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Abstract: In hearing aid devices, speech enhancement techniques are a critical component to enable
users with hearing loss to attain improved speech quality under noisy conditions. Recently, the deep
denoising autoencoder (DDAE) was adopted successfully for recovering the desired speech from
noisy observations. However, a single DDAE cannot extract contextual information sufficiently due
to the poor generalization in an unknown signal-to-noise ratio (SNR), the local minima, and the
fact that the enhanced output shows some residual noise and some level of discontinuity. In this
paper, we propose a hybrid approach for hearing aid applications based on two stages: (1) the Wiener
filter, which attenuates the noise component and generates a clean speech signal; (2) a composite of
three DDAEs with different window lengths, each of which is specialized for a specific enhancement
task. Two typical high-frequency hearing loss audiograms were used to test the performance of the
approach: Audiogram 1 = (0, 0, 0, 60, 80, 90) and Audiogram 2 = (0, 15, 30, 60, 80, 85). The hearing-aid
speech perception index, the hearing-aid speech quality index, and the perceptual evaluation of
speech quality were used to evaluate the performance. The experimental results show that the
proposed method achieved significantly better results compared with the Wiener filter or a single
deep denoising autoencoder alone.

Keywords: hearing aids; deep denoising autoencoder; speech enhancement; Wiener filter;
noise reduction

1. Introduction

Approximately 10% of the population suffers from some degree of hearing loss (HL) (Figure 1)
due to overexposure to noise—both long-term, repeated exposure to noise and one-time exposure
to a powerful sound that causes damage to the auditory system [1]. According to the World Health
Organization (WHO), in 2018 [2,3], roughly 466 million people had HL.\, and it is estimated that over
900 million people will have hearing loss by 2050. The usage of hearing aids and amplifying devices
is the most common treatment method. However, only a small percentage of potential wearers use
a hearing aid due to the general problem of enhancing speech in a noisy environment. One of the
major complaints from hearing aid wearers involves the devices’ lack of versatility—they amplify all
sounds rather than just those the wearer wants to hear [4,5]. The recent development of commercial
hearing aids with digital signal processing capabilities has allowed the development of advanced
signal processing techniques to aid the hearing impaired. The perception and translation of speech in a
noisy environment are difficult, even When using state-of-the-art devices [6], which necessitates the
use of effective and bettermethods to benefit people with hearing difficulties [7,8].

Signals 2020, 1, 138–156; doi:10.3390/signals1020008 www.mdpi.com/journal/signals

http://www.mdpi.com/journal/signals
http://www.mdpi.com
https://orcid.org/0000-0003-0087-0148
http://www.mdpi.com/2624-6120/1/2/8?type=check_update&version=1
http://dx.doi.org/10.3390/signals1020008
http://www.mdpi.com/journal/signals


Signals 2020, 1 139

Signals 2019, 2 FOR PEER REVIEW  2 

 

 

Figure 1. Different degrees of hearing loss. Intensity commonly ranges from −10 to 120 dB. 

Multiple studies have revealed challenges in understanding the real causes and effects related 

to hearing aids. Recently, deep learning offers great promise for addressing these challenges, and 

many algorithms based on speech enhancement (SE) can be found in the literature and have attracted 

great attention, such as-. Wiener filter based on prior SNR estimation [9]. This study used a directional 

microphone and a time variant based on producing noisy mixture signals to enhance speech. 

However, this method has a limitation in the case of signal components coming from diverse 

directions, which may harm the speech signal and thus result in a significant decline in the objective 

speech quality measurement [10]. The spectral subtraction [11] method evaluates the noise spectrum, 

and it decreases the computational complexity and memory constraint exclusion of voice activity 

recognition. This method frequently results in an unpleasant artifact called musical noise, which 

makes the audio sound as though it was recorded underwater. The Karhunen Lo’eve transform (KLT) 

approach [12] has been successfully used for speech communication, providing the best 

approximation for a stochastic signal under the condition that its rank is fixed. However, since the 

KLT does not consider noise, its ability to suppress noise is very poor [13]. 

Recently, deep neural networks (DNNs) [14,15] have attracted great attention among hearing 

aid researchers. The denoising autoencoder (DAE) and its deep version the DDAE were proposed in 

[16,17] for noise reduction and speech enhancement. The experimental outcomes suggest that 

compared with the traditional speech enhancement methods, the DDAE model can effectively reduce 

the noise in speech, improving the speech quality and signal-to-noise ratio. Lai et al. [15] used the 

DDAE model in cochlear implant (CI) simulation to improve the intelligibility of voice coding [18] 

and the actual CI receiver. Meng et al. [12] introduced a separate deep autoencoder (SDAE) to 

estimate the clean speech and noise spectra by minimizing the total reconstruction error of the noisy 

speech spectrum. By adjusting the estimated clean speech spectrum and the unknown noise 

parameters in the DAE, one can reach a stationary point to minimize the total reconstruction error of 

the noisy speech spectrum. Deep recurrent neural networks (DRNNs) were proposed in [19], which 

added the recurrent structure of the speech denoising autoencoder (SDAE) [20] along with a 

discriminative term. 

Furthermore, a multi-modular neural network (MNN) was proposed in [11], which includes a 

particular speech enhancement module as an expert, with a speech autoencoder (AE) as the referee. 

However, a DAE with a fixed number of input layers cannot extract contextual information because 

of the local minima, the poor performance of the network in the unknown signal-to-noise ratios 

[14,15,21], the poor generalization, and the fact that the enhanced output has some residual noise. In 

the present paper, a new hybrid-composite system for hearing aid applications is proposed, called 

HC-DDAEs. The system encompasses two stages: (1) the Wiener filter, which attenuates the noise 

component and generates a clean speech signal; (2) a composite of three multilayer DDAEs with 

different frames for each DDAE, which map the output of the Wiener filter to clean features and 

enhance the speech based on the patient’s hearing loss. The composite DDAEs include one, three, 

and five window lengths for each DDAE level, respectively. The output of each DDAE is connected 

to the input of the next DDAE, each of which is specified for an enhancement subtask of the complete 

Figure 1. Different degrees of hearing loss. Intensity commonly ranges from −10 to 120 dB.

Multiple studies have revealed challenges in understanding the real causes and effects related to
hearing aids. Recently, deep learning offers great promise for addressing these challenges, and many
algorithms based on speech enhancement (SE) can be found in the literature and have attracted great
attention, such as-. Wiener filter based on prior SNR estimation [9]. This study used a directional
microphone and a time variant based on producing noisy mixture signals to enhance speech. However,
this method has a limitation in the case of signal components coming from diverse directions,
which may harm the speech signal and thus result in a significant decline in the objective speech
quality measurement [10]. The spectral subtraction [11] method evaluates the noise spectrum, and it
decreases the computational complexity and memory constraint exclusion of voice activity recognition.
This method frequently results in an unpleasant artifact called musical noise, which makes the audio
sound as though it was recorded underwater. The Karhunen Lo’eve transform (KLT) approach [12] has
been successfully used for speech communication, providing the best approximation for a stochastic
signal under the condition that its rank is fixed. However, since the KLT does not consider noise,
its ability to suppress noise is very poor [13].

Recently, deep neural networks (DNNs) [14,15] have attracted great attention among hearing aid
researchers. The denoising autoencoder (DAE) and its deep version the DDAE were proposed in [16,17]
for noise reduction and speech enhancement. The experimental outcomes suggest that compared with
the traditional speech enhancement methods, the DDAE model can effectively reduce the noise in
speech, improving the speech quality and signal-to-noise ratio. Lai et al. [15] used the DDAE model
in cochlear implant (CI) simulation to improve the intelligibility of voice coding [18] and the actual
CI receiver. Meng et al. [12] introduced a separate deep autoencoder (SDAE) to estimate the clean
speech and noise spectra by minimizing the total reconstruction error of the noisy speech spectrum.
By adjusting the estimated clean speech spectrum and the unknown noise parameters in the DAE,
one can reach a stationary point to minimize the total reconstruction error of the noisy speech spectrum.
Deep recurrent neural networks (DRNNs) were proposed in [19], which added the recurrent structure
of the speech denoising autoencoder (SDAE) [20] along with a discriminative term.

Furthermore, a multi-modular neural network (MNN) was proposed in [11], which includes a
particular speech enhancement module as an expert, with a speech autoencoder (AE) as the referee.
However, a DAE with a fixed number of input layers cannot extract contextual information because of
the local minima, the poor performance of the network in the unknown signal-to-noise ratios [14,15,21],
the poor generalization, and the fact that the enhanced output has some residual noise. In the present
paper, a new hybrid-composite system for hearing aid applications is proposed, called HC-DDAEs.
The system encompasses two stages: (1) the Wiener filter, which attenuates the noise component and
generates a clean speech signal; (2) a composite of three multilayer DDAEs with different frames for
each DDAE, which map the output of the Wiener filter to clean features and enhance the speech based
on the patient’s hearing loss. The composite DDAEs include one, three, and five window lengths for
each DDAE level, respectively. The output of each DDAE is connected to the input of the next DDAE,
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each of which is specified for an enhancement subtask of the complete enhancement. This method
takes into account a hierarchical learning structure, which uses a smaller dedicated frame compared to
a single DDAE to complete specific enhancement tasks rather than a single DDAE with a fixed number
of layers to complete general enhancement tasks. The proposed composite DDAEs divide the training
set into subsets that correspond to distinct subtasks. Each DDAE works as an expert in a specific
enhancement task while its adjacent frames decide which DDAE should be used for each training
case. The rest of this paper is organized as follows: Section 2 introduces the background knowledge
about noise reduction based on autoencoders. Section 3 gives the background and context of auditory
perception and hearing aids. Section 4 presents the proposed hearing aid system. Sections 5 and 6
describe our experimental setup and evaluation methodology for this study, respectively. Finally,
Section 7 presents the conclusion of this work.

2. Denoising Autoencoder Based Noise Reduction

Noise reduction (NR) aims to reduce noise components from noisy speech to generate enhanced
speech with improved SNR, intelligibility, and perceptual quality. Let’s say that:

y = x + n (1)

where y and x are the noisy-clean speech signals, respectively, and n denotes the noise added to x in
the time domain. In the spectral domain, the noisy speech spectrum, Yi has the below expression:

Yi = Xi + Ni (2)

where i is the discrete-time index (i = 0, 1, . . . , I − 1). NR approaches restore the clean speech Xi from
noisy speech Yi [18].

2.1. Denoising Autoencoder

An autoencoder is a kind of feed-forward neural network with a thin middle layer (bottleneck).
It attempts to reproduce the input at the output [22], as shown in Figure 2. It usually used for novelty
detection and deep neural architectures for robust feature extraction and classification. The use of DAE
and its deep version DDAE to perform NR was initially proposed by Lu et al. [17].
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Figure 2. Denoising autoencoder (DAE) with one hidden layer hyi . Yi and X̂ are the noisy-enhanced
speech, respectively.

The NR method based on a DDAE covers two phases: namely, training (offline) phase and the
testing (online) phase [15,17,22,23]. In the offline step, a pair of noisy and clean speech signals are
prepared to represent the input and output of the DDAE model, respectively. Through this processing,
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the DDAE model can learn the statistical differences between clean and noisy speech. Let Y ∈ Rn be
the input for the DDAE model with the i the hidden layers:
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where
{
W1, . . . , Wi

}
∈ n ∗m refers to the connection weight matrix,

{
b1, . . . , bi

}
∈ Rn are the bias vectors

for the h hidden layers. n denotes the frame index for the short-time-Fourier transform (STFT) of
the m (training) vector. X̂E

n is the vector containing the logarithmic amplitudes of enhanced speech
corresponding to the noisy counterpart YE

n . The nonlinear function σ(.) of the hidden neuron is the
logistic function defined as:

σ(t) =
1

(1 + exp−kt)
(4)

where the logistic function and the identity function [23] are used in the hidden layer and the output
layer separately. k is the steepness, and t is the output of each unit in the neural network. If t is a huge
positive number, then the output is approximately 1, and if t is a very negative number, then the output
is approximately 0. In the testing (online) phase, the parameters of the DDAE are obtained from the
training phase to transfer Yn to clean speech signal X̂n. Additionally, the DDAE in this phase does not
learn about the noise signal as the types of noise in both phases are different [13,17].

2.2. Effect of Depth (Layer by Layer Pre-Training)

A deep neural network is usually more potent than a shallow neural network in order to reconstruct
the nonlinear relationship between the input and output. In most deep learning studies, the general
conclusion is that increasing the depth of the neural network pattern always helps performance either
for pattern classifications or for encoding. Similarly, we increased the system’s depth by stacking
several AEs from a DAE and carrying out speech denoising experiments. However, with the number
of hidden layers, the training of the network becomes more difficult due to the local minima. Therefore,
as a way of overcoming this issue, layer by layer pre-training is adopted [24], which is an unsupervised
learning process (Figure 3). The initial values of the weight matrix and the deviation vector are
pre-trained and computed layer by layer where the input layer and the first hidden layer consider
as the DAE and training. Then, the first hidden layer is considered as the input layer for the second
DAE, which constructs the second DAE with the second hidden layer and so on, until the i-th DAE is
trained. After the neural network training is completed, the weight matrix and deviation vector of a
single neural network are taken to be the initial value of DDAE, and the calculated value of the DDAE
sequence (fine-tuning) [25], respectively. More details can be found in [24].Signals 2019, 2 FOR PEER REVIEW  5 
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3. Speech Perception and Hearing Aids

3.1. Hearing and Perception

The speech signal is a kind of time-varying signal, whose signal characteristics represent the
different speech produced—an audible signal transmitted to the human ear by the vibration of
particles in the air. There are three ways to mark events in speech. The first is silence, where there
is no speech. The second is the unvoiced state, where the vocal cord does not vibrate; therefore,
the output speech waveform is aperiodic and random [26]. The last is the vocal state, where the vocal
cords vibrate periodically as air is expelled from the lungs. The membrane is displaced in different
positions depending on the frequencies; for example, the membrane is displaced near its apex with
low frequencies while stimulating the membrane at its base with high frequencies. The displacement
ability of the membrane at a specific point is directly proportional to the amplitude of the frequency at
which it is excited. When a sound contains multiple frequencies, the basement membrane displaces at
multiple points. The cochlea then divides complex sounds into frequency components [23] (Figure 4).
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Figure 4. Frequency map of the human cochlea hearing organ, with a base that responds to high
frequencies with sufficient energy to make it vibrate (20,000 Hz), and an apex that responds to low
frequencies (200 Hz), which can travel further.

Each pronounced word consists of the phonetic combination of a limited set of the vowel
(which carry the power of the sound), and consonant (which provide intelligibility) speech sound
units [1,3]. Lower frequency sounds (between 250 and 500 Hz) correspond to the vowel sounds,
while higher frequencies (between 2000 and 4000 Hz) correspond to the consonant sounds. Recent
studies have shown that healthy ears can decode separate consonants efficiently [27,28]. However,
with sensorineural hearing loss where hair cells and synaptic connections are not correctly functioning,
speech can be heard but not understood. The most considerable difficulty may include communication
in background noise (predominantly of low frequency), which results in difficulty understanding
talkers with soft voices and hearing speech at a distance.

3.2. Audiogram of Sensorineural Hearing Loss

An audiogram is a graph that illustrates hearing ability by plotting the hearing threshold based
on the patient hearing loss level, which allows the patient to hear different frequencies. The pitch
(frequency) of a sound is measured along the chart’s horizontal axis, in Hertz, from 0.25 to 8 kHz.
However, speech energy above 3000 Hz provides important language information for listeners.
The standard speech intelligibility index (SII: ANSI 1997) allocates 27% of important speech at 3150 Hz
and above. For more complex speech types, such as meaningless syllables, high-frequency regions
account for 31% of the importance of speech signals [29]. In terms of the acoustic characteristics
of speech, this high-frequency importance is significant, because the high-frequency part provides
essential speech signals. For instance, the lowest frequency peak of /s/ is between 2.9 kHz and 8.9 kHz.
Recent studies have shown that patients with moderate-severe hearing loss need an audible bandwidth
of 9 kHz for a child; 5 kHz for male speech, and 6-9 kHz for female expression and for understanding
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/s/. Thus, if the hearing aid user can hear the spectrum energy of /s/, it needs to provide much more
than the gains and outputs of the current commonly provided hearing [29].

4. Proposed Hearing Aid System

In this paper, we propose a system for the application of hearing aids (Figure 5). The system consists
of two stages, i.e., Wiener filter and a composite of three levels of multilayers of DDAE, which use the
output of the Wiener filter as input to enhance the speech signal based on the user’s hearing loss.

Signals 2019, 2 FOR PEER REVIEW  6 

 

sensorineural hearing loss where hair cells and synaptic connections are not correctly functioning, 

speech can be heard but not understood. The most considerable difficulty may include 

communication in background noise (predominantly of low frequency), which results in difficulty 

understanding talkers with soft voices and hearing speech at a distance. 

3.2. Audiogram of Sensorineural Hearing Loss 

An audiogram is a graph that illustrates hearing ability by plotting the hearing threshold based 

on the patient hearing loss level, which allows the patient to hear different frequencies. The pitch 

(frequency) of a sound is measured along the chart’s horizontal axis, in Hertz, from 0.25 to 8 kHz. 

However, speech energy above 3000 Hz provides important language information for listeners. The 

standard speech intelligibility index (SII: ANSI 1997) allocates 27% of important speech at 3150 Hz 

and above. For more complex speech types, such as meaningless syllables, high-frequency regions 

account for 31% of the importance of speech signals [29]. In terms of the acoustic characteristics of 

speech, this high-frequency importance is significant, because the high-frequency part provides 

essential speech signals. For instance, the lowest frequency peak of /s/ is between 2.9 kHz and 8.9 

kHz. Recent studies have shown that patients with moderate-severe hearing loss need an audible 

bandwidth of 9 kHz for a child; 5 kHz for male speech, and 6-9 kHz for female expression and for 

understanding /s/. Thus, if the hearing aid user can hear the spectrum energy of /s/, it needs to provide 

much more than the gains and outputs of the current commonly provided hearing [29]. 

4. Proposed Hearing Aid System 

In this paper, we propose a system for the application of hearing aids (Figure 5). The system 

consists of two stages, i.e., Wiener filter and a composite of three levels of multilayers of DDAE, which 

use the output of the Wiener filter as input to enhance the speech signal based on the user’s hearing 

loss. 

 

Figure 5. The proposed HC-DDAEs model-based speech enhancement with the Wiener filter and
a composite of three DDAEs. The model includes an (a) offline phase (i.e., training stage), and an
(b) online phase (i.e. testing stage). IFFT, inverse fast Fourier transform; FFT, fast Fourier transform;
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4.1. Wiener Filter (WF)

To eliminate noise and improve the enhancement of the input signal, we applied the Wiener filter
to noisy speech Yi as the first step in the HC-DDAEs as shown in Figure 6.
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where 𝐺(⋋, 𝑖) is the gain function for the 𝑖 − 𝑡ℎ sub-band in the frame 𝜆 and 𝜉(𝜆, 𝑖) is the estimate 

of a priori SNR, which is the main parameter to reduce speech distortion in a noisy environment. In 

this work, we used the posteriori and a priori SNR estimates for the noise power spectral density 

�̂�𝑡(. ) at each frequency component 𝑓𝑘: 

�̂�𝐵
𝑡(𝑓𝑘) =⋋ �̂�𝐵

𝑡−1(𝑓𝑘) + (1 −⋋)|𝐵𝑡(𝑓𝑘)|2      (6) 

𝑆�̂�𝑅𝑃𝑜𝑠𝑡
𝑡 (𝑓𝑘) =

|𝑋𝑘|2

�̂�𝐵
𝑡(𝑓𝑘)

      (7) 

where 𝑃(. ) represents half-wave rectification at the actual time interval 𝑡, and 𝐵 is the spectrum of 

the noise. The presented priori SNR has a definition below: 

𝑆�̂�𝑅𝑝𝑟𝑖𝑜
𝑡 (𝑓𝑘) = (1 − 𝛽)𝑃[𝑆�̂�𝑅𝑝𝑟𝑖𝑜

𝑡 (𝑓𝑘) − 1] + 𝛽
|�̂�𝑡−1(𝑓𝑘)|2

�̂�𝐵(𝑓𝑘)
                       (8) 

We set the values of the main parameters to 𝜆 = 𝛽 = 0.98. Higher values may make the noise even 

quieter, and may result in damaging the audio that remains. Further details are provided in [19]. Fast 
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𝑀−1

𝑚=0

     , 𝑘 = 0,1, … , 𝑀 − 1 

𝑋[𝑖] = ∑ 𝑥𝑚𝑒−2𝜋𝑖(2𝑚)𝑘/𝑀

𝑀/2−1

𝑚=0

+  ∑ 𝑥𝑚𝑒−2𝜋𝑖(2𝑚+1)𝑘/𝑀

𝑀/2−1

𝑚=0

           

𝑋[𝑖] = ∑ 𝑥𝑚
𝑜𝑑𝑑𝑒−2𝜋𝑖𝑚𝑘/(𝑀/2)

𝑀/2−1

𝑚=0

+ ∑ 𝑥𝑚
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𝑀/2−1

𝑚=0

       

(9) 

Figure 6. Wiener filter at a noisy speech signal.
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A random clean signal xi is subject to distortion by the gain G and additive noise ni (Equation (2)).
The frequency-domain Wiener filter can be defined as:

G(h, i) =
ξ(h, i)

1 + ξ(h, i)
(5)

where G(h, i) is the gain function for the i-th sub-band in the frame λ and ξ(λ, i) is the estimate of a
priori SNR, which is the main parameter to reduce speech distortion in a noisy environment. In this
work, we used the posteriori and a priori SNR estimates for the noise power spectral density P̂t(.) at
each frequency component fk:

P̂t
B( fk) = hP̂t−1

B ( fk) + (1−h)
∣∣∣Bt( fk)

∣∣∣2 (6)

SN̂Rt
Post( fk) =

|Xk|
2

P̂t
B( fk)

(7)

where P(.) represents half-wave rectification at the actual time interval t, and B is the spectrum of the
noise. The presented priori SNR has a definition below:

SN̂Rt
prio( fk) = (1− β)P

[
SN̂Rt

prio( fk) − 1
]
+ β

∣∣∣X̂t−1( fk)
∣∣∣2

P̂B( fk)
(8)

We set the values of the main parameters to λ = β = 0.98. Higher values may make the noise even
quieter, and may result in damaging the audio that remains. Further details are provided in [19].
Fast Fourier transform (FFT) is applied to transform signals from the time domain to the frequency
domain. Firstly, input elements are rearranged in bit-reversed order, then the transform output
(time extraction) is generated. The basic idea is to break up a transform of length points M into two
transforms of length M/2:

X[i] =
M−1∑
m=0

xme−2πimk/M, k = 0, 1, . . . , M− 1

X[i] =
M/2−1∑

m=0
xme−2πi(2m)k/M +

M/2−1∑
m=0

xme−2πi(2m+1)k/M

X[i] =
M/2−1∑

m=0
xodd

m e−2πimk/(M/2) +
M/2−1∑

m=0
xeven

m e−2πimk/(M/2).

(9)

where i denotes the frame in the FFT transform, more details can be found in [25]. The frequency range
is 0.1 to 1 Hz. Then, the two popular sound features, namely, the Mel frequency cepstral coefficients
(MFCC) [30,31] and the log power spectrum (LPS) [28], are used as the acoustic features in the proposed
approach for better results. The feature extraction task to extract characteristic features out of speech
utterances takes the signal’s frame every 16–32 ms and updates every 8–16 ms. When MFCC constraints
are applied to the output layer, clean LPS characteristics can better predict:

θ∗ = argmin( f (θ) + η1
‖W1

‖
2
2 + . . .+ η1

‖W1
‖

2
2 (10)

where θ = {Wi, bi} is the network parameter
{
η1, . . . , ηJ

}
, which controls the trade-off between

the reconstruction accuracy and regularization of the weighting coefficients. In this study we set
(η1 = . . . = ηJ = 0002). Using the estimated parameters of the DDAE model, noisy speech is
reconstructed to enhanced speech in the online phase.

f (θ) = α ∗
1
M

M∑
m=1

XLPS
m −X′LPS

m ‖
2
2 +(1− α) ∗

1
M

M∑
m=1

‖ XMFCC
m −X′MFCC

m ‖
2
2 (11)

where M is the total number of training samples (noisy-clean pairs); XLPS
m and XMFCC

m represent the
LPS and MFCC features of clean speech, respectively; the parameter ‖22 presents the Frobenius norm.
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α (value from 0 to 1) is the weighting coefficient for two error parts in these vectors. α was set to (0.7)
in this study; however, the larger the α value, the greater the contribution of LPS characteristics to
DDAE training, and vice versa. The LPS and MFCC features obtained [23] as acoustic features in the
proposed approach. Feature vectors of the Wiener enhanced signal Wi and the clean signal Xi can be
composed of their static-dynamic or context features. Wiener enhanced speech WLPS+MFCC

i and the
clean speech XLPS+MFCC

i are then placed in the composite-DDAEs model as input-output, respectively,
for constructing the model.

4.2. Composite of Deep Denoising Autoencoder (C-DDAEs)

The second stage of the proposed approach consists of the training and testing phases, as presented
in Sections 4.2.1 and 4.2.2, respectively.

4.2.1. Training Phase (Offline)

The training phase is presented in (Figure 5a). The composite-DDAEs (which we called C-DDAE)
includes three multi-layers of the DDAE. Each DDAE works as an expert and is specialized for
specific enhancement tasks, which is different to a single DDAE that has a fixed quantity of frames for
general enhancement tasks. The output of each DDAE is the central pattern for the composite-DDAEs,
which is either the original signal estimation or a referee that is used in the next DDAE to recover the
speech—Noted here we used Wiener enhanced-and clean utterances features as the input and output
of the composite-DDAEs, respectively, instead of noisy-clean speech. The composite-DDAEs works by
adding one future and one past adjacent frame to the next DDAE, along with the outputs for each
DDAE (Figure 7). Finally, the output of the central frame of third DDAE is considered as the target
result. The C-DDAEs is trained offline and tested online, and the training set is divided into subsets,
each of which corresponds to specific subtasks of the complete enhancement task, and the adjacent
frame decides which DDAE should be used for each training case by making a stochastic decision
about which single DDAE to use on each occasion. In this way, the training task learns the mapping
function FDDAEi to produce an output vector y ∈ RD, which is either the clean signal estimation or a
referee that used for the next DDAE to recover the clean speech (desired signal) xt at the t-th time index
(t = 0, 1, . . . , T − 1), of zero means from the noise spectra.Signals 2019, 2 FOR PEER REVIEW  9 

 

 

Figure 7. The structure of the composite-DDAEs. The DDAE1 with one future and one past adjacent 

frame is fed as input to the DDAE2 with a windows length of three. The output for the DDAE2 with 

two future and two past adjacent frames is then input into the DDAE3 with a windows length of five. 

The DDAEs were set as follows: 

• 𝐷𝐷𝐴𝐸1128×3 has three hidden layers and 128 units for each layer. One magnitude spectrum with 

513-dimensionalis used as the input in the 𝑡 − 𝑡ℎ time frame. 

• 𝐷𝐷𝐴𝐸2512×3 is with three hidden layers and 512 units for each layer. The three frames spectra 

used |[𝑥(𝑡−1)
𝑇 , 𝑥𝑡

𝑇 , 𝑥(𝑡+1)
𝑇 ]𝑇 |. 

• 𝐷𝐷𝐴𝐸31024×3  has three hidden layers and 1024 units for each layer. The three frames used 

|[𝑥(𝑡−2)
𝑇 , 𝑥(𝑡−1)

𝑇 , 𝑥𝑡
𝑇 , 𝑥(𝑡+1)

𝑇 , 𝑥(𝑡+2)
𝑇 ]𝑇 |. 

4.2.2. Testing Phase (Online) 

The testing phase is presented in (Figure 5b). The composite-DDAEs transforms the speech 

vector 𝑦𝑖  into the enhanced speech feature vector �̂� by well-trained DDAEs, which are gained from 

the testing phase. Note that MFCC speech feature vector 𝑋𝑖
𝑀𝐹𝐶𝐶  is not used to invert the enhanced 

speech signals, more details can be found in [26]. The enhanced output speech of the composite-

DDAEs is applied to the speech-recovery stage, which includes: 

• The mean and variance de-normalizations applied to process the output of the DDAE model; 

• The exponential transform applied to the de-normalized features; 

• The Mel-to-spectrum transform used to obtain the amplitude features; 

•  The inverse fast Fourier transform (IFFT) applied to convert spectral LPS speech features to 

time-domain waveforms. 

5. Experiments 

This section includes two parts: (A) The experimental setup and process, and (B) a comparison 

of spectrograms. 

5.1. Experimental Setup and Process 

Seven hundred IEEE sentences database [32] was used for training (including 20 speakers, two 

genders, and 18 utterances). The database also included eight kinds of noises (i.e., train, babble, car, 

exhibition hall, restaurant, street, airport, and railway station noises), which were mixed with the 

clean utterances in four SNR levels (i.e., 0, 5, 10, and 15 dB) and the testing set was not the same as 

that used in the training stage. Note that a 16 ms window and an 8 ms frameshift were applied to 

each voice sample. Each windowed speech segment was processed with 256 FFT points and then 

converted into a 129-dimensional LPS eigenvector. During the training process, the nonlinear 

activation function is realized by the time algorithm, and the sum of squares of errors is minimized 

during training. As the sigmoid colon function in [33] maps features to the range of (0 to 1), the use 

Figure 7. The structure of the composite-DDAEs. The DDAE1 with one future and one past adjacent
frame is fed as input to the DDAE2 with a windows length of three. The output for the DDAE2 with
two future and two past adjacent frames is then input into the DDAE3 with a windows length of five.

The DDAEs were set as follows:

• DDAE1128×3 has three hidden layers and 128 units for each layer. One magnitude spectrum with
513-dimensionalis used as the input in the t-th time frame.

• DDAE2512×3 is with three hidden layers and 512 units for each layer. The three frames spectra

used

∣∣∣∣∣∣[xT
(t−1)

, xT
t , xT

(t+1)

]T
∣∣∣∣∣∣.
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• DDAE31024×3 has three hidden layers and 1024 units for each layer. The three frames used∣∣∣∣∣∣[xT
(t−2)

, xT
(t−1)

, xT
t , xT

(t+1)
, xT

(t+2)

]T
∣∣∣∣∣∣.

4.2.2. Testing Phase (Online)

The testing phase is presented in (Figure 5b). The composite-DDAEs transforms the speech vector
yi into the enhanced speech feature vector X̂ by well-trained DDAEs, which are gained from the testing
phase. Note that MFCC speech feature vector XMFCC

i is not used to invert the enhanced speech signals,
more details can be found in [26]. The enhanced output speech of the composite-DDAEs is applied to
the speech-recovery stage, which includes:

• The mean and variance de-normalizations applied to process the output of the DDAE model;
• The exponential transform applied to the de-normalized features;
• The Mel-to-spectrum transform used to obtain the amplitude features;
• The inverse fast Fourier transform (IFFT) applied to convert spectral LPS speech features to

time-domain waveforms.

5. Experiments

This section includes two parts: (A) The experimental setup and process, and (B) a comparison
of spectrograms.

5.1. Experimental Setup and Process

Seven hundred IEEE sentences database [32] was used for training (including 20 speakers, two
genders, and 18 utterances). The database also included eight kinds of noises (i.e., train, babble, car,
exhibition hall, restaurant, street, airport, and railway station noises), which were mixed with the clean
utterances in four SNR levels (i.e., 0, 5, 10, and 15 dB) and the testing set was not the same as that used
in the training stage. Note that a 16 ms window and an 8 ms frameshift were applied to each voice
sample. Each windowed speech segment was processed with 256 FFT points and then converted into a
129-dimensional LPS eigenvector. During the training process, the nonlinear activation function is
realized by the time algorithm, and the sum of squares of errors is minimized during training. As the
sigmoid colon function in [33] maps features to the range of (0 to 1), the use of features with a smaller
dynamic range will reduce the probability that they are located in the saturated area of the sigmoid
colon function (away from 0 and 1), so it can learn better:

yi =
1
2
∗
√

magnitude spectrum of each frame (12)

A software simulator (MATLAB R2019b) was used to implement the hearing aid processing
of damaged subjects. Two high-frequency hearing loss (HFHL) audiograms sets were used in this
work [33] to test the performance of the approach: Audiogram 1 = {0, 0, 0, 60, 80, 90} and Audiogram
2 = {0, 15, 30, 60, 80, 85} at differences in pure tone audiometry > 10 dB at the frequencies of (0.25, 0.5,
1, 2, 4, and 8 kHz) were calculated (Table 1). These audiograms are often used to evaluate new speech
enhancement algorithms for hearing-impaired subjects.

5.1.1. Experiment 1: Variations in the Types of Noise

For the training, we prepared 30 clean utterances for each type of noise: (3× 2 genders × 5 utterances).
Then, we mixed these utterances with white noise, pink noise, and one of three noise types (i.e., train,
babble, and restaurant noises) at five SNR levels (i.e., 0, 5, 10, and 15 dB). For the testing stage, we
prepared three test data sets from 15 gender-balanced clean utterances (five for each of the three
speakers), in which different parts of the same three noise types were mixed.
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Table 1. Audiograms of the seven sensorineural hearing losses (HLs). In this study, we used audiograms
(4) and (5) for comparing speech enhancement (SE) approaches.

Frequency (kHz) in dB HL

Audiogram 0.25 0.5 1 2 4 8

1 Plane loss 60 60 60 60 60 60
2 Reverse tilt loss 70 70 70 50 10 10
3 Moderate tilt high-frequency loss 40 40 50 60 65 65

4 Steep slope high-frequency loss with
standard low-frequency threshold 0 0 0 60 80 90

5 Steep slope high-frequency loss with
mild low-frequency hearing loss 0 15 30 60 80 85

6 Mild to moderate tilt high-frequency
hearing loss. In this study

14 14 11 14 24 39
7 24 24 25 31 46 60

5.1.2. Experiment 2: Variations in Gender

In the second experiment, we constructed two data sets, each from 12 male or 12 female speakers.
Eight noise types (i.e., train, babble, car, exhibition hall, restaurant, street, airport, railway station
noises) were used in this experiment. The noises were mixed with (12 × 5) clean words, a total of
600/gender. For the testing stage, we collected (10 × 5) utterances per gender and mixed them with
the same eight noises types.

5.2. Comparison of Spectrograms

A spectrogram is a standard tool for analyzing the time spectrum characteristics of speech
signals [34,35]. The effects of single DDAE and the HC-DDAE were studied qualitatively using
spectrogram. The clean language used was extracted from a man’s voice, he said: “God bless him,
I hope to see him forever.” The X-axis and Y-axis of the spectrum represent the time index and
the frequency, respectively. (Figures 8 and 9) contain three subgraphs showing (a) a spectrum of
clean speech, (b) a spectrum of noise, and (c) a spectrum of enhanced speech processed by the
HC-DDAE method.Signals 2019, 2 FOR PEER REVIEW  11 

 

 

Figure 8. The spectrograms result for (a) clean speech, (b) noisy speech, and (c) enhanced speech by 

the proposed method using—train noise (SNR = 0). 

 

Figure 9. The spectrograms result for (a) clean speech, (b) noisy speech, and (c) enhanced speech by 

the proposed method using street noise (SNR = 15 dB). 

6. Speech Quality and Intelligibility Evaluation 

6.1. Objective Evaluation 

Three objective indexes were used—to evaluate the results of the proposed method (Figure 10) 

in comparison to the Wiener filter, and single DDAE: 

Figure 8. The spectrograms result for (a) clean speech, (b) noisy speech, and (c) enhanced speech by
the proposed method using—train noise (SNR = 0).



Signals 2020, 1 148

Signals 2019, 2 FOR PEER REVIEW  11 

 

 

Figure 8. The spectrograms result for (a) clean speech, (b) noisy speech, and (c) enhanced speech by 

the proposed method using—train noise (SNR = 0). 

 

Figure 9. The spectrograms result for (a) clean speech, (b) noisy speech, and (c) enhanced speech by 

the proposed method using street noise (SNR = 15 dB). 

6. Speech Quality and Intelligibility Evaluation 

6.1. Objective Evaluation 

Three objective indexes were used—to evaluate the results of the proposed method (Figure 10) 

in comparison to the Wiener filter, and single DDAE: 

Figure 9. The spectrograms result for (a) clean speech, (b) noisy speech, and (c) enhanced speech by
the proposed method using street noise (SNR = 15 dB).

6. Speech Quality and Intelligibility Evaluation

6.1. Objective Evaluation

Three objective indexes were used—to evaluate the results of the proposed method (Figure 10) in
comparison to the Wiener filter, and single DDAE:
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Figure 10. The block diagram of objective evaluation used for the study. NR, noise reduction; HA,
hearing aid; PESQ, speech quality perception evaluation; HASQI, hearing aid speech quality index;
HASPI, hearing aid speech perception index.

6.1.1. Speech Quality Perception Evaluation (PESQ)

The standard PESQ [36] uses an auditory model, which includes an auditory filter, a spectrum,
time masking, and is defined in ITU-T Recommendation p.862ITU. Hearing loss is not included in the
auditory model. In its basic version, the index measures 11 signal features compared with the reference
signal and combines these signal features to give the quality value. An index developed to evaluate
the high-quality codec system of the NH audience. Index prediction designed for a small amount of
distortion is not accurate for larger distortion associated with low data rate codecs [35,36]. They are
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not expected to be accurate for the larger range of signal attenuation found in hearing aids. The noisy
speech reduction and the signal distortion are measured by Equations (13) and (14), respectively:

Reduct ,
1

N ∗ d

N∑
i=1

∣∣∣X̂i − yi
∣∣∣ (13)

Dist ,
1

N ∗ d

N∑
i=1

∣∣∣X̂i − xi
∣∣∣ (14)

where N is the total number of testing samples, and d is the size (dimension) of the input data of the first
layer of the DDAE. Based on the noise reduction criterion (denoted as “Reduct” in the experiments),
the larger the value, the better the restored speech. However, reducing much noise inevitably causes
speech distortion. Based on the speech distortion measurement (denoted as “Dist” in the experiments),
the lower the value, the better the restored speech.

6.1.2. Hearing Aid Speech Quality Index (HASQI)

The HASQI can predict the sound quality performance of device according to the hearing threshold
of the hearing impaired individual. Moreover, the HASQI is the product of two independent indexes.
The first component, called Qnonlin captures the effects of noise and nonlinear distortion. The second
component is Qlin, which captures linear filtering and spectral changes by targeting differences in the
long-term average spectrum [37]. Both elements are calculated from the output of the auditory model
to quantify specific changes in the clean reference signal and the enhanced signal by:

Q = 0.336Qnonlin + 0.501Q2
nonlin + 0.001Qlin + 0.16Q2

lin (15)

6.1.3. Hearing Aid Speech Perception Index (HASPI)

The HASPI uses auditory models to predict intelligibility. The auditory model combines all
aspects of normal and impaired peripheral auditory function [38] by calculating the correlation value c
(Equation (16)) between the output of the auditory model of the degraded test signal (i.e., the spectral
shape of the signal enhanced over time) and the generation of the unprocessed reference input signal.

c =
1
5

6∑
j=2

r( j) (16)

where j is the basis function number, and r( j) is the normalized correlation; more details can be found
in [38].

The reference signal is the output of the normal-hearing model, and the input has no noise or other
degradation. For normal-hearing listeners, the processed signal is the output of the normal-hearing
model with a degraded signal as the input. For hearing-impaired people, the auditory model is used
to modify the processed signal to include hearing loss, and the model input includes amplification to
compensate for the loss.

Auditory coherence is used to measure the cross-correlation of the high-level part (expressed as
ahigh) of the enhanced signal and the clean signal in each frequency band. The envelope is sensitive to
the dynamic signal behaviour related to consonants, while the cross-correlation tends to retain the
harmonics in stable vowels. Finally, the HASPI score is calculated according to c and ahigh. Let alow be
the low-level auditory coherence value, amid be the mid-level value, and ahigh be the high-level value,
then the HASPI intelligibility is given by:

p = −9.047 + 14.817c + 0.0alow + 0.0amid + 4.616ahigh (17)

Details of the HASPI and auditory model are shown in [38,39].
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6.2. Evaluation Procedure

As described in (Section 4), the proposed approach includes two stages, i.e., the Wiener filter and
a composite-DDAEs, and the DDAE has two phases, namely the training phase and the testing phase.
For each overlapped windowed frame (16-ms window and 8-ms frameshift), the LPS feature YLPS

i
calculated through the short-time Fourier transform (STFT), was computed during the MFCC feature
YMFCC

i by the following steps:(1) Pre-emphasis; (2) windowing; (3) FFT; (4) Mel filtering; (5) nonlinear
transform; (6) discrete cosine transform (DCT). Wiener enhanced speech WLPS+MFCC

i and the clean
speech XLPS+MFCC

i were then added as the input and output of the composite-DDAEs, separately,
to train the model instead of noisy-clean pairs. Moreover, the Wiener filter and DDAE methods were
used separately to compare the performance with the proposed hybrid-composite approach.

6.3. Results and Discussion

In this section, we present the average scores of the objective measurements of the test set for the
proposed system in comparison to the Wiener filter and single multi-layers DDAE. Pair of Wiener
enhanced utterances and clean speech signals were used to train the composite-DDAE models instead
of noisy-clean speech. To achieve the purpose of generalization, the noisy speech signal of the testing
set was not the same used in the training set. For comparison purposes, we kept the output of the
Wiener filter, and individual DDAE, and also trained another set of composite-DDAEs networks to
directly map the noisy features to clean features. In the training phase, the noisy-clean speech signals
were first converted into LPS and MFCC features.

Based on the qualitative analysis results used in this work, our proposed hybrid approach achieved
relative performance of 9% in terms of the PESQ. The results for the PESQ metric are presented in
(Figure 11), which indicate that: (1) DDAE achieves better performance for SNR of 0 dB for white
noise and SNR 0 and 5 dB for restaurant noise. Based on the experimental results we found that the
individual DDAE network is unable to obliterate the noise due to local minima, and the enhanced
signal residual noises. To overcome this issue, we need to increase the epoch in the training stage,
which subsequently increases the training time. (2) The Wiener filter gives better results in pink noise
of a 5 dB SNR. (3) The HC-DDAEs approach achieved better effects in most SNR levels of the rest of
the types of noises. In our approach, the adjacent frames showed important effects on the clean frames
reconstructions due to considering the dynamic structure.
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The average PESQ scores of different types of noises for the (Wiener, individual DDAE,
and HCDDAEs approaches in comparison with no approach) are presented in Tables 2 and 3.
For pink noise, the Wiener filter provides better results for SNR 5, while the individual DDAE achieved
almost the same results as the HC-DDAEs in SNR of 15 dB. The HC-DDAEs achieved the best results
for the rest of the cases.

Table 2. The PESQ results for Experiment 1 (average measures for the test set). Higher values represent
better results.

(1) White Noise 0 5 10 15

None 1.34 1.54 1.73 2.12
Wiener Filter 1.64 2.02 2.2 2.34

DDAE 1.86 2.16 2.38 2.5
HC-DDAEs 1.28 1.38 1.49 2.09

(2) Pink Noise 0 5 10 15

None 1.34 1.61 1.8 2.12
Wiener Filter 1.69 1.9 2.25 2.4

DDAE 1.92 2.2 2.49 2.6
HC-DDAEs 1.87 1.98 2.53 2.62

(3) Train Noise 0 5 10 15

None 1.38 1.54 1.66 1.91
Wiener Filter 1.62 2.07 1.97 2.11

DDAE 2.02 2.16 2.26 2.5
HC_DDAEs 2.87 2.41 2.41 2.69

(4) Babble Noise 0 5 10 15

None 1.4 1.59 1.8 1.91
Wiener Filter 1.67 2.09 1.99 2.09

DDAE 1.78 1.99 2.16 2.06
HC_DDAEs 1.87 2.09 2.53 2.36

(5) Restaurant Noise 0 5 10 15

None 1.36 1.57 1.34 1.94
Wiener Filter 1.63 1.91 1.84 2.07

DDAE 1.92 2.28 1.89 1.89
HC_DDAEs 1.91 2.19 2.29 2.42

In this section the results of different types of noises for (Wiener, DDAE, and HC-DDAEs
approaches) are presented in terms of two objectives metrics, namely, HASQI and HASPI, using two
sensorineural hearing loss audiograms (audiograms 4 and 5), more details of which can found in
Table 1. (Figure 12) presents the HASQI score for the four different SNR levels (i.e., 0, 5, 10, and 15 dB)
of experiment 1. Based on the experimental results, it is clear that the HC-DDAEs achieved significantly
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higher speech quality results than the Wiener filter and the individual DDAE for the two sensorineural
hearing loss audiograms under most listening conditions of different noises in every SNR levels,
while the DDAE alone presents better results for SNR 5 dB for the white and restaurant noises.

Table 3. The PESQ results for Experiment 2 (average measures for the test set). Higher values represent
better results.

Noise Gender None Wiener DDAE HC-DDAEs

Train
Male 1.38 1.7 2.32 2.46

Female 1.34 1.78 2.1 2.51

Babble
Male 1.87 2.02 2.08 2.12

Female 1.92 1.96 2.16 2.57

Car
Male 1.51 2.21 2.61 2.73

Female 1.82 2.1 2.12 2.54

Exhibition hall
Male 1.53 1.99 1.78 2.13

Female 1.57 1.68 2.01 2.36

Restaurant
Male 1.38 1.79 2.34 2.47

Female 1.62 1.79 2.39 2.41

Street
Male 1.29 2 2.01 2.27

Female 1.31 1.88 2.1 2.34

Airport Male 1.38 1.79 2.02 2.48
Female 1.42 1.99 2.1 2.17

Railway
station

Male 1.76 1.78 2.13 2.09
Female 1.71 1.95 2.4 2.67

(Figure 13), shows the HASPI scores for five types of noises from experiment (1) in the four
different SNR levels (i.e., 0, 5, 10, 15 dB). The results indicate that HC-DDAEs provided significantly
higher HASPI scores than the other methods (i.e., Wiener filter and single DDAE separately) under
most of the tested conditions. In contrast, the individual DDAE presents better results for SNR 10 of
pink noise. Based on the previous results, the proposed HC-DDAEs can significantly improve the
speech quality for hearing aids under noisy conditions.
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7. Conclusions

In this study, we presented a new hybrid-composite approach to improve the quality and
intelligibility of speech for hearing aids users (called HC-DDAEs). The proposed method was divided
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into two stages: 1) The filtering stage, which uses the Wiener filter to reduce the noise components
and to generate a clean speech; 2) a composite of three levels of DDAEs with different windows
lengths of one, three, and five frames, for DDAE1, DDAE2, and DDAE3, respectively. For observing
the improvement in performance, we adopted multi-objective learning technology. Two kinds of
experiments were presented in this paper, in the first experiment; five types of noises were used
(i.e., white, pink, train, babble, and restaurant noises) and were added to the training set by corrupting
random training speech signals at four SNR levels (i.e., 0, 5, 10, 15 dB). In contrast, in the second
experiment, 600 speech signals/gender were mixed with eight noise types (i.e., train, babble, car,
exhibition hall, restaurant, street, airport, and railway station noises). We conducted an extensive
evaluation of the speech intelligibility and quality produced by the proposed method based on three
well-known evaluation metrics, which were applied to two HFHL audiograms. We compared the
results with the Wiener filter and the single DDAE networks separately and performed tests to assess
the statistical significance in enhancing noisy speech signals. Based on our experimental results,
we concluded that the HC-DDAEs approach yields higher HASPI and HASQI scores than the Wiener
filter and the individual DDAE methods under most of the test conditions. Thus, the proposed method
could provide better speech intelligibility and quality for individuals with hearing loss. More noise
classes with of the seven sensorineural hearing losses will be evaluated in the future.
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