pedestrian detection benchmark dataset named the
Novel Surveillance View (NSV). This dataset encompasses diverse scenes and pedestrian
information captured from multiple perspectives, and introduces an innovative data mining
approach that leverages tracking and optical flow information. This approach significantly
improves data acquisition efficiency while ensuring annotation quality. Furthermore,
an improved pedestrian detection method is proposed to overcome the performance
degradation caused by significant perspective changes in top-down UAV views. Firstly,
the View-Agnostic Decomposition (VAD) module decouples features into perspective-
dependent and perspective-independent branches to enhance the model’s generalization
ability to perspective variations. Secondly, the Deformable Conv-BN-SiLU (DCBS) module
dynamically adjusts the receptive field shape to better adapt to the geometric deformations
of pedestrians. Finally, the Context-Aware Pyramid Spatial Attention (CPSA) module
integrates multi-scale features with attention mechanisms to address the challenge of
drastic target scale variations. The experimental results demonstrate that the proposed
method improves the mean Average Precision (mAP) by 9% on the NSV dataset, thereby
validating that the approach effectively enhances pedestrian detection accuracy from UAV
perspectives by optimizing perspective features.

Keywords: UAV perspective datasets; pedestrian detection; deformable convolution;
feature decomposition; attention mechanism

1. Introduction
In recent years, significant advancements in computer vision have greatly accelerated

the development of object detection technologies [1–3], particularly in the area of pedes-
trian detection [4,5]. As a fundamental and critical research topic within computer vision,
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pedestrian detection plays an essential role in a wide range of applications, including
public security surveillance [6], intelligent transportation systems [7], and autonomous
driving [8]. Concurrently, the rapid growth and widespread deployment of UAV technol-
ogy [9,10] have introduced new possibilities for real-time monitoring [11] and large-scale
area surveillance [12]. This shift has made pedestrian detection from UAV perspectives an
increasingly prominent area of research [13–17]. However, unlike traditional ground-based
camera perspectives, UAV-based perspectives introduce extreme viewpoint distortions and
occlusion challenges, significantly affecting the accuracy and stability of existing pedestrian
detection models.

Currently, most mainstream pedestrian detection algorithms are trained and opti-
mized for standard perspectives, such as ground-level views. However, their performance
often deteriorates significantly when applied to non-standard perspectives, such as aerial
views. As a result, existing pedestrian detection models encounter considerable challenges
in achieving accurate identification and precise localization in these settings. One key issue
is the distortion of appearance caused by changes in perspective. In UAV overhead views,
the shape and features of pedestrians differ markedly from those in traditional ground-level
perspectives, making feature extraction more challenging. This discrepancy hampers the
ability of conventional detection models to recognize and locate targets reliably. Further-
more, the high-altitude perspective introduces additional background interference. As the
scene complexity increases, distinguishing between background elements and the target
becomes progressively more difficult. Additionally, fluctuations in UAV flight altitude
lead to significant variations in pedestrian size within the image, further complicating the
detection process, especially when dealing with pedestrians of diverse scales. As illustrated
in Figure 1, YOLOv7 [18] struggles to effectively detect pedestrians in UAV perspectives,
highlighting the limitations of current algorithms in aerial settings.

Undetect

Undetect

Undetect
Undetect

Undetect

Undetect

Figure 1. Mainstream pedestrian detectors are unable to detect pedestrians effectively from a
UAV perspective.
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These issues underscore the limitations of current pedestrian detection technologies
when applied to UAV perspectives. Moreover, most existing datasets are predominantly
centered around ground-level perspectives and feature relatively low resolution, which fails
to address the unique requirements of pedestrian detection from UAV viewpoints. This lim-
itation prevents the provision of fine-grained image information necessary for improving
model performance. The absence of large-scale, high-quality pedestrian detection datasets
specific to UAV perspectives directly impedes the effectiveness of models in real-world ap-
plications. Furthermore, traditional manual annotation is time-consuming, labor-intensive,
and prone to inconsistencies and accuracy deviations, particularly when handling the com-
plex and dynamic perspectives inherent in UAV imagery. As such, there is an urgent need
to develop specialized datasets and detection methods tailored to UAV-based pedestrian
detection to enhance the accuracy and robustness of models in these settings.

This paper proposes a novel method to enhance the performance of existing models in
UAV-based pedestrian detection, thereby addressing the challenges associated with pedes-
trian detection from UAV perspectives. The method builds upon the YOLOv7 architecture
and introduces three key innovations: First, the View-Agnostic Decomposition (VAD) mod-
ule decouples pedestrian features into view-dependent and view-independent branches,
enhancing the model’s ability to generalize across multiple perspectives. Second, the De-
formable Conv-BN-SiLU (DCBS) module employs deformable convolutional techniques to
dynamically adjust the receptive field shape, thereby improving the model’s adaptability to
the geometric deformations of pedestrians in UAV views. Third, the Context-Aware Pyra-
mid Spatial Attention (CPSA) module integrates multi-scale feature pyramids with spatial
attention mechanisms, significantly strengthening the model’s feature extraction capability.
To validate the effectiveness of the proposed approach, this paper also introduces a novel
pedestrian detection dataset specifically tailored for UAV perspectives. The dataset covers a
wide range of diverse scenarios, including varying viewpoint angles, crowd densities, light-
ing conditions, and background elements, thereby providing a more realistic simulation of
real-world complexities. Furthermore, a hybrid annotation method based on tracking is
proposed, which combines multi-object tracking algorithms with optical flow estimation
techniques. This approach improves annotation efficiency and enhances accuracy, thereby
laying a solid foundation for creating a high-quality UAV-specific pedestrian detection
dataset, NSV, which will serve as a reliable resource for subsequent algorithm development
and performance evaluation. The main contributions of this work are as follows:

1. We introduce the Tracking-based Automatic Hybrid Annotation (TAHA) method,
which leverages the complementary strengths of tracking and optical flow techniques
in conjunction with inter-frame motion characteristics to achieve precise and effi-
cient automatic labeling of video frames. This approach effectively overcomes the
time-consuming and labor-intensive challenges associated with traditional manual
annotation, significantly enhancing both the efficiency and accuracy of the annota-
tion process.

2. We propose NSV, a novel UAV-based pedestrian detection dataset encompassing
diverse scenes, multiple viewpoint angles, and multi-scale pedestrian annotations.
NSV effectively addresses common challenges in UAV-based pedestrian detection, in-
cluding insufficient sample sizes, limited scene diversity, missing viewpoints, and low
resolution. By overcoming these issues, NSV provides a robust foundation for enhanc-
ing the performance of pedestrian detection models from UAV perspectives.

3. We develop Pedestrian-DVC, a pedestrian detection model designed explicitly for
UAV perspectives. This model effectively addresses performance degradation re-
sulting from severe viewpoint changes, significant scale variations, and complex
background interference by integrating the VAD, DCBS, and CPSA modules. By utiliz-
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ing these modules, Pedestrian-DVC significantly enhances pedestrian detection accuracy
in UAV-based scenarios.

2. Related Work
2.1. UAV Datasets

In recent years, the rapid advancement in UAV technology and its widespread ap-
plications across various domains have led to the emergence of several datasets designed
explicitly for pedestrian detection from UAV perspectives, including VisDrone2019 [19] and
Okutama-Action [20]. These datasets provide rich data support for pedestrian detection
from UAV perspectives and drive the research and development of pedestrian detection
algorithms in diverse application scenarios.

The VisDrone2019 dataset, developed by the Machine Learning and Data Mining
Laboratory at Tianjin University, is one of the most representative large-scale aerial photog-
raphy datasets available today. It comprises 6471 training images, 548 validation images,
and 1610 test images, covering a variety of urban environments such as commercial districts,
residential areas, and transportation hubs. VisDrone2019 offers detailed pedestrian annota-
tions, supporting both object detection and tracking tasks. The dataset’s extensive scene
variations and diverse target scales provide a solid foundation for enhancing pedestrian
detection algorithms’ robustness and generalization capabilities. Additionally, the dataset
includes images captured under various weather conditions and different times of day,
which aids in improving algorithm adaptability in complex environments. Despite its
excellent performance in pedestrian detection, VisDrone2019 has relatively limited data for
specific perspectives, such as nadir or vertical angles, which restricts its applicability under
extreme conditions. Furthermore, more than the minimal scale variation in pedestrians in
the images is needed to support the training of multi-scale pedestrian detection algorithms
from UAV perspectives.

The Okutama-Action dataset, collected by Barekatain et al. [20], is primarily intended
for human action recognition and detection. This dataset includes 43 min of fully an-
notated video sequences covering twelve action categories, including running, jumping,
and waving. Okutama-Action offers a unique perspective for studying dynamic behaviors
by providing pedestrian action data from UAV perspectives. The dataset is valuable for
pedestrian behavior analysis, action recognition, and behavior detection in specific environ-
ments. However, the pedestrian detection annotations in Okutama-Action are relatively
simplistic, and the dataset is mainly focused on the action recognition domain, with limited
coverage of diverse scene variations. This results in lower detection accuracy in com-
plex backgrounds. Additionally, the video sequences are relatively short, and the sample
size needs to be improved, leading to insufficient generalization capability in large-scale,
high-density scenarios.

These datasets offer invaluable data support for pedestrian detection from UAV per-
spectives, each with its strengths regarding scene coverage, annotation precision, and target
variety. Nevertheless, their performance remains limited in various aspects, such as differ-
ent perspectives, scale variations, and complex backgrounds, and most datasets need more
diversity in pedestrian samples. Future research should emphasize addressing pedestrian
detection challenges in complex scenarios to advance UAV-based pedestrian detection tech-
nologies further. This also provides the contextual foundation for our proposed new dataset,
which aims to address the shortcomings of existing datasets by offering more challenging
and diverse data, thereby facilitating the research and optimization of pedestrian detection
algorithms. In response to the data scarcity and diversity challenges, researchers have
proposed a series of solutions based on few-shot learning [21], which holds promise for
improving UAV-based pedestrian detection. For instance, Model-Agnostic Meta-Learning
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(MAML) [22] provides a general meta-learning framework by learning parameter initializa-
tion strategies sensitive to new tasks, addressing the few-shot learning problem. Building
upon this, Zhang et al. introduced the HelixFormer architecture [23], which models fine-
grained semantic relationships between images using a double-helix Transformer structure,
further enhancing few-shot learning performance. However, these methods primarily focus
on general object detection tasks and have not been sufficiently validated in UAV-based
pedestrian detection scenarios, where significant viewpoint variations are a key challenge.
This paper is the first to apply few-shot learning strategies to pedestrian detection from
UAV perspectives, offering new insights for addressing the data annotation bottleneck in
practical applications.

2.2. Object Detection

Object detection, a fundamental task in computer vision, has consistently garnered
substantial research interest, driving the development of progressively more efficient and
accurate detection models. This section provides a comprehensive review of several seminal
object detection frameworks that have markedly advanced the field, including Faster R-
CNN [24], SSD [25], and the YOLO series [26]. Each of these frameworks has introduced
innovative methodologies, significantly enhancing the capabilities and performance of
object detection systems.

Faster R-CNN is a widely adopted two-stage object detection framework. It first
generates candidate regions using a region proposal network (RPN) and then applies
Fast R-CNN [27] for object classification and bounding box refinement. Faster R-CNN
demonstrates exceptional detection accuracy and robustness, particularly in handling
complex scenes and small objects. However, its high computational complexity presents
a bottleneck in real-time processing scenarios. Furthermore, it is optimized for standard
perspectives, leading to suboptimal performance when applied to UAV perspectives.

As a single-stage object detection model, SSD performs both detection and classifica-
tion tasks in a single forward pass. It utilizes multi-scale feature maps for object detection,
allowing it to simultaneously identify objects of various sizes while striking an effective
balance between accuracy and speed. The computational efficiency of SSD makes it well
suited to real-time applications such as autonomous driving and video surveillance. How-
ever, SSD relies on predefined anchor boxes, which may result in poor object alignment
when applied to UAV perspectives. Additionally, its performance degrades in complex
scenes or when detecting small objects, especially compared to two-stage methods.

Since its inception in 2015, the YOLO series has significantly enhanced detection
speed and accuracy by integrating detection and classification into a single-stage network.
YOLOv3 [28] employs Darknet-53 as its backbone and introduces feature pyramid networks
(FPNs) [29] to improve multi-scale object detection capabilities. YOLOv4 [30] further intro-
duced CSPDarknet to enhance feature extraction efficiency while also incorporating a path
aggregation network (PAN) [31] to improve the fusion of features across different scales.
These innovations have significantly strengthened the feature extraction capabilities and
multi-scale object detection accuracy of the YOLO series, enabling it to excel in various com-
plex scenarios. YOLOv7 further boosts feature extraction efficiency and network stability by
introducing an extended efficient layer aggregation network (Extended-ELAN) architecture.
Its cascading model scaling strategy allows it to adapt to various computational resources
and application scenarios, from real-time video surveillance to autonomous driving.

Although these detection methods have laid a solid foundation for computer vision
applications, they still face limitations when dealing with UAV perspectives. This highlights
the challenge of maintaining detection accuracy and robustness under varying observation
conditions while underscoring the necessity of developing detection methods tailored to
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UAV perspectives. Future research should address these detection challenges in specialized
scenarios to advance object detection technologies in broader application domains.

2.3. Pedestrian Detection

Current pedestrian detection algorithms can be broadly divided into categories based
on handcrafted features and those utilizing deep features. Methods relying on handcrafted
features depend heavily on feature engineering and traditional machine learning classifiers.
For example, Domonkos et al. proposed the multi-scale center-symmetric local binary
pattern (MS-CS-LBP) feature [32], which improves detection performance by effectively
capturing local texture information. Ma et al. refined the histogram of oriented gradient
(HOG) algorithm [33] and combined it with support vector machines (SVMs) to achieve
a robust description of pedestrian contours. To further improve feature representation,
Dong et al. integrated Haar-like features with HOG features [34], utilizing an AdaBoost
cascade classifier during training, which led to notable improvements in detection per-
formance. However, these approaches need to be more robust in feature representation
capacity, making them less adaptable to the complexities of real-world scenarios.

Handcrafted features often have limited expressive power and need help accommodat-
ing complex environments’ dynamic variations. To overcome these limitations, researchers
have turned their attention to the field of deep learning. He et al. designed a multi-
scale detection architecture incorporating anchor-adaptive mechanisms [35], significantly
improving detection performance for objects of varying scales. The background-focused dis-
tribution alignment (BFDA) framework proposed by Cai et al. markedly enhances detection
accuracy through a feature decoupling mechanism [36]. Additionally, Kilicarslan et al. in-
novatively focused on pedestrian gait characteristics, presenting the Deepstep network [37],
which significantly reduces model response time by capturing non-smooth leg movements.
Nevertheless, these methods still need to improve robustness when handling small-scale
targets and complex occlusion scenarios.

While these approaches have yielded significant results in traditional pedestrian
detection tasks, they still demonstrate notable shortcomings when applied to pedestrian
detection from UAV perspectives. Challenges such as appearance distortions due to varying
viewpoints, increased background interference, and substantial variations in target size
hinder the accuracy of feature extraction and target localization, thereby increasing the
complexity of the detection process. These limitations suggest that, despite the strong
performance of existing pedestrian detection methods in conventional settings, further
advancements and innovations are required to address the unique challenges posed by
UAV perspectives.

3. NSV Dataset
3.1. Data Construction

In response to the limitations of existing datasets, including restricted viewpoints,
minimal scale variations, simplistic backgrounds, and inadequate sample sizes, this paper
presents the Novel Surveillance View (NSV) dataset, an advanced pedestrian detection
dataset engineered for UAV perspectives. During the data collection phase, the DJI Mini
3 Pro was utilized as the acquisition platform, equipped with a 1/1.3-inch CMOS image
sensor capable of recording 4 K/60 fps video. For this study, data were collected using a
4 K resolution at 30 fps. A systematic multi-dimensional and multi-view collection scheme
was developed, spanning a flight altitude range from 10 m to 50 m, with vertical angles
varying from 30° to 90°. This three-dimensional collection strategy effectively ensured the
completeness and representativeness of data samples across spatial dimensions. Ultimately,
11,566 high-resolution aerial images were gathered, resulting in the construction of the
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NSV dataset. This dataset provides higher-quality image samples and systematically
encompasses key scenarios and challenging viewpoints in UAV-based pedestrian detection
for the first time. The specific composition of the NSV dataset is presented in Table 1.

Table 1. Composition of the NSV dataset.

Scene Type Quantity Time of Day Weather Conditions Altitude Range View Angle Range Pedestrian Density

Square 20% Day and night Sunny and cloudy 15–50 m 30–90° Sparse and dense
Park 20% Day and night Sunny and cloudy 15–50 m 30–90° Sparse and dense

Seaside 20% Day and night Sunny and cloudy 15–50 m 30–90° Sparse and dense
Campus 20% Day and night Sunny and cloudy 15–50 m 30–90° Sparse and dense

Urban Streets 10% Day and night Sunny and cloudy 10–30 m 30–90° Sparse and dense
Bus Station 5% Day Sunny and cloudy 10–15 m 30–90° Sparse and dense
Parking Lot 5% Day Sunny and cloudy 10–15 m 30–90° Sparse

3.2. TAHA

Traditional dataset annotation methods predominantly rely on manual operations,
which present several limitations. First, this approach’s time-consuming and labor-intensive
nature significantly diminishes the efficiency of dataset construction. Second, inconsis-
tencies and accuracy deviations are typical during the annotation process, impacting
subsequent algorithms’ training performance. Most critically, when dealing with aerial
sequence images, the complexities introduced by variable viewpoints and pronounced
differences in target scales further escalate the difficulty and cost of manual annotation.

To overcome the limitations of traditional manual annotation methods, this study
proposes a tracking-based automated hybrid annotation method (TAHA), as illustrated in
Figure 2. It effectively integrates annotations from the tracking module under a normal
perspective with those from the optical flow module under a vertical perspective. Specifi-
cally, in the tracking module, as shown in Figure 2a, we employ a target tracking solution
based on SMILEtrack [38]. With its robust tracking capabilities, it effectively handles the
rapid motion and morphological changes of targets from a UAV perspective, directly out-
putting LabelsTrack. However, during experimental testing, we observed that, as the camera
viewpoint gradually transitioned to a top-down angle, the tracking module exhibited an
increased likelihood of target loss. This phenomenon mainly arises from significant changes
in the posture and appearance features of pedestrians at overhead angles, resulting in a
pronounced decline in the performance of conventional tracking models. To address this
issue, we innovatively introduce an optical flow-assisted detection module, referred to
as the Flow module, as shown in Figure 2b. This module effectively captures annotation
information LabelsFlow for pedestrians that conventional tracking methods struggle to ac-
quire from a vertical perspective by analyzing the optical flow of pedestrians. The specific
implementation details of the Flow detection module will be elaborated upon in the fol-
lowing subsection. Finally, we conduct manual verification and necessary corrections of
the automated annotation results to ensure annotation quality. The TAHA method signifi-
cantly enhances annotation efficiency and provides consistency and accuracy of annotation
quality. Mainly when dealing with top-down scenes, this method effectively overcomes
the limitations of traditional target tracking approaches through the assistance of optical
flow detection, providing reliable technical support for constructing a high-quality UAV
perspective pedestrian dataset.
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Figure 2. Overall architecture diagram of the TAHA framework. The framework consists of two main
modules: (a) the target tracking module based on SMILEtrack, which processes target annotations
from a normal viewpoint, and (b) the optical flow-assisted detection module, designed specifically
for target annotations from a top-down viewpoint. The outputs of the two modules (LabelsTrack and
LabelsFlow) are fused to achieve robust annotation across different viewpoint scenarios.

3.3. Flow Module

This study proposes an automated annotation method based on optical flow feature
transfer to address the annotation challenges posed by extreme overhead angles. The core
idea of this method stems from an important observation: while the RGB features of targets
undergo significant changes at extreme top-down angles, the motion features (optical flow)
retain relatively stable expressions. We designed a two-phase annotation framework based
on this key finding, as illustrated in Figure 3.
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Figure 3. Architecture diagram of the optical flow feature transfer in the Flow module. The frame-
work consists of two key stages: (a) the transfer learning stage based on standard perspective data,
where the GMFlow algorithm is used to extract optical flow features and feature mapping is per-
formed using detection results from SMILEtrack; (b) the vertical perspective detection stage, where a
category consistency filtering strategy is applied to achieve accurate detection of pedestrian optical
flow features.

In the first stage, transfer learning is based on normal perspective data. The reason
for selecting normal perspective data is that RGB detection can maintain high accuracy at
this stage, providing reliable supervisory information for subsequent optical flow feature
learning, as illustrated in Figure 3a. Specifically, the GMFlow algorithm [39] is first used to
extract the optical flow features from this data, and the reliable detection results obtained
from SMILEtrack are precisely mapped to the optical flow feature space. On this basis,
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a specialized optical flow detector (OF-Detector) is trained for UAV perspectives. In this
context, we utilize the state-of-the-art YOLOv7 object detection model to train the detector,
ensuring optimal performance and robustness. Then, in the second stage, the trained
OF-Detector is applied to extreme overhead angle data, as depicted in Figure 3b. First,
the optical flow features of the data are extracted, followed by detection using the OF-
Detector. Finally, reverse mapping converts the detection results back to the original image
space, resulting in the final annotation information.

The OF-Detector effectively captures the optical flow features of pedestrians. However,
in real-world scenarios, other moving objects (such as animals) may lead to false detections,
affecting the dataset’s quality. To address this issue, this study innovatively integrates a
category-consistency filtering mechanism into the OF-Detector, effectively filtering out
non-target optical flow labels by utilizing reliable category information from normal per-
spectives. This algorithm consists of three core steps: trajectory construction, category
validation, and label filtering. First, the optical flow information from video frames taken
from a vertical perspective is computed, and the OF-Detector is used to identify moving
objects in each frame. For each pair of adjacent frames, let Bt

i denote the bounding box
of the object i in frame t, and let IoU(Bt

i , Bt+1
j ) represent the intersection over the union

between bounding boxes in frames t and t + 1. Our object-matching criterion is defined
as follows:

IoU(Bt
i , Bt+1

j ) =
Bt

i ∩ Bt+1
j

Bt
i ∪ Bt+1

j

> θ. (1)

where θ is a predefined threshold. If the overlap ratio exceeds θ, the bounding boxes
are considered to belong to the same object. This allows the sequential bounding boxes
across frames to be organized into trajectory groups (track boxes). Subsequently, reference
trajectory groups are established using the detection results from initial frames, and the
unlabeled trajectory groups from the vertical perspective are traced back to the initial
frames to establish corresponding relationships with the reference trajectory groups from
normal perspectives, accurately obtaining the category identifiers for each trajectory group.
Finally, the system automatically filters out trajectories that do not correspond to the
pedestrian category, as illustrated in Figure 4. The specific filtering algorithm is presented
in Algorithm 1 below.
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Figure 4. Filtering non-pedestrian labels using initial frames.
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Algorithm 1 Category-Consistency Filtering Strategy

Input: Sequence of video frames F, threshold θ
Output: Filtered labels with only pedestrian information

1: Initialize an empty list for object boxes
2: for each frame t in F do
3: Compute optical flow for frame t
4: Detect objects using OF-Detector
5: for each detected object do
6: Calculate bounding box overlap IoU with initial frame
7: if IoU > θ then
8: Assign object to the same box as in the previous frame
9: else

10: Create a new box for the object
11: end if
12: end for
13: end for
14: for each box do
15: Trace back to the initial frame using maximum IoU
16: Identify object category in the initial frame
17: if category == ‘pedestrian’ then
18: Mark as target category
19: else
20: Mark for removal
21: end if
22: end for
23: Remove non-target objects from the dataset
24: return Filtered dataset containing only pedestrian labels

This method provides adequate assurance for constructing a high-quality pedestrian
detection dataset by fully utilizing multi-perspective information and temporal consis-
tency constraints.

4. Pedestrian-DVC Detection Model
While mainstream pedestrian detection algorithms have achieved notable success

in standard scenarios, they often experience significant performance degradation when
confronted with unconventional perspectives, such as those from UAVs. This degradation is
especially evident in target recognition and localization accuracy challenges, where existing
detectors encounter considerable difficulties. The root cause of this issue lies in the inability
of traditional detectors to effectively address the deformations and feature distortions
induced by perspective variations, which substantially limits their effectiveness in real-
world UAV surveillance applications. To address these challenges, this work proposes
Pedestrian-DVC, a pedestrian detection model tailored for UAV perspectives. Based on
the YOLOv7 architecture, the model introduces three innovative modules: View-Agnostic
Decomposition (VAD), Deformable Conv-BN-SiLU (DCBS), and Context-Aware Pyramid
Spatial Attention (CPSA), as shown in the red dashed box in Figure 5.
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Figure 5. Overall architecture of the Pedestrian-DVC network framework is based on the YOLOv7 ar-
chitecture and integrates three innovative modules: View-Agnostic Decomposition (VAD) Section 4.1,
Deformable Conv-BN-SiLU (DCBS) Section 4.2, and Context-Aware Pyramid Spatial Attention (CPSA)
Section 4.3. The innovative modules are highlighted with red dashed circles, and the black dashed
boxes represent the specific content or meaning of each module, while the other modules are part of
the YOLOv7 architecture.

4.1. VAD Module

In practical UAV pedestrian detection scenarios, the complexity of the environment
and the unpredictable nature of pedestrian movement trajectories necessitate frequent
adjustments of the observation angle to maintain the continuous tracking of targets. This
dynamic change in perspective results in significant visual differences of the same pedes-
trian target in the images, posing challenges related to viewpoint sensitivity for detection
models. This paper proposes a VAD module to extract stable viewpoint-invariant feature
representations to address this issue, as illustrated in Figure 6.

Decompose

  View-Agnostic Feafure

Input

Transform

G

Global

Context

Spatial

Structure

Figure 6. Architecture of the View-Agnostic Detection (VAD) module for extracting stable viewpoint-
invariant feature representations.

Given an input feature Fin ∈ RC×H×W , the VAD module first extracts global context
features and spatial structure features through two parallel branches. The global context
encoder Eg implements a channel attention mechanism through adaptive average pooling
and two layers of convolution, capturing global semantic information Fg. Meanwhile,
the spatial structure encoder Es adopts decomposed convolution operations, using 1 × 3
and 3× 1 convolutions to capture horizontal and vertical spatial dependencies, respectively,
resulting in Fs. The corresponding equations are

Fg = Eg(Fin), (2)

Fs = Es(Fin). (3)

These complementary features are then fused through an interaction and transforma-
tion module Ftrans. The feature transformation module combines pointwise convolution
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and depthwise separable convolution to enhance the feature representation capability. Fi-
nally, a feature selection gating mechanism G(·) adaptively selects the viewpoint-invariant
features Fout, with the detailed equations as follows:

Ftrans = T
(

Fg ⊗ Fs
)
, (4)

Fout = G(Fin + Ftrans). (5)

The core advantage of this decomposition strategy is that it can effectively filter
out feature components affected by viewpoint changes while retaining stable viewpoint-
invariant feature representations. The model can maintain consistent detection performance
across different viewpoints, significantly improving the detection robustness.

4.2. DCBS Module

In the task of pedestrian detection from a UAV perspective, the platform’s maneu-
verability and dynamic flight altitude often cause pedestrian targets to exhibit irregular
geometric shapes and complex posture variations. Due to their fixed sampling patterns,
traditional convolution operations struggle to capture these deformable features accurately.
To address this limitation, this paper improves the backbone network of the YOLOv7 detec-
tion framework by replacing the standard convolution in the CBS (Conv-BN-SiLU) module
with a deformable convolution structure, enhancing the model’s geometric adaptability.

Deformable convolution, with its unique adaptive spatial sampling mechanism, can
dynamically adjust the shape and size of the receptive field based on the input features.
This flexible feature extraction strategy enables the network to more precisely model the
non-rigid deformations of pedestrian targets, resulting in more discriminative feature rep-
resentations. This is particularly advantageous when handling the diversity of pedestrian
postures from a UAV perspective. Additionally, due to the unique nature of vertical angles
in UAV imagery, pedestrians’ projections can undergo significant viewpoint distortions,
which pose substantial challenges for feature extraction. Through its dynamic sampling
mechanism, deformable convolution can adaptively adjust the receptive field’s shape
according to the target’s actual deformation, enabling a more accurate capture of key pedes-
trian features. This content-aware adaptive feature extraction mechanism dramatically
enhances the model’s robustness to viewpoint variations, allowing the detector to better
meet the specific requirements of pedestrian detection from a UAV perspective.

Furthermore, the issue of scale variation in UAV scenarios is effectively addressed.
As the flight altitude changes, the size of the same pedestrian target in the image can
vary significantly, from tens to hundreds of pixels. Constrained by their fixed receptive
field structures, traditional convolution operations need help to handle such large-scale
variations. In contrast, deformable convolution learns content-aware sampling offsets,
enabling it to effectively adjust the receptive field size to detect pedestrian targets at
different scales. This adaptive feature extraction mechanism significantly enhances the
model’s scale invariance. These advantages result in improved performance of the modified
detector in UAV-based pedestrian detection tasks, especially when dealing with challenging
samples characterized by large-scale variations and diverse postures.

4.3. CPSA Module

The vertical perspective from UAVs presents a series of unique challenges. Firstly, due
to the increased observation distance, the proportion of targets in the image significantly
decreases, leading to insufficient feature representation of the targets and amplifying the
background interference in feature extraction. Especially in complex urban environments,
the visual distinction between background elements such as buildings, vehicles, vegetation,
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and pedestrian targets is reduced, significantly increasing the difficulty for the detector in
feature discrimination. Secondly, UAVs need to adjust their flight altitude dynamically to
meet the demands of different scenarios during missions, which directly causes significant
scale differences for the same target in the image. Specifically, when the UAV’s flying height
changes from tens of meters to hundreds of meters, the size of a pedestrian target may
shrink sharply from several hundred pixels to several dozen pixels. This dramatic scale
variation poses a severe challenge to the scale adaptability of detectors.

To effectively address these challenges, this study proposes the Context-Aware Pyra-
mid Spatial Attention (CPSA) module, as illustrated in Figure 7. This module performs
feature extraction with different receptive fields through a multi-branch spatial attention
structure, utilizing a pyramid pooling mechanism to capture multi-scale contextual informa-
tion. This design not only adaptively processes features of targets at different scales but also
effectively suppresses background interference through global contextual understanding,
thereby enhancing the robustness of the detector in complex scenarios.

Input

Channel

Attention

Multi 

Branch

Pyramid

Pooling

Spatial 

Attention
Fusion Output

Figure 7. Context-Aware Pyramid Spatial Attention (CPSA) module adaptively processes pedestrian
targets at different scales and suppresses background interference.

Specifically, given the input feature F′
in, the CPSA module first performs feature

enhancement through multiple branches. The channel attention branch Fca (Channel
Attention) recalibrates the importance of channel features through adaptive weights, em-
phasizing significant channel features while suppressing irrelevant channel responses.
The corresponding formula is

Fca = σ
(

MLP
(
GAP

(
F′

in
)))

⊗ F′
in. (6)

where GAP denotes global average pooling, MLP denotes a two-layer perceptron, and σ

is the Sigmoid activation function. Next, the multi-branch spatial attention structure Fms

(Multi Branch and Spatial Attention) employs three parallel branches Fr; each branch
first reduces the channel dimension through 1 × 1 convolution to reduce computational
overhead, and then achieves multi-scale feature extraction through depthwise separable
convolutions with different dilation rates, effectively addressing the dynamic scale changes
of targets from the UAV perspective. The specific formulas are

Fr = Conv1×1
(

F′
in
)
, (7)

Fms = {DWConv(Fr, di)|i = 1, 2, 4}. (8)

where di corresponds to convolution kernels with dilation rates of 1, 2, and 4, with corre-
sponding receptive field sizes of 3 × 3, 5 × 5, and 9 × 9, respectively; DWConv refers to
depthwise separable convolution. Then, the pyramid pooling module Fpp (Pyramid Pool-
ing) captures hierarchical contextual information from global to local through a multi-scale
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pooling strategy, aiding in understanding scene structure and suppressing background
interference, as given by the following formula:

Fpp = {Up
(
Conv1×1

(
Poolk

(
F′

in
)))

|k ∈ {1, 2, 3, 6}}. (9)

where Poolk denotes an adaptive average pooling operation with an output size of k × k,
and Up indicates bilinear interpolation upsampling to the original feature map size.

Finally, the enhanced feature representation is obtained through feature fusion:

Fout = Fusion
(
Conv(Fca), Conv(Fsa), Conv

(
Fpp

))
. (10)

where Conv denotes 1 × 1 convolution for feature alignment, and Fusion performs feature
fusion along the channel dimension.

The CPSA module effectively addresses the key challenges the UAV perspective poses
through its well-designed, multi-faceted mechanisms. To overcome the limited target fea-
ture representation issue, the multi-branch spatial attention structure enhances the model’s
ability to capture small targets by extracting features at varying receptive fields. To mitigate
the impact of complex background interference, the pyramid pooling module captures
hierarchical contextual information, enabling the model to understand scene structure
better and distinguish targets from the background. In urban environments, this contextual
information allows the model to more accurately differentiate pedestrians from background
elements such as buildings and vehicles. Furthermore, the CPSA module enriches the
feature representations by employing adaptive feature recalibration, making them more
discriminative and significantly boosting detection performance in challenging scenarios.
The experimental results demonstrate that this multi-dimensional feature enhancement
strategy effectively improves the detector’s robustness, making it better suited to the unique
demands of pedestrian detection from a UAV perspective.

5. Experiment
5.1. Dataset

A notable innovation of the NSV dataset is its highly efficient automated annotation
process. Specifically, this study introduces the TAHA method, which enables the automated
annotation of large-scale training data. All automatically generated annotated images are se-
lected as dataset frames by choosing the first frame every ten frames in chronological order,
thereby ensuring both the size and quality of the dataset. This automated approach not only
significantly enhances the efficiency of data annotation but also achieves a groundbreaking
expansion in both the scale and diversity of the dataset.

From a data distribution perspective, the NSV dataset exhibits substantial diver-
sity across several dimensions: (a) viewpoint variations, (b) target-to-camera distances,
(c) lighting conditions, and (d) background complexity. This multi-dimensional variability
introduces new challenges to pedestrian detection tasks while providing essential sup-
port for enhancing the model’s generalization capabilities. To ensure the reliability of
evaluations, the test set employs independent scenes and meticulous manual annotation
strategies. The independent scene setup allows a more objective assessment of the model’s
generalization performance. At the same time, high-quality manual annotations provide a
reliable benchmark for model performance evaluation and validate the effectiveness of the
semi-automated annotation method employed in the training set.

This study compares the NSV dataset with the VisDrone2019 and Okutama-Action
datasets, with specific information detailed in Table 2.

As can be observed from the table presented above, the NSV dataset demonstrates
significant advantages over the VisDrone2019 and Okutama-Action datasets regarding
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viewpoint diversity, scale diversity, and sample diversity. Specifically, the NSV dataset
encompasses a broader range of camera viewpoints, including various heights and angles,
making pedestrian detection more challenging across different perspectives. Regarding
scale diversity, the pedestrian targets in the NSV dataset span a wide range of distances,
from far to near, enhancing the model’s ability to adapt to targets of varying sizes. Addi-
tionally, the increased sample diversity means that the dataset includes a greater variety
of pedestrian postures, attire, and dynamic behaviors, further enriching the diversity of
training samples. This multi-dimensional advantage introduces more complex and realistic
scene challenges to pedestrian detection tasks and provides a robust foundation for improv-
ing the model’s generalization capabilities. By training in a diversified data environment,
the model can more effectively handle complex real-world application situations, maintain
high detection performance, and significantly enhance its practicality and reliability in
actual scenarios.

Table 2. Detailed information on the various datasets.

Name Type Format Number Perspective Scale

VisDrone2019
Training 6471

Validation Image 548 Fewer Moderate
Testing 1610

Okutama-Action
Training 33

Validation Video None Moderate Fewer
Testing 10

NSV
Training 8852

Validation Image 2214 More More
Testing 500

5.2. Evaluation Metrics and Experimental Setup

To thoroughly evaluate the performance of the improved pedestrian detection model
under UAV perspectives, this study utilizes several standard evaluation metrics, including
Average Precision (AP), Precision, and Recall, to assess the model’s accuracy and robustness
across different aspects. Specifically, AP@0.5 represents the average precision with an IoU
threshold of 0.5, while AP@0.5:0.95 refers to the average precision computed over IoU
thresholds ranging from 0.5 to 0.95, with a step size of 0.05. The formula for precision is
given as follows:

Precision =
TP

TP + FP
. (11)

where TP (True Positive) is the number of true positives and FP (False Positive) is the
number of false positives. The formula for Recall is expressed as follows:

Recall =
TP

TP + FN
. (12)

where FN (False Negative) is the number of false negatives. The formula for AP@0.5:0.95 is

AP0.5:0.95 =
1
10

9

∑
i=0

APIoU=0.5+0.05i. (13)

These evaluation metrics comprehensively assess the pedestrian detection model’s
performance under different scenarios and conditions, offering references for subsequent
improvements and optimizations.

Regarding the loss function, a combination of cross-entropy loss and IoU loss is
utilized to improve the model’s detection accuracy and localization precision. The LCE
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(cross-entropy loss) measures the difference between predicted and true class labels, ex-
pressed as follows:

LCE = −
N

∑
i=1

yi log(pi). (14)

where yi is the true class label, pi is the predicted probability, and N is the number of
samples. The IoU loss evaluates the overlap between the predicted bounding box and the
ground truth, represented as follows:

LIoU = 1 − I(A, B)
U(A, B)

. (15)

where A is the predicted bounding box, B is the ground truth bounding box, I(A, B) denotes
the intersection area of the predicted and ground truth boxes, and U(A, B) represents the
union area.

The combined loss function, which incorporates both LCE and LIoU , is expressed
as follows:

L = α · LCE + β · LIoU . (16)

where α and β are weight parameters used to balance classification loss and localization
loss. In the experiments, these parameters are set to 0.05 and 0.2, respectively, to em-
phasize accurate pedestrian localization while maintaining classification capability for a
single category.

The experiments in this study were conducted using the COCO-YOLOv7 model as
the baseline and trained on the NSV dataset. All experiments were executed on a single
NVIDIA RTX 4090 GPU, within the PyTorch 1.13.1 framework utilizing CUDA 11.6. The ex-
perimental environment included Python 3.9.7, along with libraries such as NumPy 1.21.5,
OpenCV 4.5.5, and Albumentations 1.3.0 for preprocessing and data augmentation.

Preprocessing operations included image scaling, normalization, and data augmenta-
tion techniques such as random cropping, flipping, and brightness adjustment, aimed at
improving the model’s generalization ability. For training, the AdamW optimizer was used,
combining adaptive learning rates with weight decay. The initial learning rate was set to
0.001, and a cosine annealing scheduler was employed to gradually reduce it, ensuring
stable convergence. The weight decay coefficient was set to 0.0005 to prevent overfitting.
The batch size was set to 16 to fully leverage GPU resources. The model was trained
for 100 epochs, with performance metrics, including loss values, recorded at each epoch.
To ensure reproducibility, random seeds were fixed across all experiments.

5.3. Ablation Experiment

This study conducted ablation experiments to verify the contributions of the DCBS,
VAD, and CPSA modules in enhancing pedestrian detection performance from a UAV
perspective by incrementally adding key modules on the NSV test set. The results of the
ablation experiments are presented in Table 3.

Table 3. Ablation experiment.

Method VAD CPSA DCBS AP@0.5 AP@0.5:0.95 Precision Recall Params (M) Flops (G) FPS

1 59.8 34.5 61.7 53.5 36.4 103.2 89
2 ✓* 64.9 38.5 68.3 59.6 37.1 105.1 88.6
3 ✓ ✓ 67.4 39.3 70.4 62.4 38.6 108.4 86.5

Ours ✓ ✓ ✓ 68.8 40.1 70.9 69.3 41.5 113.6 83.2

* Checkmark indicates the inclusion of this module.
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The table’s data clearly demonstrate that each proposed enhancement module sig-
nificantly improves detection performance, with the VAD module contributing the most
noticeable gains. Specifically, introducing the VAD module resulted in a 5.1% increase in
AP@0.5 compared to the baseline model. This substantial improvement can be attributed
to the innovative design of the VAD module in feature extraction, which effectively decom-
poses and preserves stable, perspective-invariant feature representations. Notably, the VAD
module efficiently filters out perspective-induced interference features when addressing
dynamic changes in UAV perspectives, ensuring consistent performance across varying
observation angles.

Building upon the VAD module, the addition of the CPSA module further improved
model performance by 2.5%. This enhancement can be attributed to the multi-scale feature
refinement mechanism of the CPSA module. Its multi-branch spatial attention structure,
leveraging depthwise separable convolutions with varying dilation rates, increases the
model’s adaptability to targets of different scales. Secondly, the hierarchical contextual
information the pyramid pooling module provides significantly enhances the model’s
ability to interpret complex backgrounds. This composite feature enhancement strategy
equips the detector with greater robustness, enabling it to detect targets at varying flight
altitudes more effectively.

Finally, the DCBS module, which incorporates deformable convolutions, is introduced,
enhancing the model’s average precision, accuracy, and recall. This improvement stems
from the ability of deformable convolutions to overcome the limitations of traditional
convolutions with fixed receptive fields, allowing for dynamic adjustment of sampling
positions based on the actual deformation of the target. This adaptive feature extraction
mechanism is particularly effective in handling the irregular geometric deformations of
pedestrian targets from UAV perspectives, enabling the model to capture key features of
the targets more accurately.

In summary, the synergistic integration of these three modules forms a comprehen-
sive feature enhancement framework: the VAD module ensures perspective invariance,
the CPSA module enhances multi-scale feature representation, and the DCBS module offers
more flexible feature sampling capabilities. While this multi-layered design substantially
boosts detection accuracy in UAV-based pedestrian scenarios, it also introduces additional
parameters and computational overhead, resulting in a slight reduction in FPS. Never-
theless, for most UAV applications, the benefits in detection performance justify these
overheads, making the proposed model a viable solution for real-world deployment.

5.4. Comparison Experiments

To effectively demonstrate the efficacy of the proposed TAHA method, we conducted
comparative experiments to evaluate the impact of different tracking methods and optical
flow estimation techniques on the dataset and experimental outcomes. Table 4 presents the
detailed experimental results.

Table 4. Comparison experiment of different models in TAHA.

ByteTrack [40] SMILEtrack FlowFormer [41] GMFlow NSV Quantity AP@0.5 AP@0.5:0.95

✓* ✓ 11,478 68.4 39.7
✓ ✓ 11,485 68.6 39.8

✓ ✓ 11,574 68.8 39.9
✓ ✓ 11,566 68.8 40.1

* Checkmark indicates the inclusion of this method.

The table above shows that the proposed TAHA method exhibits stable performance
across various tracking methods and optical flow estimation techniques, further validating
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its effectiveness. This approach significantly reduces the labeling workload for researchers
and paves the way for future advancements in automated dataset labeling.

Additionally, to better demonstrate the effectiveness of our model for pedestrian
detection from a UAV perspective, this study compares its performance against various
object detection models and state-of-the-art pedestrian detection models on the NSV dataset.
All models in the comparative experiments use standard weights pre-trained on the COCO
dataset. Table 5 presents the experimental results for the different models.

Table 5. Comparison experiment of different models.

Model AP@0.5 AP@0.5:0.95 Model Weight (MB)

SSD 51.6 29.4 159
Faster R-CNN 53.2 30.8 135

YOLOv3 54.5 31.7 236
ACSP [42] 55.1 32.3 321
YOLOv5 55.7 33.1 166
Cascade

RCNN [43] 55.9 33.9 315

F2DNet [44] 57.8 34.2 217
YOLOv8 59.4 34.8 50
YOLOv7 59.8 34.5 72

YOLOv11 [45] 61.2 34.4 39
Ours 68.8 40.1 95

As shown in the table above, the improved model achieves AP@0.5 improvements
of 17.2% and 15.6% over SSD and Faster R-CNN, respectively. Compared to the YOLO
series models—YOLOv3, YOLOv5, YOLOv7, YOLOv8, and YOLOv11—the improvements
are 14.3%, 13.1%, 9%, 9.4%, and 7.6%, respectively. Additionally, it outperforms the
pedestrian detection models ACSP, Cascade R-CNN, and F2DNet by 13.7%, 12.9%, and 11%,
respectively. Considering both accuracy and model complexity, these results demonstrate
the clear advantages of the YOLO series for pedestrian detection from a UAV perspective.

5.5. Generalization Comparison Experiments

To further validate the reliability and generalization of the proposed method, we
performed additional tests on external benchmarks beyond the specifically constructed
NSV dataset. These external datasets include the widely used VisDrone2019 and Okutama-
Action datasets. For the VisDrone2019 and Okutama-Action datasets, we carefully selected
only the pedestrian-related data that align with the UAV perspective to ensure the relevance
and accuracy of the experimental results. The improved model was then systematically
compared with existing object and pedestrian detection models to evaluate its performance
across various datasets. The detailed experimental results are presented in Table 6.

Our experimental analysis demonstrates that the proposed model not only achieves
strong performance on the custom NSV dataset but also excels in pedestrian detection on
well-established public datasets like VisDrone2019 and Okutama-Action. These results
highlight the robustness and effectiveness of the proposed approach, reinforcing its practical
applicability in a wide range of real-world UAV vision scenarios. The model’s success
on these diverse benchmarks further emphasizes its potential for generalization across
different environmental conditions and camera perspectives.
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Table 6. Validation results on public datasets.

Model Testing AP@0.5 AP@0.5:0.95

SSD VisDrone2019 39.7 26.3
Faster R-CNN VisDrone2019 40.9 26.8

ACSP VisDrone2019 41.9 27.4
YOLOv3 VisDrone2019 42.8 28.1
YOLOv5 VisDrone2019 43.7 28.6

Cascade RCNN VisDrone2019 44.6 29.1
F2DNet VisDrone2019 45.5 29.7
YOLOv7 VisDrone2019 46.4 30.2
YOLOv8 VisDrone2019 46.7 30.1

YOLOv11 VisDrone2019 46.9 30.5
Ours VisDrone2019 50.2 32.9

SSD Okutama-Action 54.6 31.2
Faster R-CNN Okutama-Action 56.2 32.3

YOLOv3 Okutama-Action 56.7 32.9
YOLOv5 Okutama-Action 58.4 33.5

ACSP Okutama-Action 59.1 34.3
Cascade RCNN Okutama-Action 60.2 35.4

F2DNet Okutama-Action 61.5 35.7
YOLOv8 Okutama-Action 63.3 35.5
YOLOv7 Okutama-Action 63.6 36.1

YOLOv11 Okutama-Action 63.8 35.9
Ours Okutama-Action 69.2 38.7

5.6. Few-Shot Learning

In practical applications, obtaining large-scale annotated datasets is often constrained
by resource and time limitations, particularly in UAV-based pedestrian detection tasks.
These tasks require capturing diverse viewpoints and accurately annotating images, making
the entire process both time-consuming and labor-intensive. To address this challenge,
this study explores the potential of few-shot learning strategies in extreme viewpoint
pedestrian detection. Specifically, we first pre-train the model on the VisDrone2019 dataset
to acquire general feature representation capabilities, and then fine-tune the model using
a small number of samples from the NSV dataset to assess its rapid adaptability under
extreme top-down perspectives. In the experimental setup, we specifically selected scene
samples from the NSV dataset with viewpoints greater than 80 degrees and constructed
two evaluation scenarios: 1-shot and 5-shot. The 1-shot scenario uses only one annotated
sample per scene for fine-tuning, while the 5-shot scenario uses five annotated samples.
To ensure the reliability of the experiments, we randomly selected the support set (used for
fine-tuning) and query set (used for testing), and conducted multiple repeated experiments
to obtain an average result. The specific experimental results are shown in Table 7.

Table 7. Few-shot learning result.

Method Scenario AP@0.5 AP@0.5:0.95 Precision Recall

Baseline Full 59.8 34.5 61.7 53.5
Ours 68.8 40.1 70.9 69.3

Fine-tuning 1-Shot 60.6 35.6 62.9 61.5
MAML 61.9 36.3 64.1 62.1

Fine-tuning 5-Shot 62.3 36.4 64.3 62.9
MAML 65.6 38.2 67.7 66.1
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The experimental results demonstrate that, even with extremely limited annotated
data, the proposed method still exhibits strong transfer learning capabilities. Compared to
traditional fine-tuning methods, the model achieves an AP@0.5 of 61.9% with just one sam-
ple (1-shot), which is a 2.1% improvement over the baseline. When the number of samples
is increased to five (5-shot), the performance further improves to 65.6%, showing a signifi-
cant performance gain. These results validate the practical value of the proposed method,
particularly its ability for rapid deployment in scenarios with limited annotation resources.

5.7. Visualization Analysis

To intuitively demonstrate the model’s performance and improvements in pedestrian
detection from a UAV perspective, we visualized several detection results and heatmap data
from the test set. This visualization highlights the model’s detection capabilities in various
complex scenarios, including variations in pedestrian orientation, scale, and environmental
lighting conditions. The heatmap results from the improved model on the test set are
shown in Figure 8.

Through visual analysis of the attention heatmaps, we can observe the model’s atten-
tion distribution patterns for pedestrian targets from a UAV perspective. The experimen-
tal results demonstrate a significant improvement in the feature extraction capability of
the Pedestrian-DVC model. High-response features are prominently concentrated in the
pedestrian target regions, while background areas show low response values. The model
maintains a stable and focused attention distribution even when the target size is small.
Additionally, the detection performance of the improved model on the test set is illustrated
in Figure 9.

The Pedestrian-DVC model demonstrates robust pedestrian detection performance
across various challenging scenarios, as highlighted by the visualizations in Figure 9, where
we show comparisons between the original YOLOv7 and our model under different condi-
tions. Specifically, the model can accurately detect pedestrians with varying postures, scales,
and distances. It maintains high detection accuracy even at more vertical overhead angles,
where traditional models struggle, successfully identifying the majority of pedestrians.
In addition, the model performs well in scenes with suboptimal lighting conditions, such
as low light, where the YOLOv7 model fails to detect pedestrians reliably. Furthermore, it
effectively handles complex backgrounds and severe occlusions, making it more robust in
real-world scenarios where pedestrians are often partially obscured by obstacles or other
objects. The model also adapts well to scale variations, detecting pedestrians at various
sizes with high accuracy. This is particularly evident in the multi-scale visualizations,
where the model outperforms YOLOv7 in detecting pedestrians at different distances from
the UAV. These results demonstrate the model’s advanced feature extraction capabilities,
distinguishing pedestrians from the background even in challenging conditions like view-
point changes, scale variations, low lighting, and severe occlusions, thereby showcasing its
robustness and generalization ability.
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Figure 8. Comparison of visualization information of attention heatmaps. (a–h) Each group shows
the attention heatmap results for the same image using different methods. In each heatmap, areas
with redder tones indicate higher levels of attention. Red boxes denote the ground truth locations
of pedestrians.
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Figure 9. Performance of the Pedestrian-DVC model on the NSV testset.

6. Discussion
Experimental results on our NSV and public datasets VisDrone2019 and Okutama-

Action demonstrate that Pedestrian-DVC outperforms existing algorithms. However,
the experiments also reveal limitations, such as the relatively large model weights, which
lead to significant resource consumption when deployed on UAVs. Future work will focus
on fine-tuning hyperparameters, refining the network architecture, and addressing these
resource-related issues.

In addition, the current NSV dataset primarily focuses on RGB imagery and lacks
multimodal information, such as infrared (IR) and depth data. These modalities are
particularly valuable for addressing challenges such as low-light conditions, complex
backgrounds, and occlusions, which are prevalent in UAV-based pedestrian detection
scenarios. As part of future work, we plan to enhance the NSV dataset by incorporating
synchronized RGB, IR, and depth data. To achieve this, we intend to use DJI’s newly
released M4T UAV as the foundational platform for multimodal data collection. This
advanced UAV platform is equipped with integrated RGB-IR cameras and supports the
addition of depth sensors (e.g., stereo vision or LiDAR), enabling the efficient collection of
synchronized multimodal data under diverse conditions.

The expanded NSV dataset will better represent UAV surveillance scenarios across
varying times of day, weather conditions, and flight altitudes. The inclusion of infrared
and depth modalities will also facilitate the exploration of multimodal fusion techniques,
leveraging the complementary strengths of different data sources to enhance the detection
robustness. For instance, infrared imaging can improve detection in low-visibility envi-
ronments, while depth data provide spatial information to help distinguish pedestrians
from complex backgrounds. By integrating these modalities and leveraging the capabili-
ties of cutting-edge UAV platforms like the DJI M4T, the NSV dataset aims to become a
more holistic benchmark, promoting further advancements in pedestrian detection from
UAV perspectives.

7. Conclusions
This paper presents a novel pedestrian detection method for UAVs based on YOLOv7,

addressing the significant performance degradation observed in traditional detectors when
applied to overhead views. First, we introduced a new pedestrian detection dataset tailored
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for UAV applications, employing an automated annotation strategy that significantly
improved data acquisition efficiency while maintaining high annotation quality. This
dataset offers higher-quality image samples and systematically covers key scenarios and
challenging perspectives in UAV-based pedestrian detection for the first time. Second,
we designed the Pedestrian-DVC detection framework, incorporating three innovative
modules built upon the YOLOv7 architecture. The DCBS module adapts the receptive field
using deformable convolutions to effectively handle the geometric distortions of pedestrian
appearances from the UAV perspective. The VAD module decouples pedestrian features
into angle-dependent and angle-independent branches, significantly enhancing the model’s
robustness against viewpoint variations and improving its generalization across different
observation angles. The CPSA module leverages a multi-scale feature pyramid structure
combined with a spatial attention mechanism to effectively tackle the problem of severe
target scale variations in UAV-based detection.

The experimental results demonstrate that the proposed Pedestrian-DVC framework
outperforms the baseline model across all evaluation metrics, effectively addressing the
unique challenges of pedestrian detection from a UAV perspective. This work provides a
new research direction and offers a practical solution for pedestrian detection tasks from
UAV perspectives.
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