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Abstract: Infrared line-scanning images have high redundancy and large file sizes. In
JPEG2000 compression, the MQ arithmetic encoder’s complexity slows down processing.
Huffman coding can achieve O(1) complexity based on a code table, but its integer-bit
encoding mechanism and ignorance of the continuity of symbol distribution result in
suboptimal compression performance. In particular, when encoding sparse quantized
wavelet coefficients that contain a large number of consecutive zeros, the inaccuracy of the
one-bit shortest code accumulates, reducing compression efficiency. To address this, this
paper proposes Huf-RLC, a Huffman-based method enhanced with Run-Length Coding.
By leveraging zero-run continuity, Huf-RLC optimizes the shortest code encoding, reducing
the average code length to below one bit in sparse distributions. Additionally, this paper
proposes a wavelet coefficient probability model to avoid the complexity of calculating
statistics for constructing Huffman code tables for different wavelet subbands. Furthermore,
Differential Pulse Code Modulation (DPCM) is introduced to address the remaining spatial
redundancy in the low-frequency wavelet subband. The experimental results indicate that
the proposed method outperforms JPEG in terms of PSNR and SSIM, while maintaining
minimal performance loss compared to JPEG2000. Particularly at low bitrates, the proposed
method shows only a small gap with JPEG2000, while JPEG suffers from significant blocking
artifacts. Additionally, the proposed method achieves compression speeds 3.155 times
faster than JPEG2000 and 2.049 times faster than JPEG.

Keywords: image lossy compression; Huffman coding; JPEG2000; infrared line-scanning
images; DWT

1. Introduction
In practical image lossy compression systems, the framework based on transform–

quantization–entropy coding is the most widely used [1–6]. However, methods that cur-
rently outperform JPEG2000 in compression efficiency typically come at the cost of in-
creased computational complexity. The core of transform coding lies in the elimination
of redundant correlations in image data, thus enhancing compression efficiency. Trans-
formation methods in image compression can be divided into linear and non-linear trans-
formations, with the latter commonly employed in deep learning-based image compres-
sion methods [7–11]. The activation functions in the network architecture introduce non-
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linearity, thereby implementing non-linear transformations that extract complex features
to achieve higher compression performance. However, deep learning-based image com-
pression methods have higher computational complexity, which limits their application
in scenarios where speed is a critical factor. Common linear transform methods include
the Karhunen–Loève transform (KLT) [12], Discrete Cosine Transform (DCT) [13,14], and
Discrete Wavelet Transform (DWT) [15–18], with DCT and DWT serving as core transform
techniques in the JPEG and JPEG2000 standards, respectively.

In terms of eliminating data correlations, the KLT, as an optimal linear orthogonal
transform, can adaptively determine the optimal orthogonal basis based on the statistical
properties of the data, minimizing the correlation between data in the new basis coordinate
system. It achieves optimal compression in terms of the Mean Squared Error (MSE) [12].
However, the high computational complexity of the KLT limits its use in practical applica-
tions.

In contrast, the basis functions of DCT, which are cosine functions, are fixed and
independent of the statistical properties of the data, significantly reducing computational
complexity. Moreover, DCT can achieve compression performance comparable to that of
KLT in most cases, making it a widely used alternative in practical systems. However, as
global basis functions, cosine functions span the entire dataset, limiting DCT’s ability to
capture local features, such as image edges and textures. Therefore, when processing non-
stationary signals, such as images, its redundancy reduction effectiveness is constrained.

To reduce the high computational and storage complexity of performing global DCT on
large images, JPEG uses an 8 × 8 block-based DCT. However, under low bitrate conditions,
information loss caused by truncated high-frequency components often leads to the blurring
of the image and block artifacts.

The DWT employs wavelet functions as basis functions, with commonly used wavelet
functions including Haar [19], Daubechies [20], Biorthogonal [21], and Coiflet [22]. Wavelet
functions exhibit locality, being nonzero only in a limited region, which allows the DWT
to be implemented through a weighted summation (convolution) method within local
regions. As a result, the convolution-based DWT can operate directly on the entire image
without the need for block-based processing, effectively avoiding block artifacts under low
bitrate conditions. The DWT can simultaneously capture both global and local features of
an image, making it more suitable for processing non-stationary signals.

Furthermore, the DWT retains both time-domain and frequency-domain information
and supports integer lossless transformations, making it more advantageous than the DCT
in preserving image details. Its hierarchical decomposition mechanism allows images to be
transmitted progressively at different resolution and quality levels, aligning more closely
with human visual characteristics. Due to these properties, wavelet transforms are widely
used in modern image compression techniques such as EZW (Embedded Zerotree Wavelet),
SPIHT (Set Partitioning in Hierarchical Trees), and EBCOT (Embedded Block Coding with
Optimal Truncation) [23–25].

The Mallat algorithm is a fast DWT that achieves efficient multi-resolution decom-
position [26]. This algorithm implements DWT through convolution operations using
FIR (Finite Impulse Response) filters. Introduced later, the lifting scheme decomposes the
traditional filtering operations in the Mallat algorithm into a series of simple, complemen-
tary prediction and update steps, resulting in an efficient and reversible DWT, while also
mitigating the boundary effects of convolution [27,28]. The lifting-based DWT is essentially
an optimized version of the Mallat algorithm, and mathematically, they are equivalent.
The lifting-based DWT is applied in JPEG2000 due to its computational simplicity and
efficiency.
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An n-level wavelet transform decomposition results in 3n + 1 subbands, with the low-
frequency subband (LL) containing most of the energy and serving as the approximation of
the original image, while the high-frequency subbands (LH, HL, HH) contain less energy
and represent the details of the image. Although the DWT offers advantages over the DCT,
the decomposed subbands, especially the LL subband, may still contain spatial redundancy
due to the retention of time-domain information.

Quantization schemes typically include vector quantization (VQ) and scalar quantiza-
tion (SQ). In high bitrate scenarios, uniform scalar quantization (USQ) is widely used in
practical coding systems due to its good rate-distortion performance and simplicity [29].
JPEG uses an 8 × 8 DCT transformation, combined with USQ [30–33]. However, under low
bitrate conditions, the quality of JPEG-compressed images degrades significantly due to
the side effects introduced by quantization and block division. In contrast, JPEG2000 uses a
lifting-based DWT to transform the entire image, avoiding block artifacts. JPEG2000 uses
two wavelet transforms: the Le Gall 5/3 integer wavelet transform for lossless compression,
and the Daubechies 9/7 fractional wavelet transform for lossy compression [18]. In lossy
compression, JPEG2000 uses dead-zone uniform scalar quantization (DUSQ) [29,34,35]
during the quantization stage. This method introduces larger quantization intervals near
zero to discard insignificant information, thereby improving compression performance.
Infrared line-scanning images, due to the high amount of redundant information they
contain, exhibit sparsity in the coefficients of high-frequency subbands after DUSQ, with
many coefficients being zero, and the few nonzero coefficients concentrated near zero.

Entropy coding is a key step in image compression, with common methods including
arithmetic coding (AC) [36–39] and Huffman coding [40–44]. JPEG2000 adopts MQ arith-
metic coding [45,46], which uses a two-level lookup table with context (CX) and binary
decisions (D) for adaptive probability estimation, achieving high compression efficiency.
However, this method has high computational complexity. Despite optimizations such as
parallel algorithms and hardware acceleration [47,48], its theoretical complexity is higher
than that of Huffman coding. In contrast, Huffman coding is more efficient in terms of
computational speed. In our previous work, we designed a coding method that could
achieve O(1) complexity after the codebook was constructed [49], making it highly suitable
for high-speed compression applications.

However, Huffman coding only assigns integer-bit codes and does not consider the
continuity of symbol distributions, resulting in low compression efficiency for sparse
wavelet coefficients after quantization. Specifically, for high-frequency subbands with large
numbers of consecutive zeros, the inaccuracy of Huffman coding with a minimum code
length of one bit accumulates, reducing compression efficiency. Furthermore, due to the
differences in statistical distributions across various wavelet subbands, traditional Huffman
coding often requires frequent recalculation of statistics for constructing the codebook,
thereby increasing complexity.

To address the remaining spatial redundancy in wavelet subbands and the inefficien-
cies of Huffman coding for quantized sparse wavelet coefficients, this paper proposes the
following optimization strategies:

1. Wavelet subband redundancy reduction via DPCM:
to address the spatial redundancy in wavelet subbands caused by the presence of
temporal information, Differential Pulse Code Modulation (DPCM) is employed to
reduce spatial redundancy.

2. Wavelet coefficient probability modeling for Huffman coding:
A wavelet coefficient probability model-based Huffman coding scheme is proposed to
eliminate the need for frequent symbol statistics and codebook reconstruction across
wavelet subbands, thereby reducing computational complexity. Since quantized
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wavelet coefficients have varying statistical distributions across subbands and quanti-
zation levels, traditional Huffman coding requires frequent coefficient statistics and
codebook construction, leading to high computational costs. The proposed method es-
tablishes a probabilistic model for quantized wavelet coefficients to effectively reduce
complexity and improve compression speed.

3. Run-length-enhanced Huffman coding:
Huffman coding of quantized sparse wavelet coefficients suffers from inefficient
code length allocation and disregards symbol distribution continuity, leading to
suboptimal compression efficiency. By integrating Run-Length Coding (RLC) into
Huffman coding, symbol continuity is exploited to optimize the assignment of the
shortest Huffman code, which is one bit, achieving an average code length of less
than one bit in sparse scenarios, thus improving the efficiency of Huffman coding.

Experimental results demonstrate that the proposed method outperforms JPEG in
terms of compression ratio and decoding speed, achieves higher compression speed com-
pared to JPEG2000, and maintains image quality comparable to JPEG2000 at the same
bitrate. Especially under low bitrate conditions, the proposed method maintains a small
gap with JPEG2000, while JPEG shows significant blocking artifacts. Speed test results show
that the proposed method achieves compression speeds 3.155 times faster than JPEG2000
and 2.049 times faster than JPEG, providing an ideal solution for lossy compression appli-
cations that require both compression speed and image quality.

2. Proposed Method
2.1. DWT and Coefficient Quantization

Infrared images typically exhibit high spatial redundancy. Image transforms can
eliminate this redundancy, facilitating subsequent quantization and entropy coding. The
Discrete Wavelet Transform (DWT) offers advantages aligned with human visual percep-
tion, making it ideal for image compression schemes based on human vision characteristics.

2.1.1. Overview of Lifting-Based DWT

The DWT utilizes wavelet functions as basis functions, which are nonzero only within
a localized region. This locality allows the DWT to be efficiently implemented using short
convolution kernels, as convolution inherently involves a weighted summation of localized
regions of the signal. Furthermore, the DWT implemented via convolution can operate
on the entire image without block division, eliminating block effects under low bitrate
conditions.

The Mallat algorithm is a fast DWT computation method based on Multi-Resolution
Analysis (MRA), which decomposes and reconstructs the signal layer by layer using filter
banks. After a single level of DWT decomposition, the image is divided into four subbands:
the low-frequency subband (LL) and three high-frequency subbands (LH, HL, HH). In
multi-level decomposition, each transformation is applied only to the LL subband of the
previous level, thereby enabling the extraction of image features at multiple scales.

The Mallat algorithm performs decomposition using a low-pass filter h[n] and a
high-pass filter g[n]. The one-dimensional (1D) transformation formula is as follows.

The decomposition formula for the low-frequency (approximation) component is
defined as:

aj+1[k] = ∑
n

h[n − 2k]aj[n] (1)
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The decomposition formula for the high-frequency (detail) component is defined as
follows:

dj+1[k] = ∑
n

g[n − 2k]aj[n] (2)

where: aj[n] is the low-frequency coefficient at the jth level, with j = 0 corresponding to the
original data. dj+1[k] is the high-frequency coefficient at the j + 1th level. Due to the 2-fold
downsampling, the number of coefficients at each level is halved compared to the previous
level. Specifically, when using filters aligned at index 0 (e.g., the CDF 9/7 wavelet), the
low-pass filter typically retains even-indexed samples while the high-pass filter retains
odd-indexed ones, or vice versa, depending on the filter structure and implementation.

The signal reconstruction process involves upsampling, where a zero is inserted be-
tween each pair of consecutive samples, followed by low-pass and high-pass reconstruction
filtering and summation. This process is defined as follows:

aj[n] = ∑
k

h̃[n − 2k]aj+1[k] + ∑
k

g̃[n − 2k]dj+1[k] (3)

where h̃[n] and g̃[n] represent the filters used for reconstruction.
For a two-dimensional (2D) infrared image X(m, n), the 2D Mallat algorithm is re-

quired, which applies high-pass and low-pass filters along both rows and columns. The
transformation is defined as follows:

The first step is to perform a 1D wavelet decomposition on each row.

A(m, k) = ∑
n

h[n − 2k]X(m, n) (4)

D(m, k) = ∑
n

g[n − 2k]X(m, n) (5)

After the row-wise transformation, the image is decomposed into a low-frequency
component A(m, k) and a high-frequency component D(m, k).

In the second step, a 1D wavelet decomposition is applied along the column direction
to both A(m, k) and D(m, k), resulting in four subbands:

The LL (Low–Low) subband, which represents the low-frequency approximation
component, is defined as follows:

LL(l, k) = ∑
m

h[m − 2l]A(m, k) (6)

The LH (Low–High) subband, which represents the high-frequency detail in the
horizontal direction, is defined as follows:

LH(l, k) = ∑
m

g[m − 2l]A(m, k) (7)

The HL (High–Low) subband, representing high-frequency details in the vertical
direction, is defined as follows:

HL(l, k) = ∑
m

h[m − 2l]D(m, k) (8)

The HH (High–High) subband, which represents high-frequency detail in the diagonal
direction, is defined as follows:

HH(l, k) = ∑
m

g[m − 2l]D(m, k) (9)
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The next level of decomposition only requires performing 2D Mallat decomposition
on the LL subband. The Mallat decomposition process of an image is shown in Figure 1.

Figure 1. The Mallat decomposition process of an image. The letter A indicates the low-frequency
approximation subband, and D indicates the high-frequency detail subbands. Different colors are
used to distinguish the subbands for clarity.

During image reconstruction, the inverse transform is first applied to each column.

A(m, k) = ∑
l

h̃[m − 2l]LL(l, k) + ∑
l

g̃[m − 2l]LH(l, k) (10)

D(m, k) = ∑
l

h̃[m − 2l]HL(l, k) + ∑
l

g̃[m − 2l]HH(l, k) (11)

Then, the inverse transform is applied to each row to reconstruct the original image.

X̃(m, n) = ∑
k

h̃[n − 2k]A(m, k) + ∑
k

g̃[n − 2k]D(m, k) (12)

The construction of the DWT is flexible, allowing the selection of different wavelet
basis functions according to specific applications, with corresponding filter coefficients.
In JPEG2000, both Daubechies 9/7 DWT and Le Gall 5/3 DWT are employed, with the
Daubechies 9/7 DWT being used for lossy compression. The Daubechies 9/7 DWT includes
a low-pass filter with 9 coefficients and a high-pass filter with 7 coefficients. These filter
coefficients are carefully computed to achieve efficient image compression performance.
The filter coefficients are shown in Table 1 [18].

Table 1. The filter coefficients of the Daubechies 9/7 DWT.

Daubechies 9/7 Analysis Filter Coefficients Synthesis Filter Coefficients

n h[n] g[n] h̃[n] g̃[n]
0 0.6029490182364 1.115087052457 1.1150870524570 0.6029490182364
±1 0.2668641184429 −0.5912717631142 0.5912717631142 −0.2668641184429
±2 −0.0782232665290 −0.0575435262285 −0.0575435262285 −0.0782232665290
±3 −0.0168641184429 0.0912717631143 −0.0912717631143 0.0168641184429
±4 0.0267487574108 - - 0.0267487574108

In the decomposition process, the filters are referred to as Analysis Filter Coefficients,
while in the reconstruction process, they are referred to as Synthesis Filter Coefficients,
forming a pair of dual filters.

The Mallat algorithm uses FIR filters for convolution calculations, which are sensitive
to boundaries and require special handling. In contrast, the lifting-based DWT decomposes
the traditional filtering operations in the Mallat algorithm into a series of simple, comple-
mentary prediction and update steps, resulting in an efficient and reversible DWT. The
lifting-based DWT is also boundary-insensitive and more memory-efficient.

The lifting-based DWT requires the signal x(n) to be split, typically into an odd
sequence xo(n) and an even sequence xe(n). Prediction and update are the fundamental
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steps in the lifting process. The differences between various DWTs lie in the number of
lifting steps and the parameters used.

In the prediction step, the xe(n) is used to predict the xo(n), thus calculating the
high-frequency part of the signal, which is defined as follows:

dn = xo[n]− P(xe[n]) (13)

In the update step, the predicted high-frequency is used to update the xe(n), thereby
calculating the low-frequency part of the signal, which is defined as follows:

an = xe[n]− U(dn) (14)

where P and U are the prediction and update operators.
This paper uses the lifting-based Daubechies 9/7 DWT, employing two lifting steps

and one scale normalization step. The two lifting steps are defined as follows:

dn = xo[n] + α(xe[n] + xe[n + 1]) (15)

an = xe[n] + β(dn + dn+1) (16)

dn = dn + γ(an + an+1) (17)

an = an + δ(dn + dn+1) (18)

The one scale normalization step is defined as follows:

an = an · ξ (19)

dn = dn/ξ (20)

The structure of the lifting-based Daubechies 9/7 DWT is shown in Figure 2.

Figure 2. Structure of lifting-based Daubechies 9/7 DWT.

Scale normalization amplifies the low frequencies by ξ and reduces the high fre-
quencies by ξ, ensuring a reasonable distribution of energy between the low and high
frequencies. In JPEG2000, the parameters used are shown in Table 2 [27].

Table 2. The parameters of the lifting-based Daubechies 9/7 DWT.

α β γ δ ξ

−1.586134342 −0.05298011854 0.8829110762 0.4435068522 1.149604398

The formulas for decomposition and reconstruction in the lifting scheme are perfectly
symmetric, with the parameters remaining unchanged.
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2.1.2. Wavelet Coefficients’ Dead-Zone Uniform Scalar Quantization

Different wavelet subbands have different importance and coefficient variance, so
each subband’s coefficients need to be quantized with different bit allocation to achieve
optimal coding performance [18]. The LL subband contains the approximate information
of the image, capturing the majority of the original image’s energy. It defines the overall
structure of the image and is highly sensitive to human visual perception. Therefore, a
precise quantization is applied to the LL subband to preserve as much visual information
as possible. The high-frequency subbands (LH, HL, HH) contain the detailed information
of the image, which is less critical. Therefore, coarser quantization can be applied to reduce
storage requirements and improve the compression ratio.

In JPEG2000, each subband uses an independent quantization step size, but the quan-
tization step size within the same subband is uniform. The quantization is implemented
using a quantization table [18,50]. JPEG2000 adopts Dead-Zone Uniform Scalar Quan-
tization (DUSQ), an improvement of Uniform Scalar Quantization (USQ). This method
sets a larger quantization step size near the zero region, removing more non-important
information and further increasing the proportion of zero values. Properly setting the dead
zone range can effectively reduce the number of output bits from the entropy encoder and
improve compression efficiency [34].

The commonly used USQ formula can be expressed as follows:

q(c) =

0, c ∈ [−∆,+∆]

n, c ∈ ((2n − 1)∆, (2n + 1)∆]
(21)

where c denotes the data to be quantized, and q(c) represents the quantized value. The
quantization step size is 2∆, and n is an integer. The illustration of USQ is shown in Figure 3.

Figure 3. Illustration of USQ. Blue brackets indicate intervals quantized to the same value.

The commonly used DUSQ formula can be expressed as follows:

q(c) =


0, c ∈ [−T,+T]

−1, c ∈ [−3∆,−T]

+1, c ∈ [T,+3∆]

n, c ∈ ((2n − 1)∆, (2n + 1)∆]

(22)

where n is a integer, but n ̸= ±2. The dead zone is [−T,+T]. The illustration of DUSQ is
shown in Figure 4.

Figure 4. Illustration of DUSQ. Blue brackets indicate intervals quantized to the same value.

The wavelet coefficient quantization equation used in this paper was expressed as:

q(cj(k)) =

0, if |cj(k)| < T

sign(cj(k)) · ⌊
|cj(k)|

∆j
⌉, otherwise

(23)
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The dequantization formula was expressed as:

c̃j(k) = sign(q(cj(k))) · ∆j · q(cj(k)) (24)

where sign(·) represents the sign function; ⌊·⌉ denotes rounding; cj(k) is the wavelet
coefficient; c̃j(k) is the dequantized wavelet coefficient; q(cj(k)) is the quantized coefficient;
and ∆j = 2∆ is the quantization step size, related to the dynamic range of subband j, and
refers to the quantization table used in JPEG2000 [18,50]. In this paper, T = 1.7∆.

2.1.3. Classification of Quantization Levels

To achieve variable bitrate compression, wavelet coefficients are quantized at different
levels, with the quantization level denoted by the parameter Q. The quantization formula
is given as follows:

q(cj(k)) =

0, if |cj(k)| < T

sign(cj(k)) · ⌊
|cj(k)·Q|

∆j
⌉, otherwise

(25)

Different quantization levels result in different probability distributions. However,
when the quantization levels are close, the differences in probability distributions are rela-
tively small. Therefore, similar quantization levels are grouped into the same quantization
category, leading to a graded classification of quantization levels. In the experiment, the
parameter Q ranged from 0 to 32 and was divided into 5 quantization levels based on the
bit length of the parameter Q, as shown in Table 3.

Table 3. Division of quantization levels.

Q Level

(0,2] 5
(2,4] 4
(4,8] 3

(8,16] 2
(16,32] 1

In this paper, we used a 2048 × 2048 infrared line-scanning image (Image A) as an
example, with its five-level DWT shown in Figure 5. The coefficient histograms of the three
high-frequency subbands (LH, HL, HH) in the fifth-level DWT of Image A under different
quantization levels are shown in Figure 6. It can be observed that as the quantization level
increases, the sparsity of the wavelet coefficients intensifies, leading to more zeros.

(a) (b)

Figure 5. Image A and its five-level DWT. (a) Image A. (b) Five-level DWT of Image A.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6. The coefficient histograms of the three high-frequency subbands(LH, HL, HH) in the
fifth-level DWT of Image A under different quantization levels. (a–e) depict the coefficient histograms
of the HH subband at the fifth level of Image A, corresponding to quantization levels 1 to 5. (f–j) de-
pict the coefficient histograms of the HL subband at the fifth level of Image A, corresponding to
quantization levels 1 to 5. (k–o) depict the coefficient histograms of the LH subband at the fifth level
of Image A, corresponding to quantization levels 1 to 5.
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2.2. The Reduction in Spatial Redundancy and Probability Modeling of Quantized
Wavelet Subbands
2.2.1. Analysis and Removal of Spatial Redundancy in Quantized Wavelet Subbands

Compared to the DCT, the DWT exhibits superior time–frequency localization proper-
ties. While the wavelet decomposition retains additional temporal information, enhancing
the retention of image details and edge structures, it also introduces spatial redundancy. As
a result, its redundancy reduction efficiency may lead to suboptimal performance compared
to the DCT, which more closely approximates the KLT.

The LL subband serves as an approximation of the original image and retains the most
spatial redundancy. In contrast, the high-frequency subbands (LH, HL, HH) represent
high-frequency details in the horizontal, vertical, and diagonal directions, and exhibit lower
spatial redundancy due to their lower information content. Since each subband preserves
directional features, directional differential methods such as DPCM can be employed to
reduce spatial redundancy.

DPCM was chosen for its simplicity and effectiveness in reducing redundancy in
line-scanned images, which helps maintain low algorithm complexity. More sophisticated
predictors could improve compression efficiency but would add complexity.

1. LH subband (horizontal details):
The coefficients exhibit significant variations along the horizontal direction, making
row-wise differencing effective for redundancy reduction.

2. HL subband (vertical details):
The coefficients vary significantly along the vertical direction, making column-wise
differencing more suitable for redundancy reduction.

3. LL (low-frequency) and HH (diagonal detail) subbands:
These subbands lack strong directionality, and both row-wise and column-wise dif-
ferencing methods can be applied. The optimal approach depends on the specific
characteristics of the image.

In this paper, we calculated the original entropy of the subbands at each decomposition
level of Image A, and the entropy after the redundancy was reduced by DPCM. The results
presented in Table 4 lead to the following conclusions based on the experimental data:

• Infrared line-scanning images typically contain noise [51]; line-scanning images are
acquired as the detector scans along the horizontal direction, exhibiting strong inter-
column correlation, which results in lower energy and lower entropy in horizontal
details (LH) compared to vertical details (HL).

• The HH subband is sensitive to noise because it contains minimal entropy. As a
result, the application of differencing operations tends to amplify the noise, making
the data distribution more dispersed and increasing the information entropy, which
introduces additional redundancy. For example, in the 5th-level HH subband, the
original entropy was 5.0752. After applying DPCM in the column and row directions,
the entropy increased to 5.8301 and 5.8806, respectively.

• The HL subband still exhibits some inter-column correlation, and column-wise dif-
ferencing can reduce redundancy, but its effect is not as significant. For instance, in
the 5th-level HL subband, applying DPCM along the column direction reduced the
information entropy from 7.5204 to 6.9991, achieving a reduction of 0.5231.

• The LH subband removes inter-column correlation, has low energy, and is easily
affected by noise. For example, in the 5th-level LH subband, the original entropy was
6.1932. After applying DPCM in the column and row directions, the entropy increased
to 6.9936 and 6.5551, respectively.

• The LL subband contains the majority of the image information and exhibits significant
spatial redundancy. For example, in the 5th-level LL subband, the original entropy
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was 9.7194. After applying DPCM in the column and row directions, the entropy
decreased to 7.3093 and 8.5251, respectively. The column-wise DPCM achieved a
more significant entropy reduction of 2.4101. Additionally, the coefficient distribution
of the LL subband shows no regularity; however, after redundancy reduction using
DPCM, it approximates a Laplace distribution, which is advantageous for subsequent
probabilistic modeling.

Based on the above analysis, this paper employed column-wise DPCM for redundancy
reduction only on the LL subband, in order to maintain low algorithmic complexity.

Figure 7 illustrates the DPCM redundancy reduction in the LL subband. The coefficient
histogram distributions of the LL subband and its DPCM redundancy-reduced version at
different quantization levels are shown in Figure 8.

Table 4. Entropy of subbands before and after DPCM.

Image A 1-Level DWT 2-Level DWT 3-Level DWT 4-Level DWT 5-Level DWT

LH
initial 0.1328 1.0354 2.5447 4.3155 6.1932

DPCM1 1 0.2107 1.4587 3.2105 5.1151 6.9936
DPCM2 2 0.1442 1.1379 2.7488 4.6707 6.5551

HL
initial 0.3513 1.0436 3.1289 5.5041 7.5204

DPCM1 0.3986 1.0571 3.0345 5.1213 6.9991
DPCM2 0.4765 1.4886 3.9721 6.4089 8.2336

HH
initial 0.0035 0.1981 1.4318 3.1328 5.0752

DPCM1 0.0064 0.3101 1.9424 3.8195 5.8301
DPCM2 0.0060 0.3114 1.9698 3.8914 5.8806

LL
initial - - - - 9.7194

DPCM1 - - - - 7.3093
DPCM2 - - - - 8.5251

1 “DPCM1” represents column-wise DPCM; 2 “DPCM2” represents row-wise DPCM.

(a) (b)

Figure 7. Illustration of DPCM-based redundancy reduction for the LL subband. (a) LL subband of
the five-level DWT of Image A. (b) DPCM-based redundancy reduction for the LL subband.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 8. The coefficient histogram distributions of the LL subband and its DPCM redundancy-
reduced version at different quantization levels. (a–e) depict the coefficient histograms of the LL
subband of Image A, corresponding to quantization levels 1 to 5. (f–j) depict the coefficient histograms
of its DPCM redundancy-reduced version, corresponding to quantization levels 1 to 5.
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2.2.2. Probability Modeling of Quantized Wavelet Subbands

After the wavelet coefficients are quantized and spatial redundancy is removed,
entropy coding is applied to form a compact bitstream. Common entropy coding methods
include Huffman coding and arithmetic coding. Huffman coding enables encoding with
complexity of O(1) after the code table is constructed, while arithmetic coding has higher
complexity. In high-speed compression scenarios and on resource-constrained devices,
Huffman coding is the preferred choice. Therefore, this paper uses Huffman coding for
entropy encoding.

Entropy coding depends on the probability distribution of source symbols. Different
subbands have distinct probability distributions; therefore, independently calculating
symbol probabilities and constructing separate Huffman code tables for different subbands
result in significant computational overhead, which in turn severely affects encoding speed.

Experiments have shown that the probability distributions of the wavelet high-
frequency subbands and the LL subband after DPCM follow certain statistical patterns.
Therefore, a probability model for each subband can be pre-established through extensive
statistics, eliminating the need for symbol probability statistics during encoding. Based on
the probability model, a Huffman code table can be pre-established, enabling encoding
with a time complexity of O(1) through table lookups, significantly improving compression
speed.

Conventional methods for constructing probability models typically involve select-
ing an appropriate known probability distribution, such as the exponential or Laplace
distribution, based on the characteristics of the data distribution, and using Maximum Like-
lihood Estimation (MLE) to estimate the parameters. However, after DUSQ, the wavelet
high-frequency subband coefficients exhibit significant sparsity with a large number of
zeros, making it challenging for traditional probability distributions to accurately model the
data. Therefore, this paper adopted a direct statistical approach to construct the probability
model.

We applied a 5-level DWT to 53 infrared line-scan images and conducted a statistical
analysis of the probability distributions of the quantized coefficients in each subband. The
quantized coefficients in each subband were then sorted in descending order of probability.
Finally, the probability distribution model was constructed based on the average probability
distribution of the coefficients across the 53 images.

The probability models of the three fifth-level DWT high-frequency subbands (LH,
HL, HH) at quantization levels 1–5 are shown in Figure 9.

The probability models of all subbands in the five-level DWT when the quantization
level was 1 are shown in Figure 10.

Based on the probability models, Huffman code tables could be pre-established,
thereby avoiding the need for probability statistics and code table construction for each
subband during the encoding process. This enabled fast encoding through table lookup.

The established probability models usually have a certain boundary, but the probabili-
ties outside the boundary are very small and can be neglected. Assuming that the boundary
is [−pos,+pos], only 2 · pos + 1 symbols within this range are encoded. We adopted a
method from our previous work [49] to handle symbols outside the boundary, where these
symbols were encoded with the maximum code value and stored separately in a distinct
storage space. During decoding, when the maximum code value was encountered, the
symbols could be sequentially retrieved from the storage space. Since the probability
of symbols outside the boundary was low, this had minimal impact on the compression
performance.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 9. The probability models of the three fifth-level DWT high-frequency subbands (LH, HL,
HH) at quantization levels 1–5. (a–e) depict the probability models of the HH subband at the fifth-
level DWT, corresponding to quantization levels 1 to 5. (f–j) depict the probability models of the
HL subband at the fifth-level DWT, corresponding to quantization levels 1 to 5. (k–o) depict the
probability models of the LH subband at the fifth-level DWT, corresponding to quantization levels 1
to 5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 10. The probability models of all subbands in the five-level DWT when the quantization level
is 1. (a–o) show the coefficient probability models of the (HH, HL, LH) subbands from the first to the
fifth level of DWT in order. (p) depicts the coefficient probability model of the LL subband at the fifth
level DWT.

Assuming that the code table C = [c0, c1, c2, · · · , c2·pos] is constructed based on a
probability model and Huffman coding rules, sorted in ascending order of code length,
while the quantized coefficient probabilities follow the descending order represented as
q = [0, 1,−1, · · · , pos,−pos], the encoding rule can be expressed as follows:

encode(q(index)) = C(index) (26)

where:

index =


−2 · k, if k ≤ 0

2 · k − 1, if k > 0

2 · pos + 1, if k > 2 · pos

(27)
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2.3. Run-Length-Enhanced Huffman Coding
2.3.1. Analysis of the Limitations of Huffman Coding for Quantized Wavelet Coefficients
with Sparse Distributions

Huffman coding achieves the minimization of redundancy under the constraint of
prefix codes. It is the closest to Shannon entropy among integer-length encodings and
has simple and efficient encoding/decoding algorithms. Therefore, it is called “minimum
redundancy coding” [39]. Huffman coding is based on constructing a binary tree, where
each symbol corresponds to a leaf node. The length of the code is determined by the path
length from the root node to the leaf node. Since a Huffman tree is a binary tree, each
internal node extends downward to two child nodes. Every time a parent node extends to
a child node, the path length increases by 1 bit, so the code length can only be an integer, as
shown in Figure 11. While this restriction simplifies the encoding and decoding algorithms,
it also reduces the coding efficiency of Huffman coding. Additionally, Huffman coding
does not take into account the continuity of symbol distribution.

Figure 11. The mechanism of Huffman coding codeword length increase and the shortest code.

The drawbacks of Huffman coding lie in its allocation of integer-bit codes, which
introduces imprecision, and its inability to account for the continuity of symbol dis-
tribution. Given a symbol set X = [x0, x1, · · · , xn−1] with occurrence probabilities
P = [p(x0), p(x1), · · · , p(xn−1)], the self-information of a symbol xi is defined as:

I(xi) = − log2 P(xi) (28)

The average self-information, also known as Shannon entropy, is defined as:

H(X) = −∑
n

p(xi) · log2 p(xi) (29)

In Huffman coding, let the code length of symbol xi be ni. Then, ni must not be smaller
than the self-information of xi:

ni ≥ − log2 P(xi) (30)

After Huffman coding, the actual average code length is defined as:

Lavg = ∑
n

p(xi) · ni (31)

It follows that:
Lavg ≥ H(X) (32)

H(X) is the theoretically shortest average encoding length. In Huffman coding, the
actual encoding length Lavg is close to H(X), but it cannot be smaller than H(X). They are
equal only when the symbol probability is an integer power of 1/2. However, this is a rare
and special case in image encoding.



Sensors 2025, 25, 2491 18 of 34

After DUSQ, the frequency of zeros in the wavelet coefficients increases significantly,
while the probabilities of other symbols remain low. In this case, zeros are assigned ex-
tremely short codes (typically 1 bit, such as “0”), while the others are assigned relatively
longer codes. This allocation benefits overall compression efficiency since a higher propor-
tion of zero values means that short codes are used more frequently, making the average
code length closer to the Shannon entropy. However, since Huffman coding can only
allocate integer bit codes, when more zeros occur, it aggravates the inaccurate code length
allocation, resulting in a larger gap between the code length and the self-information of the
symbol. In such cases, the gap is directly influenced by the probability distribution of the
symbols.

Assuming a probability of 0, p(0) = 0.8, the self-information is:

I(0) = − log2(p(0)) = 0.322 bit (33)

The gap is:
∆I(0) = 1 − 0.322 = 0.678 bits (34)

For a nonzero symbol xi with p(xi) = 0.01, the self-information is:

I(xi) = − log2(p(xi)) = 6.644 bit (35)

The gap is:
∆I(xi) = 7 − 6.644 = 0.356 bits (36)

It is evident that when the probability of zero is high and the probabilities of other
symbols are low, the Huffman encoding for zero deviates most from the self-information.
Moreover, when the proportion of zeros in the data is large, this further aggravate the
deviation between the average encoding length and the self-information. Therefore, in
sparse quantized wavelet coefficients, reducing the encoding inaccuracy for zeros can
significantly improve the effectiveness of Huffman coding.

2.3.2. Run-Length-Enhanced Huffman Coding Algorithm

As the quantization level of wavelet coefficients increases, zeros appear more fre-
quently, and their consecutive runs become longer. However, Huffman coding ignores the
continuity of symbol distributions. Run-Length Coding (RLC) can effectively exploit this
continuity and can be incorporated into Huffman coding to enhance compression efficiency.

Traditional methods typically separate Huffman coding and RLC, applying RLC to
zeros while encoding other symbols using Huffman coding. However, this approach
requires additional flag bits or prefixes in the encoded stream, which not only increases
encoding overhead but also complicates the logic of both the encoder and decoder.

We propose a run-length-enhanced Huffman coding (Huf-RLC) method, which in-
tegrates RLC within Huffman coding. Specifically, we modified the shortest Huffman
code by appending additional bits to record the run length of consecutive zeros. First, a
codebook was generated based on the probability model. During encoding, when a zero
was encountered, Huffman coding was applied, followed by a fixed number of bits repre-
senting the number of consecutive zeros. If the count exceeded the maximum recordable
value, the remaining zeros were treated as a new sequence and encoded separately. For
nonzero values, standard Huffman coding was used. During decoding, when encountering
the zero-value encoding, the decoder could directly obtain the number of consecutive
zeros from the encoded stream. The detailed description of the algorithm is presented in
Algorithm 1.
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Algorithm 1 Run-length-enhanced Huffman coding.

Require: Quantized_coe f f = [q0, q1, q2, . . . , qn], C = [c0, c1, . . . , c2·pos]
Ensure: Bitstream

1: rlc = 0
2: B⃗⇐ 0
3: Bitstream ⇐ []
4: for each Quantized_coe f f (i) in Quantized_coe f f do
5: if Quantized_coe f f (i) = 0 then
6: rlc = rlc + 1
7: if rlc == 2bit_len − 1 then
8: index = 0
9: Bitstream ⇐ Huffman_encode(C(index))

10: Bitstream ⇐ RLC_encode(rlc)
11: rlc = 0
12: end if
13: else
14: if rlc ̸= 0 then
15: index = 0
16: Bitstream ⇐ Huffman_encode(C(index))
17: Bitstream ⇐ RLC_encode(rlc)
18: rlc = 0
19: end if
20: if Quantized_coe f f (i) < 0 then
21: index = 2 · (0 − Quantized_coe f f (i)) + 1
22: else
23: index = 2 · Quantized_coe f f (i)
24: end if
25: if index > 2 · pos then
26: index = 2 · pos + 1
27: B⃗⇐ Quantized_coe f f (i)
28: end if
29: Bitstream ⇐ Huffman_encode(C(index))
30: end if
31: Bitstream ⇐ encode(B⃗)
32: end for

To further enhance the theoretical completeness of the proposed Huf-RLC algorithm,
the following provides an analysis of its time and space complexities.

Time Complexity Analysis: The algorithm processes the input array Quantized_coe f f
in a single pass, and each element only undergoes constant-time operations (such as
counting, comparisons, index calculations, and table lookups), each of which has a time
complexity of O(1). Since no element triggers more than a fixed number of such opera-
tions, the overall time complexity remains O(n), without introducing any higher-order
polynomial overhead.

Space Complexity Analysis: Besides the input data, the algorithm utilizes a few
constant-space variables (e.g., counter, index, and a temporary buffer), which means the
extra space requirement is O(1). The main space usage comes from the output bitstream.
Assuming that the average encoded length per input element is constant, the total space
required for the bitstream scales linearly with the input size n, i.e., O(n).

In summary, the overall time complexity of the Huf-RLC algorithm is O(n), and the
space complexity is O(n), making it efficient for processing large-scale data.

This method allows Huffman coding to take advantage of the continuity in the distri-
bution of zeros, enabling Huffman coding to achieve fractional-bit encoding and improving
its compression efficiency for sparse quantized wavelet coefficients. It is important to note
that the number of bits used to record the consecutive zeros is related to the quantization
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level and the wavelet subbands, and the optimal bit length needs to be determined through
experiments, which are presented in the results section.

2.4. Lossy Compression Algorithm Based on Huf-RLC and Wavelet Coefficient Probability Model

The previous sections discussed variable bitrate compression achieved by adjusting the
quantization parameter Q. To simplify the probability model, the quantization parameter
Q was categorized into five levels, with each level corresponding to specific probability
distribution models and code tables. Different Q values within the same quantization level
used the same probability models and code tables. Additionally, each wavelet subband in
the image had its own probability model.

Since the probability of zeros is very high, their encoding method has a decisive impact
on the final compression performance. Therefore, the number of bits used to record the
count of zeros in the Huf-RLC significantly affects the compression efficiency. Thus, it is
necessary to set the appropriate bit length for recording the number of zeros for different
quantization levels and wavelet subbands.

Based on the above analysis, the algorithm’s input parameters only included the
quantization parameter Q and the input image. Adjusting Q allowed for compression at
different bit rates. The quantization level could be determined based on the input parameter
Q, thereby selecting the corresponding Huffman code table for the probability model of
each subband at that level, as well as the number of bits for recording consecutive zeros.
Thus, Huf-RLC could be directly carried out by looking up the code tables. The framework
of the algorithm is shown in Figure 12.

Figure 12. The framework of lossy compression algorithm based on Huf-RLC and wavelet coefficient
probability model.

3. Results
3.1. Selection of Optimal Run Length for Different Quantization Levels and Subbands

In Huf-RLC, the bit length used to record the number of consecutive zeros significantly
impacts compression performance, especially when zeros occur with high probability. To
determine the optimal bit length for encoding zero runs, experiments were conducted on
five quantization levels of a five-level DWT across fifteen high-frequency subbands.

By evaluating 53 images, we measured the compression gain, defined as the ratio
of the Huf-RLC compression ratio to the standard Huffman compression ratio, across bit
lengths ranging from 1 to 20. The experimental results for the high-frequency subbands
at decomposition level 1 in a five-level DWT, under quantization levels 1 to 5, are shown
in Figure 13. The results for decomposition levels 2 to 5 are presented in Appendix A.2 in
Figure A1, Figure A2, Figure A3 and Figure A4, respectively.
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Figure 13. Compression gain vs. bit length in Huf-RLC for high-frequency subbands at decomposition
level 1 across 53 images. (a–e) show the results of the HH subband at quantization levels 1 to 5,
respectively. (f–j) show the results of the HL subband at quantization levels 1 to 5, respectively.
(k–o) show the results of the LH subband at quantization levels 1 to 5, respectively.
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As proven in our theoretical analysis (Appendix A.1), there exists a unique optimal bit
length k∗ for run-length encoding of zeros in quantized high-frequency wavelet subbands.
From these figures, we can observe that the distribution of the 53 values of k∗ is concentrated
around a certain value, and the distribution may approximate a normal distribution.
Therefore, using the mean as an estimate of the overall optimal value is a reasonable and
effective approach.

In these figures, the x-axis represents the bit length used for encoding zero runs, while
the y-axis denotes the compression gain. Five quantization levels were analyzed, with
53 curves corresponding to individual images. Each curve is annotated with the mean
of all y-values at its maximum point, along with the rounded mean of the corresponding
x-values. This rounded x-value represents the optimal bit length for recording the number
of consecutive zeros.

Furthermore, Huf-RLC was applied to a subband only if the compression gain ex-
ceeded two (i.e., y > 2); otherwise, standard Huffman coding was used.

3.2. Comparison of Performance with JPEG and JPEG2000 at Different Bitrates

In lossy image compression, PSNR and SSIM are metrics used to evaluate the quality
of compressed images. PSNR primarily measures pixel-wise errors, while SSIM focuses
more on structure, brightness, and contrast, making it better at reflecting human visual
perception.

PSNR is defined as follows:

PSNR = 10 log10

(
MAX2

MSE

)
(37)

MSE =
1

m × n

m

∑
i=1

n

∑
j=1

(X(i, j)− Y(i, j))2 (38)

where MAX is the maximum pixel value (255 for the eight-bit images in this paper). The
original image X is of size m × n, and the compressed image Y is also of size m × n.

SSIM is defined as follows:

SSIM(X, Y) =
(2µXµY + C1)(2σXY + C2)

(µ2
X + µ2

Y + C1)(σ
2
X + σ2

Y + C2)
(39)

where µX , µY are the means of images X and Y (representing brightness). σ2
X , σ2

Y are the vari-
ances (representing contrast). σXY is the covariance (representing structural information).
C1, C2 are stability constants to prevent division by zero.

BPP (Bits Per Pixel) is a key metric for evaluating image compression quality and
efficiency. It indicates the average number of bits assigned to each pixel in the compressed
image and helps quantify the trade-off between compression ratio and image quality.

BPP is defined as follows:

BPP =
Scompressed

m × n
(40)

where Scompressed is the compressed image size (in bits).
Since the probability models was derived from 53 images, additional images were

required to validate the generalizability of the algorithm, similar to the training and testing
sets in deep learning. In this study, 53 images were used to construct the training set, while
another 27 images were collected from different working scenarios of infrared line-scan
detectors to form the test set.
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In the experiment, 3 images were selected from the 53 images in the training set and
3 images from the 27 images in the test set to compare the performance of the proposed
method, JPEG, and JPEG2000 at different bitrates. The specific bitrates were categorized into
low bitrate under the first quantization level and high bitrate under the fifth quantization
level. The experimental results are shown in Figure 14, with detailed BPP, PSNR, and
SSIM statistics provided in Table 5.

(a) (b) (c) (d) (e) (f) (g)

Figure 14. Comparison of performance with JPEG and JPEG2000 at different bitrates. (a) Initial
images. (b) Reconstructed images at low bitrate (proposed method). (c) Reconstructed images at high
bitrate (proposed method). (d) Reconstructed images at low bitrate (JPEG). (e) Reconstructed images
at high bitrate (JPEG). (f) Reconstructed images at low bitrate (JPEG2000). (g) Reconstructed images
at high bitrate (JPEG2000).
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Table 5. Performance comparison (BPP, PSNR, SSIM) at different bitrates.

Image Method BPP PSNR SSIM BPP PSNR SSIM

1
JPEG 0.0387 27.37 0.8456 0.5282 50.84 0.9928

JPEG2000 0.0381 43.41 0.9793 0.5000 52.4 0.9947
Proposed 0.0380 40.57 0.9704 0.4983 51.63 0.9928

2
JPEG 0.0442 31.24 0.8715 0.7234 49.56 0.9903

JPEG2000 0.0442 42.98 0.9729 0.7273 50.97 0.9926
Proposed 0.0440 39.91 0.9618 0.7178 49.87 0.9895

3
JPEG 0.0465 31.03 0.8665 0.8340 49.26 0.9899

JPEG2000 0.0435 42.00 0.9695 0.8889 50.78 0.9924
Proposed 0.0434 39.64 0.9608 0.8353 49.46 0.9890

4
JPEG 0.0413 27.96 0.7719 0.8577 48.92 0.9887

JPEG2000 0.0354 41.35 0.9621 1.0000 50.59 0.9920
Proposed 0.0353 39.53 0.9537 0.9193 49.12 0.9879

5
JPEG 0.0387 27.96 0.8448 0.7216 49.56 0.9897

JPEG2000 0.0327 42.72 0.9708 0.7273 50.81 0.9922
Proposed 0.0326 40.55 0.9648 0.7037 49.73 0.9889

6
JPEG 0.0425 28.25 0.8902 0.5488 49.89 0.9897

JPEG2000 0.0346 46.58 0.9828 0.5333 50.82 0.9917
Proposed 0.0345 42.80 0.9781 0.5302 49.88 0.9886

Mean
JPEG 0.0420 28.97 0.8484 0.702 49.67 0.9901

JPEG2000 0.0380 43.17 0.9729 0.729 51.06 0.9926
Proposed 0.0380 40.50 0.9649 0.701 49.95 0.9894

JPEG2000 performed well under low bitrate conditions. The above test results and
their averages showed that the proposed method maintained a PSNR of 40.05 dB and an
SSIM of 0.9649 at a low bitrate (BPP approximately 0.0380). Compared to JPEG2000, the
PSNR loss did not exceed 2.67 dB, and the SSIM loss did not exceed 0.008. However, JPEG,
even at a relatively higher BPP (approximately 0.0420), exhibited noticeable block effects,
with a PSNR loss of 14.28 dB and an SSIM loss of 0.1165.

3.3. Rate-Distortion Curves and Compression Speed Evaluation

The experiment tested the compression efficiency of the proposed method, JPEG, and
JPEG2000 on both the training and test sets. The average PSNR and SSIM results for all
images in the dataset at different bitrates were used to plot the curves shown in Figure 15.
The average results of these curves, along with detailed numerical comparisons at specific
points, are summarized in Table 6. Additionally, the speed of the proposed method, JPEG,
and JPEG2000 was also tested and is presented in Table 7.

Table 6. Performance comparison (BPP, PSNR, SSIM) at different bitrates.

Compared to JPEG2000 Proposed
PSNR

Proposed
SSIM JPEG PSNR JPEG SSIM

Training set
Mean −1.825 −0.00300 −3.699 −0.00985

Low BPP −3.665 −0.00640 −8.779 −0.04022
High BPP −0.637 −0.00136 −1.278 −0.00113

Test set
Mean −0.520 0.00200 −2.257 −0.00865

Low BPP −2.522 −0.00652 −6.934 −0.03859
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(a) (b)

(c) (d)

Figure 15. Rate–distortion curve. (a) Average PSNR vs. BPP (training set, 53 images). (b) Average
SSIM vs. BPP (training set, 53 images). (c) Average PSNR vs. BPP (test set, 27 images). (d) Average
SSIM vs. BPP (test set, 27 images).

The experimental results show that, in terms of rate–distortion performance, the
proposed method outperformed JPEG and was close to JPEG2000. In the average test
results of the 53 training images, the PSNR loss compared to JPEG2000 was only −1.825 dB,
and the SSIM loss was only −0.003, while the PSNR loss for JPEG reached −3.699 dB, and
the SSIM loss was approximately −0.00985. In the average test results of the 27 test images,
the PSNR loss compared to JPEG2000 was only −0.520 dB, and the SSIM improved by
0.002, while JPEG’s PSNR loss reached −2.257 dB, and the SSIM loss was approximately
−0.00865.

Especially under low bitrate conditions, the proposed method still maintained a small
gap with JPEG2000, while JPEG showed severe degradation. For the training set at a low
bitrate, the PSNR loss compared to JPEG2000 was only −3.665 dB, with an SSIM loss
of −0.00640, whereas JPEG showed a greater PSNR loss of −8.779 dB and an SSIM loss
of approximately −0.04022. For the test set at a low bitrate, the PSNR loss compared to
JPEG2000 was −2.522 dB, with an SSIM loss of −0.00652, while JPEG exhibited a higher
PSNR loss of −6.934 dB, and an SSIM loss of approximately −0.03859.

JPEG2000 adopts MQ arithmetic coding, a context-based binary entropy encoder that
operates at the bit level. It employs a two-level lookup table based on context labels (CX)
and binary decisions (D) to adaptively estimate symbol probabilities. This fine-grained and
highly adaptive coding allows the encoder to approach the theoretical entropy limit and
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achieve high compression efficiency. However, the computational complexity introduced
by bit-level processing and context modeling may limit its suitability for real-time or
resource-constrained scenarios. In contrast, the proposed Huf-RLC method performs
symbol-level entropy coding using a much simpler structure. While this sacrifices some
compression performance, it significantly reduces computational overhead and offers much
faster encoding, making it more appropriate for speed-critical applications.

Table 7. Compression speed test results.

Method JPEG JPEG2000 Proposed

Speed (MB/S) 14.153 9.174 28.944

The speed test results showed that the proposed method achieved a speed of
28.944 MB/s, which was approximately 3.155 times faster than JPEG and 2.049 times
faster than JPEG2000.

We implemented the DWT in the same manner as OpenJPEG, utilizing SIMD technol-
ogy to ensure the efficiency of the DWT implementation. Despite this, the compression
speed of our method outperformed OpenJPEG, primarily due to the advantages of our
proposed entropy coding method, Huf-RLC. Notably, Huf-RLC was tested using a single
core and a single thread, without any SIMD optimizations or acceleration techniques. This
demonstrates the speed advantages of Huf-RLC, even in the absence of optimizations.

The image encoding time measurement procedure involved testing the encoding speed
of each image individually, with the average encoding time calculated across all images.
This was performed using a Windows batch script that processed each image one by one.
The testing was conducted without any specific bulk encoding mechanism, ensuring that
each image was encoded separately.

The above experimental results were conducted on an experimental platform with a
12th Gen Intel(R) Core(TM) i7-12700H, a 20-core CPU at 2.30 GHz, and 16 GB of RAM.

Deep learning-based compression methods that currently outperform JPEG2000 in
terms of compression efficiency generally come with increased computational complexity.
However, for applications where compression speed is critical, such as high-speed scenarios,
our method offers a significant advantage due to faster encoding. As a result, comparisons
with deep learning-based methods were not included in the experiments.

4. Conclusions
This paper proposed a novel lossy compression algorithm for infrared images, based

on a quantized wavelet coefficient probability model and run-length-enhanced Huff-
man coding (Huf-RLC). The algorithm aimed to achieve faster compression speeds than
JPEG2000, while maintaining compression efficiency close to that of JPEG2000, making it
suitable for applications where speed is a key requirement. In the experiments, infrared
images collected from different experimental scenarios using an infrared line-scanning
detector were used to form a training set of 53 images and a test set of 27 images. The train-
ing set was used to build the quantized wavelet coefficient probability model, specifically
constructing probability models for 16 subbands of a five-level DWT at five quantization
levels, thus avoiding the complex statistics required for building coding tables for each
subband coefficient during entropy coding. Based on the sparse characteristics of the
subband coefficients in the line-scanned infrared images at different quantization levels,
a run-length-enhanced Huffman coding was further designed. In the experiments, we
analyzed in detail the effect of run length on compression gain across different quantization
levels and subbands and determined the optimal run length for each probability model to
achieve optimal compression performance.
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Experimental results showed that the proposed method outperformed JPEG in terms
of PSNR and SSIM, and when compared to JPEG2000, it ensured that the performance
loss remained within a small range. Especially under low bitrate conditions, the proposed
method maintained a small gap with JPEG2000, while JPEG showed significant blocking
artifacts. Speed test results on an experimental platform with a 12th Gen Intel(R) Core(TM)
i7-12700H (2.30 GHz, approximately 20-core CPU, 16 GB RAM) showed that the proposed
method achieved compression speeds 3.155 times faster than JPEG2000 and 2.049 times
faster than JPEG, providing an ideal solution for lossy compression applications that require
both compression speed and image quality.
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Appendix A
Appendix A.1. Existence and Uniqueness of Optimal Fixed-Bit-Length Encoding

Theorem A1. Existence and Uniqueness of Optimal Fixed-Bit-Length Encoding.

Let {Li}M
i=1 be a sequence of run lengths of zeros in a quantized high-frequency wavelet

subband, where Li ∈ N+. If each run length is encoded using a fixed k-bit representation
(with a maximum representable run length of 2k − 1), then the total encoding cost function
Total(k) admits a unique globally optimal bit length k∗, such that:

k∗ = arg min
k∈N+

Total(k), and ∀k ̸= k∗, Total(k) > Total(k∗).

Proof of Theorem 1. The proof is as follows.
Step 1: definitions and notation:

• Run-length splitting rule: for a run length Li > 2k − 1, split it into ni(k) = ⌈Li/(2k −
1)⌉ segments, each encoded with k bits.

• Total encoding cost:

Total(k) = k ·
M

∑
i=1

ni(k).

• Per-run cost function: for a single Li, define fi(k) = k · ⌈Li/(2k − 1)⌉, yielding
Total(k) = ∑M

i=1 fi(k).

Step 2: unimodality of fi(k)
For any Li, analyze fi(k) as k increases:

1. Decreasing phase: For a small k, 2k − 1 grows exponentially, causing ⌈Li/(2k − 1)⌉ to
decrease rapidly. The linear increase in k is dominated by the reduction in splits, so
fi(k) decreases.
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2. Minimum point: There exists k∗i where fi(k∗i ) is minimized. Beyond k∗i , further
increases in k outweigh the benefits of fewer splits.

3. Increasing phase: for k ≥ k∗i , ⌈Li/(2k − 1)⌉ = 1, and fi(k) = k grows linearly.

Thus, fi(k) is unimodal with a unique minimum.
Step 3: unimodality of Total(k)
To rigorously prove the unimodality of Total(k), we analyze its discrete derivative

(forward difference). Let ∆Total(k) = Total(k + 1) − Total(k). We show that ∆Total(k)
changes sign at most once, from negative to positive, ensuring a unique minimum.

1. Per-run forward difference: For each fi(k), define its forward difference:

∆ fi(k) = fi(k + 1)− fi(k).

From the unimodality of fi(k), there exists a critical k∗i such that:

∆ fi(k)

< 0, if k < k∗i ,

≥ 0, if k ≥ k∗i .

2. Total forward difference: The total difference is the sum of individual differences:

∆Total(k) =
M

∑
i=1

∆ fi(k).

Define two index sets at any k:

D(k) = {i | k < k∗i } (indices where ∆ fi(k) < 0),

I(k) = {i | k ≥ k∗i } (indices where ∆ fi(k) ≥ 0).

Then,
∆Total(k) = ∑

i∈D(k)
∆ fi(k)︸ ︷︷ ︸

Negative

+ ∑
i∈I(k)

∆ fi(k)︸ ︷︷ ︸
Non-negative

.

3. Monotonicity of ∆Total(k): As k increases:

• D(k) shrinks because k∗i are fixed.
• I(k) expands.

Thus, the negative term ∑i∈D(k) ∆ fi(k) decreases in magnitude, while the non-negative
term ∑i∈I(k) ∆ fi(k) increases. Consequently,

• For k < mini k∗i : D(k) = {1, 2, . . . , M}, so ∆Total(k) < 0.
• For k ≥ maxi k∗i : I(k) = {1, 2, . . . , M}, so ∆Total(k) ≥ 0.
• For k ∈ (mini k∗i , maxi k∗i ): the transition from ∆Total(k) < 0 to ∆Total(k) ≥ 0

occurs exactly once.

This implies Total(k) strictly decreases until k∗, then strictly increases, proving the uni-
modality and uniqueness of k∗.

Appendix A.2. Compression Gain Results for Decomposition Levels 2–5

This appendix presents the experimental results of compression gain for the high-
frequency subbands at decomposition levels 2 to 5 in a five-level DWT. For each level,
53 images were evaluated across bit lengths from 1 to 20 and five quantization levels.



Sensors 2025, 25, 2491 29 of 34

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure A1. Compression gain vs. bit length in Huf-RLC for high-frequency subbands at decomposi-
tion level 2 across 53 images. (a–e) show the results of the HH subband at quantization levels 1 to
5, respectively. (f–j) show the results of the HL subband at quantization levels 1 to 5, respectively.
(k–o) show the results of the LH subband at quantization levels 1 to 5, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure A2. Compression gain vs. bit length in Huf-RLC for high-frequency subbands at decomposi-
tion level 3 across 53 images. (a–e) show the results of the HH subband at quantization levels 1 to
5, respectively. (f–j) show the results of the HL subband at quantization levels 1 to 5, respectively.
(k–o) show the results of the LH subband at quantization levels 1 to 5, respectively.



Sensors 2025, 25, 2491 31 of 34

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure A3. Compression gain vs. bit length in Huf-RLC for high-frequency subbands at decomposi-
tion level 4 across 53 images. (a–e) show the results of the HH subband at quantization levels 1 to
5, respectively. (f–j) show the results of the HL subband at quantization levels 1 to 5, respectively.
(k–o) show the results of the LH subband at quantization levels 1 to 5, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure A4. Compression gain vs. bit length in Huf-RLC for high-frequency subbands at decomposi-
tion level 5 across 53 images. (a–e) show the results of the HH subband at quantization levels 1 to
5, respectively. (f–j) show the results of the HL subband at quantization levels 1 to 5, respectively.
(k–o) show the results of the LH subband at quantization levels 1 to 5, respectively.
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