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Abstract: We propose a method for the blind separation of sounds of musical instruments in audio
signals. We describe the individual tones via a parametric model, training a dictionary to capture the
relative amplitudes of the harmonics. The model parameters are predicted via a U-Net, which is a
type of deep neural network. The network is trained without ground truth information, based on the
difference between the model prediction and the individual time frames of the short-time Fourier
transform. Since some of the model parameters do not yield a useful backpropagation gradient, we
model them stochastically and employ the policy gradient instead. To provide phase information
and account for inaccuracies in the dictionary-based representation, we also let the network output a
direct prediction, which we then use to resynthesize the audio signals for the individual instruments.
Due to the flexibility of the neural network, inharmonicity can be incorporated seamlessly and no
preprocessing of the input spectra is required. Our algorithm yields high-quality separation results
with particularly low interference on a variety of different audio samples, both acoustic and synthetic,
provided that the sample contains enough data for the training and that the spectral characteristics of
the musical instruments are sufficiently stable to be approximated by the dictionary.

Keywords: blind source separation; policy gradient; neural network; dictionary learning; parametric
model; unsupervised learning

1. Introduction

We address the problem of unmixing the contributions of multiple different musical
instruments from a single-channel audio recording. We assume that each instrument only
plays a single musical tone at a time and that the sound of the instruments follows a
stationary tone model aimed at woodwind, brass, and string instruments.

Since we perform blind separation, we do not make any prior assumptions specific to
the sounds of the individual instruments, but we distinguish them based on the proximity
to the entries of a dictionary which we learn in the process.

For the time-frequency representation of the audio signals, we use the sampled
complex-valued output of the short-time Fourier transform, which can be interpreted
as the analysis coefficients of a Gabor frame. This representation has the advantage of being
perfectly linear and easy to project back to a time-domain signal, but it is not pitch-invariant;
that is, the distance of the frequency axis corresponding to a certain musical interval varies
based on the pitch of the tones.

The problem of identifying the pitch of the tones is non-convex on a global scale
and possesses a large number of local minima. Therefore, general numerical optimization
methods are not appropriate. Instead, we predict the parameters via a U-Net [1], which is
a type of deep neural network. For the problematic parameters like pitch, we use policy
gradients for training, which is a technique originating from deep reinforcement learning,
cf. [2].
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Related Work

The audio source separation problem can be formulated in a variety of settings.
(See [3–5] for a thorough overview.) For the purpose of this work, we only regard the case
that the input signal is single-channel and the separation is therefore always underde-
termined. Different algorithms can be used if multiple channels are available (typically
corresponding to microphones simultaneously recording the audio scene). Moreover, we
always assume melodic instruments rather than speech or percussive instruments. While
different kinds of prior information can be considered (such as specific characteristics of
the sounds of the instruments, training data, or the musical score), we concentrate on the
blind case with no prior information and instead rely on a learned parametric model for
the sounds of the individual instruments.

Many algorithms for this problem are based on non-negative matrix factorization
(NMF) of the spectrogram. In the simplest form, each tone of an instrument at a particular
pitch has its own representation as a dictionary atom [6,7]. To make the representation of
the sound of a particular instrument applicable at arbitrary pitch (pitch-invariance), one
often employs tensor factorization, cf. [5]. In this case, the use of a log-frequency spectrogram
(such as the constant-Q transform or the mel spectrogram) can be helpful, since it is also
pitch-invariant in the sense that changing the fundamental frequency of a tone merely
causes a shift in the representation [8–11].

A separation approach that is mathematically equivalent to NMF is probabilistic latent
component analysis (PLCA) [12,13] which also exists in variants that use a pitch-invariant
model on top of a log-frequency spectrogram [14,15]. The next step in abstraction is
to model the individual harmonics separately while enforcing sparsity in the spectral
representation [16].

Decreasing the variability, e.g., the number of parameters, in a model is generally
beneficial since it reduces the risk of overfitting. However, we can go one step further by
employing an explicit physical model for the tones of the instruments involving a mini-
mum number of parameters. This has the additional advantage that while the previously
discussed approaches with a log-frequency spectrogram can only be pitch-invariant if the
instruments are tuned to the same log-frequency scale (equal-temperament tuning, cf. [17],
defined as the frequency ratio corresponding to a musical interval being constant regardless
of pitch), a physical model can be evaluated at any fundamental frequencies and sampled
arbitrarily. This is crucial when dealing with acoustic instruments that either deliberately
deviate from equal temperament or might simply be slightly out of tune.

With a continuous model, it is thus possible to use a pitch-invariant representation on
a linear-frequency spectrogram. However, the challenge then is to identify the fundamental
frequencies on a continuous domain. Duan et al. [18] use a peak detection and clustering
algorithm to reduce the problem to a combinatorial one that can be approached via appro-
priate heuristics. Hennequin et al. [19], in a polyphonic single-instrument setting, consider
the fundamental frequency as an optimizable parameter and use an NMF-type update
rule, but they remark that this is only possible on a local scale due to the high number of
local minima.

Even with a physical model, it turns out that the log-frequency spectrogram can still
be helpful: Schulze and King [20] use its pitch-invariance property to obtain the approxi-
mate fundamental frequency of a tone via simple cross-correlation. After that, numerical
optimization is performed to improve the estimate on a local scale. The optimization
procedure also incorporates inharmonicity, which violates pitch-invariance, and variable
width of the peaks in the spectrum which can occur, for instance, at tone boundaries.
However, as explained there, using a log-frequency spectrogram inevitably results in a loss
in frequency resolution which in this case needs to be mitigated via heavy preprocessing.
Moreover, phase information is lost completely. Therefore, if given the choice, we argue
that a linear-frequency representation should be preferred.

Due to the general success of deep neural networks, it is not surprising that they have
also been applied to audio source separation problems. In fact, when it comes to supervised
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separation (with labeled training data), they dominate the state of the art [21–25]. While
supervised training is the “classical” way in which neural networks are used, it was
demonstrated by Ulyanov el al. with the deep image prior (DIP) approach [26] that the
structure of (convolutional) neural networks is inherently useful for representing natural
images. This technique was used for image decomposition by Gandelsman et al. via the
double-DIP algorithm [27]. Given this success, it was natural to also apply this method
to audio data, leading to the deep audio prior approach by Tian et al. [28]. Based on this,
Narayanaswamy et al. [29] used generative adversarial networks (GANs) trained on unlabeled
training data as priors, further improving the quality of the output signals.

The problem with all the previously presented separation algorithms based on unsu-
pervised training of neural networks is that they make the assumption that the separated
signals are stochastically independent. This case is often referred to as the cocktail party
problem, but it is different from polyphonic music, in which the tones are usually both rhyth-
mically and harmonically aligned. Therefore, rather than relying on general stastistical
properties of the signals, we use deep neural networks in conjunction with a paramet-
ric model.

Policy gradients were pioneered within reinforcement learning with the REINFORCE
algorithm [30], which is designed to train a neural network to predict a discrete variable.
While reinforcement learning has progressed towards actor-critic methods, cf. [2], and,
famously, the AlphaGo Zero [31], AlphaZero [32], and MuZero [33] algorithms based on
Monte Carlo tree search (MCTS), we stay relatively close to the original approach, but we
extend the formulation by adding deterministic values, combining policy gradients with
backpropagation gradients.

2. Data Model
2.1. Tone Model

An idealized model for the tones of woodwind, brass, and string instruments is that
of the wave equation, which is a hyperbolic second-order partial differential equation.
However, for certain string instruments, the stiffness in the strings is non-negligible, and
this leads to the introduction of fourth-order terms which cause inharmonicity, cf. [34]. The
corresponding solution consists of real-valued sinusoids, which consequently also appear
in the audio signal. However, due to

sin(ξ) =
eiξ − e−iξ

2i
, cos(ξ) =

eiξ + e−iξ

2
, (1)

we can also express them as complex exponentials. Since we do not need the negative
exponential, our model of a tone of a musical instrument is as follows:

x(t) = ∑
h

ah ei2π fht, (2)

with
fh = f ◦1 h

√
1 + bh2, (3)

where h = 1, . . . , Nhar are the harmonics (with Nhar ∈ N), ah ∈ C is the complex amplitude,
fh is the frequency for the specific harmonic, f ◦1 > 0 is the fundamental frequency of the tone,
and b ≥ 0 is the inharmonicity.

For illustration, an artificial application of the tone model is provided in Figure 1.
While the inharmonicity is exaggerated in comparison to real acoustic pianos, the increase
in distance between the harmonics in the frequency domain is clearly visible. In the time
domain, this has the effect that the overall signal is no longer periodic, even though the
signals stemming from the individual harmonics are.



Signals 2021, 2 640

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Frequency [kHz]

Harmonic amplitudes

0 2 4 6 8 10

−10

0

10

Time [ms]

Time-domain signal

Signal
Fundamental mode (h = 1)

Figure 1. Illustrative example for the signal model with a fundamental frequency of f ◦1 = 440 Hz and an inharmonicity
parameter of b = 10−2.

2.2. Time-Frequency Representation

Due to the sinusoidal nature of the tone model (2), it is advantageous to consider the
signal in the frequency domain rather than the time domain. However, in reality, music
is not stationary over longer periods of time; tones start, end, and change in volume or
frequency. Therefore, we only consider the frequency spectrum of short excerpts in time,
which is called a time-frequency representation. We compute the short-time Fourier transform
(STFT) of a signal X ∈ L2(R) via:

VwX(t, f ) =
∫ ∞

−∞
X(τ)w(τ − t) e−i2π f τ dτ, (4)

where t, f ∈ R correspond to the time and frequency axes and w ∈ L2(R) is the real-valued
analysis window, cf. [35]. In our notation, the uppercase letters X, Z, Y always refer to
measured data, while their lowercase counterparts x, z, y are our corresponding models.

We sample the representation as:

Z[k, l] := VwX(αk, βl) ei2παkβl , k, l ∈ Z, (5)

with the time and frequency constants α, β > 0. For αβ < 1 and with the Gaussian window

w(t) =
1√

2πζ2
exp

(
− t2

2ζ2

)
, ζ > 0, (6)

a so-called Gabor frame is formed, meaning that any function X ∈ L2(R) is uniquely
determined by its respective set of analysis coefficients Z[k, l], k, l ∈ Z, cf. [35]. In practice,
we only consider a finite number of indices k = 1, . . . , nlen (for time) and l = 0, . . . , nspc − 1
(for frequency) with nlen, nspc ∈ N, where we again neglect negative frequencies. If X is
real-valued, we have Z[k,−l] = Z[k, l].

For the tone model (2), the STFT yields:

Vwx(t, f ) = ∑
h

ah exp

(
− ( f − fh)

2

2σ2 − i2π( f − fh)t

)
, (7)

with ζσ = 1/(2π). For tones at very low frequencies, the negative frequencies that
were omitted from the tone model (2) can cause interference with the positive part of the
frequency spectrum. With typical audio signals, this interference is not strong enough
to become a problem. It would be straight-forward to add them back in, but this would
increase the computational cost. When sampling according to (5), we obtain:
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z[k, l] = Vwx(αk, βl) ei2παkβl

= ∑
h

ah exp

(
− (βl − fh)

2

2σ2 − i2π(βl − fh)αk

)
ei2παkβl

= ∑
h

ah exp

(
− (βl − fh)

2

2σ2 + i2π fhαk

)
.

(8)

Thus, for each harmonic h, the phase is constant for a fixed time index k.
Our default choice, assuming a sampling frequency of fs = 48 kHz, is:

ζ =
1024

fs
= 21.3 ms, α =

ζ

2
=

512
fs

= 10.6 ms, β =
1

12ζ
=

fs

122, 88
= 3.906 25 Hz. (9)

The value of ζ is short enough to capture rhythm, while the quantity 1/(2πζ) ≈ 7.46 Hz,
that will become important later, is well below the fundamental frequencies considered.
Our choice of α ensures that Gaussian windows spaced by α overlap narrowly.

For practical computations, it is common to limit the support of the window w
to [−1/(2β), 1/(2β)]. Due to 1/(2β) = 6ζ, our value for β makes the resulting er-
ror negligible.

2.3. Dictionary Representation

In order to differentiate between instruments in a music recording, we make the
simplifying assumption that the tones for each instrument η = 1, . . . , Nins (where Nins is
the total number of instruments) follow a characteristic pattern, namely that we can express
the amplitudes of the harmonics as:

ah = a D[h, η] eiϕ̃h , h = 1, . . . , Nhar, (10)

where a ≥ 0 is the global amplitude of the tone, D ∈ [0, 1]Nhar×Nins is the dictionary containing
the relative amplitudes for the harmonics, and ϕ̃h ∈ [−π, π) is the phase angle for the
respective harmonic.

In a realistic music recording, the tones of the different instruments overlap and their
parameters change over time. Thus, to construct an appropriate time-frequency model, we
must equip the parameters with indices relating to the tones j = 1, . . . , m (where m ∈ N is
the total number of simultaneously played tones) and the time frames k = 1, . . . , nlen. We
define the tone-wise and global model spectrograms, respectively, as:

zj[k, l] = ∑
h

aj,h,k exp

(
−
(βl − f j,h,k)

2

2σ2
j,k

+ i2π f j,h,kαk

)

= ∑
h

aj,k D[h, ηj,k] exp

(
−
(βl − f j,h,k)

2

2σ2
j,k

+ iϕj,h,k

) (11a)

incorporating the phase shift via ϕj,h,k := ϕ̃j,h,k + 2π f j,h,kαk, and:

z[k, l] = ∑
j

zj[k, l]. (11b)

For signals consisting only of sinusoids, the spectrum is modeled precisely by (8), where
the standard deviation σj,k of the Gaussians is given as σj,k = 1/(2πζ). However, especially
at the beginning and end of a tone, boundary effects can occur, leading to the spectrum
being better approximated by different values for σj,k. Therefore we include those as
free parameters.
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3. Learned Separation
3.1. Distance Function

The parametrized model z[k, l] from (11) should match the time-frequency representa-
tion Z[k, l] from (5) as closely as possible. To formalize this, we need to define a distance
function. While the `2 distance would be simple and “canonical,” the problem is that it
overemphasizes the correctness of the high-volume parts of the representation rather than
the structural similarity. A common alternative is the β-divergence, cf. [36] (which is a
generalization of the `2 distance, the Kullback-Leibler divergence, and the Itakura-Saito
divergence), but this leads to problems with unexplained noise in the spectrum. Instead,
we use the distance measure introduced in [20]; for a given time frame k, we set y = z[k, ·]
and Y = Z[k, ·] and define:

dq,abs
2,δ (Y, y) =

1
2 ∑

l

((
|Y[l]|+ δ

)q −
(
|y[l]|+ δ

)q
)2

, q ∈ (0, 1], δ > 0. (12)

The q exponent has the purpose of lifting the low-volume parts of the representation
in order to increase their relevance. The canonical choice is q = 1/2, since this is the lowest
value to keep the expression convex in y. The value for δ can be low, as it is merely there to
ensure differentiability at y[l] = 0. Unlike the β-divergence, the distance function in (12) is
symmetric, but it is still not a metric in the mathematical sense.

3.2. Model Fitting

Even though (12) is convex in y for q = 1/2, the spectrum y itself is not point-wise
globally convex in all the parameters appearing in (11). Therefore, conventional optimiza-
tion methods based on gradient descent are not a good choice for minimizing dq,abs

2,δ (Y, y).
Instead, we use a deep neural network to predict the tone parameters. While some of
these parameters (the deterministic parameters) can be trained normally via backpropagation,
we treat the “problematic” parameters as stochastic parameters which are trained via policy
gradients [30].

The neural network is applied in such the way that it predicts the parameters for one
tone at a time. After each prediction, the spectrum for that tone is computed and provided
back to the network for the following steps.

3.2.1. Parameter Representation

We first have to decide which parameters are stochastic and which ones are determin-
istic. The fundamental frequency parameter f ◦j,1,k is clearly one of those in which y is not
convex; however, it does have a useful gradient on a local scale. We therefore split this
parameter into two parameters as f ◦j,1,k = β(νj,k + ν̃j,k), where the values for νj,k ∈ N are
discrete and those for ν̃j,k ∈ R are continuous. We treat νj,k as a stochastic parameter and
ν̃j,k as a deterministic one.

If we limit each instrument to exactly one tone (therefore, m = Nins), the instrument
parameter ηj,k is not required mathematically. However, it makes sense to include it
from a practical algorithmic perspective since this allows for a network architecture that
sequentially extracts one tone after another while freely choosing the extraction order (see
Section 3.2.2). As ηj,k is discrete, it is impossible to obtain a gradient. Thus, we model it as
a stochastic parameter following a categorical distribution.

For σj,k, while it is possible to find examples in which the distance dq,abs
2,δ (Y, y) is not

convex with respect to it, the gradient around the theoretical value is usually good, so we
can treat it as a deterministic parameter.

The inharmonicity parameter bj,k is also continuous and has a good gradient around
the optimum, but depending on the characteristics of the instrument, there can exist local
optima. Therefore we do not rely on backpropagation and instead treat it as a stochastic pa-
rameter following a gamma distribution (see Figure 2). The reason why we chose a gamma
distribution is that it is non-negative and it can have two qualitatively different shapes:
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Either it tends towards ∞ at zero (which is useful to model tones without inharmonicity),
or it is bell-shaped around a finite maximum (to model tones with inharmonicity). Ap-
proaching infinity, it always decays exponentially, and in the edge case between the two
shapes, it matches an exponential distribution.

In the tone amplitudes aj,k, the problem is convex, and therefore they are treated as de-
terministic parameters. In total, the stochastic parameters for each tone are vs,j,k = (νj,k, ηj,k, bj,k),
and the deterministic parameters are vd,j,k = (aj,k, ν̃j,k, σj,k). When it is clear which time
frame we are considering, we can drop the dependency on k and summarize:

vs = (vs,1, . . . , vs,m) = (vs,1,k, . . . , vs,m,k), (13a)

vd = (vd,1, . . . , vd,m) = (vd,1,k, . . . , vd,m,k). (13b)
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Figure 2. Probability density functions of gamma distributions for different parameter choices. For
αΓ ≥ 1, the function has the mode at (αΓ − 1)/βΓ, while for αΓ < 1, the function tends to ∞ at zero.
In our proposed method, the network selects a distribution shape for each inharmonicity coefficient
bj by its outputs αΓ

j , βΓ
j .

3.2.2. Policy Gradients

We use a neural network with network parameters θ both to give the policy πθ(vs|Y),
which is the (discrete or continuous) probability density for the stochastic parameters vs
given the input spectrum Y and also to compute the deterministic parameters vd from the
input and the stochastic parameters. With this, we can express the loss function as:

L(vs, θ, D, Y) := L
(
vs, vd(vs, θ, Y), D, Y

)
= dq,abs

2,δ

(
Y, y(vs, vd, D)

)
= dq,abs

2,δ (Y, y). (14)

For the expected loss, we follow the usual computation, cf. [2], but also apply the
product rule for the deterministic parameters:

∇θ Eπθ(vs|Y)
[
L(vs, θ, D, Y)

]
= ∇θ

∫
πθ(vs|Y) L(vs, θ, D, Y) dvs

=
∫
∇θπθ(vs|Y) L(vs, θ, D, Y) + πθ(vs|Y)∇θ L(vs, θ, D, Y) dvs

=
∫

πθ(vs|Y)
(∇θπθ(vs|Y)

πθ(vs|Y)
L(vs, θ, D, Y) +∇θ L(vs, θ, D, Y)

)
dvs

= Eπθ(vs|Y)
[
∇θ log πθ(vs|Y) L(vs, θ, D, Y) +∇θ L(vs, θ, D, Y)

]
,

(15)

where we refer to the first term in the sum as the policy gradient and on the second term
as the backpropagation gradient. The applicability of the Leibniz integral rule can be shown
under realistic conditions.
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The total dimensionality of vs is too high to represent πθ(vs|Y) as a whole. Therefore,
we decompose the log-probability density into:

log πθ(vs|Y)
= log

(
πθ(vs,1|Y) · πθ(vs,2|Y, vs,1) · · ·πθ(vs,m|Y, vs,1, . . . , vs,m−1)

)
= log πθ(vs,1|Y) + log πθ(vs,2|Y, vs,1) + . . . + log πθ(vs,m|Y, vs,1, . . . , vs,m−1).

(16)

In practice, we first sample the stochastic parameters vs,1 for the first tone, then obtain
the deterministic parameters vd,1, and from these compute a model spectrum y1. For each
additional tone j = 2, . . . , m, we gain vs,j and vd,j depending on the previous spectra
y1, . . . , yj−1, which encapsulate all the relevant information about the parameters of the
previous tones.

The parameters νj, ηj are sampled via a joint categorical distribution, making sure that
no instrument plays more than one tone. For each possible value of (νj, ηj), the network
gives a value for the deterministic parameters vd,j as well as for the parameters αΓ

j , βΓ
j for

the gamma distribution for bj.

3.3. Phase Prediction

Of the tone parameters for (10), we still need the phase angles ϕj,h. Canonically, we
could represent them as a vector that is output by the network for each possible choice of
νj, ηj, but this would lead to high dimensionality. Instead, we let the network emit a single
artificial spectrum vj ∈ Cnspc for each possible instrument choice ηj. This is used as the
right-hand side of a least-squares problem for determining the coefficients cj,h ∈ C:

min
(cj,h)

1
2 ∑

l

∣∣∣∣∣∑h
cj,h · exp

(
−

(
βl − f ◦j,1h

√
1 + bjh2

)2

2σ2
j

)
− vj[l]

∣∣∣∣∣
2

, l = 0, . . . , nspc − 1, (17)

from which we extract the phase angles as ϕj,h = arg cj,h. We apply some `2 regularization
to improve the condition number of the system. For cj,h = 0, the phase would be ill-defined,
but since the magnitudes of these coefficients are stabilized via the objectives introduced in
Section 3.4, we do not realistically expect this case to happen.

With this approach, the frequency dimension of the network output is used differently
than for the other tone parameters. Instead of providing an output for each possible tone
choice νj, the network computes a single spectrum, which then determines the phases of
all harmonics. We expect the spatial structure of the U-Net architecture with respect to
the frequency dimension to be beneficial for this task. While cj,h is not explicitly given as
a conditional value depending on vs, the computation of cj,h in (17) does depend on all
the stochastic parameters (even bj), and since typically nspc > Nhar, the network has some
freedom to output vj such that cj,h take different values depending on the other parameters.

Since vj is the right-hand side of a linear least-squares system, optimizing y with
respect to vj is convex. Therefore, training is done deterministically via backpropagation
through the pseudo-inverse. Moreover, we include the additional gradient that occurs with
respect to the left-hand-side parameters that appear inside the exponential. Computation
of the gradient of the solution of a least-squares system with respect to the left-hand side is
usually included in automatic differentiation frameworks, but to obtain it explicitly, one
can repeatedly apply the Woodbury formula.

In the case where the positions of the peaks from the model perfectly match those
from the spectrum Y without any overlap or additive noise, the choice vj = Y gives the
ideal phase values ϕj,h for all j = 1, . . . , m and h = 1, . . . , Nhar. While this exact case is
not realistic (not least since Gaussians have unbounded support), a network with skip
connections can quickly learn to predict good approximate phase values.
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3.4. Complex Objectives

So far, we have only used the parameters cj,h from (17) in order to determine the phase
values ϕj,h. However, we can also use them for a different purpose: While the dictionary
representation (10) is necessary in order to distinguish the instruments, it is never fully
accurate since the relation of the amplitudes of the harmonics can vary slightly even for the
same instrument. The typical remedy for this is spectral masking, but as explained in [20],
this process does not properly deal with interference. Instead, we create a direct prediction,
in which we replace the tone amplitudes and dictionary entries in (11) with the parameters
cj,h,k (with time-frame dependency added back in):

zdir
j [k, l] = ∑

h
cj,h,k exp

(
−
(βl − f j,h,k)

2

2σ2
j,k

)
, (18a)

zdir[k, l] = ∑
j

zdir
j [k, l]. (18b)

For a fixed k, we set ydir = zdir[k, ·].
The distance function from (12) only considers the absolute value and ignores the

phase entirely. This is not necessarily a problem, but knowing the exact phase angles would
be useful for resynthesis, and it makes more sense as a training objective. Therefore, we
introduce a modified distance function that respects the phase:

dq,rad
2,δ (Y, y) =

1
2 ∑

l

∣∣∣∣(|Y[l]|+ δ
)q · Y[l]
|Y[l]| −

(
|y[l]|+ δ

)q · y[l]
|y[l]|

∣∣∣∣2. (19)

To avoid division by zero, we add a tiny positive constant to the denominators.
We can now compare y to Y (as before), ydir to Y, and y to ydir, and we can choose

between the distance functions dq,abs
2,δ and dq,rad

2,δ as defined in (12) and (19). While it would
be ideal to have the phases matching in all spectra, there are some caveats:

• It takes a number of training iterations for vj to give a useful value. In the meantime,
the training of the other parameters can go in a bad direction.

• If the discrepancy between y and ydir is high and there is a lot of overlap between the
peaks (typically from different tones), the optimal phase values for y and ydir may be
significantly different. An example for this is displayed in Figure 3: The two peaks
(red and blue) each have different phases, but by design, those are identical between
the predictions. However, since the dictionary prediction is less flexible, its amplitude
magnitudes of the harmonics often do not accurately match the input spectrum Y,
which shifts the phase in the overlapping region. Thus, attempting to minimize both
dq,rad

2,δ (Y, ydir) and dq,rad
2,δ (Y, y) would lead to a conflict regarding the choice of common

phase values.

Therefore, we continue to compare y and Y via dq,abs
2,δ (without the phase), and we use

dq,rad
2,δ for the comparison between ydir and Y, since ydir is the spectrum that we will end up

using for resynthesis, so we aim for the phase to be correct. Between y and ydir, we can
compare tone-wise, but since some discrepancy is to be expected, we only associate it with
a small penalty; the purpose is to regularize ydir for the case that the peaks of different
tones overlap so much that the cj,h are not unique (see Figure 4).

For this task, we employ the loss terms dq,rad
2,δ (ydir

j , yj) to compare the tone spectra

ydir
j := zdir

j [k, ·] and yj := zj[k, ·] in both magnitude and phase. However, since the individ-

ual peaks making up ydir
j and yj necessarily have the same phases, the difference between

dq,rad
2,δ and dq,abs

2,δ only matters if there is significant overlap between the peaks within the
same tone, which is the case at very low fundamental frequencies.
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Figure 3. Example showing the interference of two overlapping peaks. Each peak models the contribution of one harmonic
of a tone to the spectrum (cf. (8)). The left plots show a part of a direct prediction ydir, which is assumed to equal the true
spectrum Y for this example, and the right plots show a dictionary-based prediction y with deviating amplitudes. Due
to the different amplitudes, also the phases mix differently, leading to a high value of dq,rad

2,δ (Y, y). The phases could be
optimized for y (by increasing the phase for peak 1 and/or peak 2), but this would lead to suboptimal phases in ydir. In
contrast, the used loss dq,abs

2,δ (Y, y) does not depend on the phase.
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Figure 4. Example showing non-uniqueness of the tone separation in the direct prediction. In the direct prediction (left)
the separation of the two instruments is different from the dictionary-based prediction y (right). For this example, we
assume the dictionary-based separation to be correct, so ideally the direct separation would be the same. However, the total
spectrum (Sum) of the incorrect separation equals the true total spectrum and thus also achieves the optimal loss value
dq,rad

2,δ (Y, ydir). This motivates to regularize the individual tones ydir
j of the direct prediction using yj. The imaginary parts of

the spectra are assumed to be all zero for this example.
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The loss functions dq,rad
2,δ and dq,abs

2,δ are both based on the `2 loss, so they do not induce
sparsity. Thus, if there is linear dependency in the dictionary or, more likely, there is a
discrepancy between the dictionary model for an instrument and an actual tone played
by that instrument, then one single tone played by an instrument may get identified as
multiple ones, either with the same fundamental frequency or with overlapping harmonics.
Thus, we introduce an additional sparsity parameter uj ∈ {0, 1} that indicates whether a
certain tone is present at all, and we henceforth include it in the set of stochastic parameters
vs,j. Whenever uj = 0, we discard the tone in the sparse prediction given by

yspr = ∑
j

uj yj (20)

and discount part of the loss. In terms of architecture, the parameter uj is modeled as a
Bernoulli distribution.

With ydir
j = zdir

j [k, ·], yj = zj[k, ·], and ydir = zdir[k, ·] again, we define the loss as:

L(vs, θ, D, Y) = µ1 dq,abs
2,δ (Y, yspr) · λ∑j(1−uj) + µ2 dq,rad

2,δ (Y, ydir) +
µ3

m ∑
j

dq,rad
2,δ (ydir

j , yj), (21)

choosing λ = 0.9. This value is somewhat arbitrary, so we do not use it to enforce
sparsity directly in y. Instead, we compute the loss in the first term based on yspr so that
the parameters are compatible with a sparse solution and do not rely on redundant tones.
However, additional tones can still appear in ydir to reduce the distance to Y and, by
extension, also in y to reduce the distance to ydir.

We give both distances to Y the same loss coefficients while the regularization is
supposed to be small. In practice, we find that µ1 = 10, µ2 = 10, µ3 = 1 is a good choice.

3.5. Sampling for Gradient Estimation

In order to apply a gradient descent method, we need to compute the expectation
in (15). However, the set of possible parameters vs is much too large to do so analytically,
so we have to estimate it instead. For this, we use:

ĝπθ ,Y =
1
S

S

∑
i=1

(
∇θ log πθ(v

i
s|Y) ·

(
L(vi

s, θ, D, Y)− C(θ, D, Y)
)
+∇θ L(vi

s, θ, D, Y)
)

, (22)

with v1
s , . . . , vS

s ∼ πθ(vs|Y), where S ∈ N is the number of samples and C(θ, D, Y) is the
baseline, cf. [2]. The baseline plays a crucial role in reducing the variance of the gradient,
and a common choice is:

C(θ, D, Y) = Eπθ(vs|Y)
[
L(vs, θ, D, Y)

]
. (23)

As long as the baseline is independent of the samples v1
s , . . . , vS

s , the estimator (22) is
unbiased. However, the easiest way to estimate the baseline is via:

Ĉ(θ, D, Y) =
1
S

S

∑
i=1

L(vi
s, θ, D, Y), (24)

which obviously depends on the samples and therefore introduces a bias factor of (S− 1)/S
for the policy gradient. If desired, one could correct for this bias by dividing by this factor,
but it is generally advisable to be conservative about the policy gradient, so we choose to
leave it uncorrected. However, the value for S should be chosen large enough for (24) to be
a good estimator.

During the training, it is expected that the policy will become increasingly deter-
ministic, so less exploration will be performed. The problem with this is that multiple
parameters need to be trained, and it is easy for the training process to get stuck in local
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minima. Therefore, we should encourage the exploration of more parameter choices even
when the policy has stabilized. Inspired by the algorithm from [31], we thus define:

π
rj
θ (vs,j|Y) :=

πθ(vs,j|Y)rj∫
πθ(vs,j|Y)rj dvs,j

, rj > 0. (25)

The rj parameter can be chosen separately for each tone; with R = (r1, . . . , rm), we fur-
ther define:

πR
θ (vs|Y) := πr1

θ (vs,1|Y) · πr2
θ (vs,2|Y, vs,1) · · ·πrm

θ (vs,m|Y, vs,1, . . . , vs,m−1). (26)

We set S = 3m and let R1, . . . , RS be all the combinations of m elements out of the
set {1, 0.1, 0.01}, which turn out to be reasonable magnitudes. Additionally, we do not
only accept the bias which causes an underestimation of the policy gradient, but we also
artificially scale it down by a factor of 10. Since the policy gradient and the backpropagation
gradient model different parameters, this is conceptually not a problem; however, if the
gradient is scaled too much, the interdependencies of the values in the network can then
cause instabilities in the output of the stochastic parameters. Our modified gradient
estimator is:

ĝθ,Y =
1
S

S

∑
i=1

(
1

10
∇θ log πRi

θ (vi
s|Y) ·

(
L(vi

s, θ, D, Y)− Ĉ(θ, D, Y)
)
+∇θ L(vi

s, θ, D, Y)
)

, (27)

where each tone parameter set vi
s,j is sampled according to the value of rj inside Ri.

This includes the sparsity parameter uj, but the inharmonicity bj is exempt from this
modification altogether and always sampled according to πθ .

Since the way of sampling also affects the empirical baseline Ĉ(θ, D, Y), it is no longer
an estimator for C(θ, D, Y) but simply the mean loss among the samples. We observe this
to be a good stabilizer for the gradient. Via our choice of R1, . . . , RS we make sure that one
sample is drawn with (r1, . . . , rm) = (1, . . . , 1) from the original distribution πθ . Moreover,
even with increased exploration in some of the tones, there is always a combination with
rj = 1 for the other tones. Therefore, rather than destabilizing all tones at the same time,
part of the exploration is only performed selectively on specific tones with the other ones
still sampled via πθ .

We also need to train the dictionary D; since the representation of D is not conditional
but simply a variable of size Nhar × Nins, exploration is not desired. In fact, even though
the policy gradient on the dictionary exists for all tones but the first (via the dependency
of yj on D), we ignore it to increase training stability. However, the variables vi

s were

sampled according to π
Ri
θ rather than πθ , so to get a stable estimate for D, we “undo” this

modification by multiplying with the ratio between the probability densities. We estimate
the gradient in D via:

ĝD,Y =
∑S

i=1 ρi∇DL(vi
s, θ, D, Y)

∑S
i=1 ρi

, ρi =
πθ(vs|Y)
π

Ri
θ (vs|Y)

, (28)

where π
Ri
θ is defined according to (26). This method is called weighted importance sampling,

cf. [2].

3.6. Network Architecture

We use a U-Net architecture with seven downsampling/upsampling steps; strides
of 4, 4, 4, 4, 4, 3, 2; and 80, 160, . . . , 560 one-dimensional filters with a size of 5. Finally, we
add two more convolutional layers with 80 filters of sizes 3 and 1, respectively, before the
linear output layer. All of the hidden layers have ReLU activation. The first hidden layer
is a CoordConv layer [37], which means that it is supplied with a linear range from 0.01
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to 0 as an additional input channel. These design parameters were obtained via manual
experimentation.

For the first tone, the network is supplied with the input spectrum Y and the absolute
value spectrum |Y|. From this, the spectra y1 and ydir

1 are computed. For each following tone
j = 2, . . . , m, the network receives the residuals Y− y1− . . .− yj−1 and Y− ydir

1 − . . .− ydir
j−1

along with their absolute values as well as the computed tone spectra y1, . . . , yj−1 and
ydir

1 , . . . , ydir
j−1. From these values, it then yields the spectra yj and ydir

j . For those input
components of the network that do not yet receive a spectrum for a particular tone, a
constant 0 vector is given as input to the network instead. The data flow is illustrated in
Figure 5.

logits νj, ηj

[νj, ηj] αΓ
j , βΓ

j bj

[νj, ηj] aj

[νj, ηj] σj

[νj, ηj] ν̃j ( f j,h)h=1,...,Nhar

[·, ηj] vj (cj,h)h=1,...,Nhar
(ϕj,h)h=1,...,Nhar

[νj, ηj] uj

yj

ydir
j

(D[h, ηj])h=1,...,Nhar

yspr ← yspr + ujyj

y ← y + yj

ydir ← ydir + ydir
j

j ← j + 1

U-Net

Y− y
Y− ydir

|Y− y|
|Y− ydir|

y1

ydir
1
...

yj−1

ydir
j−1

Categorical

Γ(αΓ
j , βΓ

j )

Bernoulli

Figure 5. Sampling architecture.

Since the amplitudes (aj) are supposed to be non-negative, we apply the absolute
value function to the respective output components of the network. The widths (σj) are
kept positive via softplus, and they are clipped such that the value does not get too close to
0. For the continuous frequency offsets (ν̃j), a tanh function is used to keep them inside
the interval (−5, 5). The positive parameters (αΓ

j , βΓ
j ) are obtained after applying the

exponential function, and the probabilities for the Bernoulli distribution for the sparsity
parameters (uj) are mapped into the interval (0, 1) via a sigmoid function. The joint
categorical distribution for the discrete frequencies (νj) and instrument indices (ηj) is given
in vectorial form as non-normalized log-probabilities, so we apply the softmax mapping in
order to obtain a valid discrete distribution. Doing this, we have to make sure that each
instrument can only play one tone at a time by excluding that instruments that have already
been assigned a tone from the sampling. For each parameter output by the network, we
add a trainable scaling layer.

In order to protect against potentially degenerate network output or gradients in the
case of zeros in the input vector, a minimal amount of Gaussian noise is always added to Y
prior to prediction, on a level that is negligable for any normal audio signals.
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The dictionary entries are supposed to be elements of the interval [0, 1]. Non-negativity
is usually satisfied automatically due to aj ≥ 0, and for the upper bound, we add the loss

1
Nins

∑η(log(maxh D[h, η]))2 to the training of the dictionary.

3.7. Training

The network weights are Glorot-initialized and the biases are initially set to 0. The
initial values for the instruments in the dictionary are exponentially decaying sequences
along the harmonics:

D0[h, η] =
(0.5

η

)h−1
. (29)

We partition the spectra Z[k, ·], k = 1, . . . , nlen, into random batches of size 6. We then
train on each batch with the AdaMax algorithm [38]. For each epoch, new random batches
are assigned. For the dictionary, we also use AdaMax, but with a reduced learning rate
of 10−4. Moreover, analogously to [20], for the denominator in AdaMax, we consider the
maximum over all the harmonics of the particular instrument when training D. The entire
procedure is outlined in Algorithm 1.

Algorithm 1 Training scheme for the network and the dictionary, based on AdaMax [38].
Upper bound regularization of D and batch summation (see Sections 3.6 and 3.7) are not
explicitly stated.
Input: Z, θ, D
Parameters: T ∈ N, κθ > 0, κD > 0, β1 ∈ (0, 1), β2 ∈ (0, 1), ε > 0

γθ,1 ← 0
γθ,2 ← 0
γD,1 ← 0
γD,2 ← 0
for τ = 1, . . . , T do

choose Y out of {Z[k, ·] : k = 1, . . . , nlen}
γθ,1 ← β1 γθ,1 + (1− β1) ĝθ,Y
γθ,2 ← max(β2 γθ,2, |ĝθ,Y|)
θ ← θ − κθ

1−βτ
1
· γθ,1

γθ,2+ε

γD,1 ← β1 γD,1 + (1− β1) ĝD,Y
γD,2 ← max(β2 γD,2, maxh|ĝD,Y[h, ·]|)
D ← D− κD

1−βτ
1
· γD,1

γD,2+ε

Output: θ, D

Typical choice: N = 70,000, κθ = 10−3, κD = 10−4, β1 = 0.9, β2 = 0.999, ε = 10−7.

3.8. Resynthesis

After training, we apply the network once again on all the time frames Z[k, ·], k =
1, . . . , m. To prevent randomness in the output, rather than sampling according to πθ(vs|Y),
we use the mode of πθ(νj, ηj|Y) and then, with νj, ηj fixed, the modes of πθ(bj|Y, νj, ηj) and
of πθ(uj|Y, νj, ηj).

We project the thereby obtained time-frequency coefficients zdir
j [k, l] back into real-

valued time-domain signals for each instrument via, cf. [35,39]:

xsyn
j (t) = ∑

k,l
zdir

j [k, l] w̃(t− αk) ei2πβl(t−αk), (30)

where

w̃(t) =
β w(t)

∑k|w(t− αk)|2 (31)
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is the synthesis window. If the support of w is cut to [−1/(2β), 1/(2β)], then it is also the
Gabor canonical dual window of w, which is the miminum-L2-norm window to invert the
transformation from X to Z according to (5).

4. Experimental Results and Discussion

We compare our algorithm against two other blind source separation algorithms. We
selected them for their ability to identify the sound of musical instruments at arbitrary
pitch on a continuous frequency axis.

1. The algorithm from a previous publication of some of the authors [20] assumes an
identical tone model, but instead of a trained neural network, it uses a hand-crafted
sparse pursuit algorithm for identification, and it operates on a specially computed
log-frequency spectrogram. While the data model can represent inharmonicity, it is
not fully incorporated into the pursuit algorithm. Moreover, information is lost in
the creation of the spectrogram. Since the algorithm operates completely in the real
domain, it does not consider phase information, which can lead to problems in the
presence of beats. The conceptual advantage of the method is that it only requires
rather few hyperparameters and their choice is not critical.

2. The algorithm by Duan et al. [18] detects and clusters peaks in a linear-frequency
STFT spectrogram via a probabilistic model. Its main advantage over other methods
is that it can extract instrumental music out of a mixture with signals that cannot be
represented. However, this comes at the cost of having to tune the parameters for the
clustering algorithm specifically for every sample.

While hyperparameter choice is more important for our new algorithm than for the
first algorithm from this list, we aim to maintain our notion of blind separation by keeping
our choice constant for all the samples that we consider, while for any comparison to the
second algorithm, it should be kept in mind that the hyperparameters for this method are
hand-optimized with the values taken from [18,20]. When comparing to the algorithm
from [20], we always consider the result with spectral masking applied.

For reconstruction, unless otherwise stated, we use the values from (9). However, in
training, we aim to increase the amount of training data available to the network (data aug-
mentation) by using a modified time constant α̃ = α/4. While the newly added spectra are
completely redundant and do not add any information to the original ones, this connection
is not built into the neural network and therefore the redundant training data can help it
learn details that it would not learn from a representation without this redundancy.

For all the samples with 2 instruments, we train for 100, 000 iterations (independently
of the size of one epoch), but we always use the result after 70, 000 iterations (early stopping),
since it appears that this usually gives better results. We conjecture that the partially
trained network itself provides a good regularization to which separations are realistic,
while simply minimizing the loss itself can lead to degenerate results. Regularization via
network architecture in unsupervised learning has been prominently pioneered via the
deep image prior approach [26].

For assessing separation quality, we use the SDR (signal-to-distortion ratio), which
measures the overall similarity between the original and the resynthesized signal, the
SIR (signal-to-interference ratio), which gives the interference from the other instrument
tracks in the considered signal, and the SAR (signal-to-artifacts ratio), which disregards
interference and compares the given signal to all the original ones [40]. These are well-
established figures in blind separation from the BSS Eval software package [41]. We follow
the definitions compatible with version 2 of BSS Eval, which, unlike version 3, does not
permit shifts in the signal. For all of them, a higher number corresponds to better quality.

When training non-trivial neural networks, it is always, to varying extent, a matter
of chance if the optimization process will converge to a good value. We therefore train an
ensemble of neural networks by running the process with 6 different random seeds (affecting
the network initialization, the batch partitioning, and the random sampling of the stochastic
parameters) and choose the best one in terms of mean SDR over the instruments. These
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seeds are distinct from those that we used for validation and hyperparameter selection
during the design process of the algorithm. In a realistic blind scenario without ground
truth, this figure would not be available, but we deem it acceptable to let the user choose (for
instance, by listening comparison) between a small number of different output results. Due
to the aforementioned regularization by architecture, the value of the loss function is not a
reliable indicator of separation quality, but it could be integrated into an end-user interface.

Similarly, the results taken from [20] are always the best-case training outcomes out of
10 runs. By contrast, the algorithm from [18] does not rely on randomness but instead on
the hand-optimized hyperparameters.

4.1. Mozart’s Duo for Two Instruments

Like in [20], we use the 8th piece from the 12 Basset Horn Duos by Wolfgang A.
Mozart (K. 487) in an arrangement by Alberto Gomez Gomez for two recorders (https://
imslp.org/wiki/12_Horn_Duos,_K.487/496a_(Mozart,_Wolfgang_Amadeus), accessed on
6 September 2021) as an example piece. In one sample, it is played with recorder and
violin, and in the second sample, it is played with clarinet and piano. All the instruments
are acoustic.

In Table 1, we compare the performance of our algorithm to that of the other two
on both samples. The sample with recorder and violin is comparatively “easy.” While
our proposed algorithm universally gives the best SIR values (indicating low interference
between the instrument tracks), the algorithm from [20] outperforms it for the recorder
track in terms of SDR and SAR. Possible explanations include a more effective optimization
process of the respective objective function, but it could also be a result of the different data
representation used in that method (namely the special log-frequency spectrogram) or a
regularizing effect of the sparse pursuit algorithm. In preliminary experiments, we found
that in this particular sample, a lower value for µ1 can increase separation quality (putting
more emphasis on the correctness of the direct prediction rather than the dictionary-based
prediction), but requiring the user to guess the difficulty beforehand violates our notion of
blind separation.

Table 1. Comparison of the separation algorithms on the samples based on the piece by Mozart. Best
numbers are highlighted.

Method Instrument SDR SIR SAR
Recorder 13.1 34.8 13.2

Violin 13.4 34.2 13.5
Clarinet 12.4 28.0 12.6Ours

Piano 8.1 42.2 8.1

[20]

Recorder 15.1 32.4 15.2
Violin 11.9 23.8 12.2

Clarinet 4.1 24.3 4.1
Piano 2.1 9.3 3.5

[18]

Recorder 10.6 21.4 11.0
Violin 5.8 18.4 6.1

Clarinet 6.7 21.3 6.9
Piano 5.5 16.4 5.9

The first few seconds of the separation result are displayed in spectrogram form in
Figure 6. Overall, the direct predictions are very accurate, but like it was observed in [20],
the last tone visible in Figure 6b jumps up a fifth, which it does not do in the ground truth.
This is because the recorder tone is actually one octave above the violin tone, and the
overlap is virtually perfect. In such cases, since the dictionary model is never fully accurate,
it may happen that an incorrect solution actually yields a lower loss.

https://imslp.org/wiki/12_Horn_Duos,_K.487/496a_(Mozart,_Wolfgang_Amadeus)
https://imslp.org/wiki/12_Horn_Duos,_K.487/496a_(Mozart,_Wolfgang_Amadeus)
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Figure 6. Excerpt of the separation result for the piece by Mozart, played on recorder and violin. Displayed are the original
STFT magnitude spectrogram as well as the direct predictions for each instrument. In the highlighted section, the last tone
is supposed to be a constant octave interval between the violin and the recorder, but the prediction for the recorder contains
an erroneous jump. The color axes of the plots are normalized individually to a dynamic range of 100 dB.
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By comparison, the sample with clarinet and piano is rather “hard,” and our algorithm
clearly shows superior performance, especially in the separation quality of the piano track.
An interesting observation in Figure 7a is that while the separation performance first
reaches a plateau around 10 dB (in the mean), it then declines to around 8 dB. However, as
shown in Figure 7b, the values of both dq,abs

2,δ (Y, yspr) and dq,rad
2,δ (Y, ydir) decrease, indicating

this is not an optimization failure. At the same time, the value of the regularization loss
(which, with µ3 = 1, has a much lower weight than the others) increases. Therefore, this
particular sample could potentially benefit from more reguralization.

In Figure 8, the learning curves for both samples over all the respective runs are
displayed. It is obvious that the results for the sample with recorder and violin (Figure 8a)
are more consistent than those for the sample with clarinet and piano (Figure 8b). Moreover,
we can see that in the former sample, separation quality generally deteriorates after too
many iterations while in the latter, some runs only achieve peak performance near the
end of the training. Thus, different samples can benefit from taking the results at different
points in the training process. Some curves in Figure 8b terminate early, which was due to
numerical failures in the training process.
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Figure 7. Separation performance and loss values while training on the sample with clarinet and piano in the best-case run.
The vertical gray lines indicate the point at which the result was taken (70,000 iterations).

One difficulty with the piano as an instrument is that it exhibits significant inhar-
monicity, cf. [34]. While the algorithm from [20] has been shown to correctly identify the
inharmonicity parameter on the isolated piano track, it relies on cross-correlation without
inharmonicity for tone detection. By contrast, the algorithm presented here is based on
a neural network, so correctly dealing with inharmonicity at the input stage is merely a
matter of training. Since inharmonicity mostly affects higher harmonics which have low
volume, the ability to represent it in the output stage does not show up as much in the
`2-based SDR/SAR/SIR figures. However, due to the lifting property of dq,rad

2,δ and dq,abs
2,δ

(with q = 0.5 < 1), it does influence the losses.
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Figure 8. Mean separation performance over the instruments in the samples based on the piece by Mozart. Each line
represents a different run with specific random seeds. The vertical gray lines indicate the point at which the result was
taken (70,000 iterations).

To illustrate the effect, we also ran our algorithm on the isolated piano track, once
with and once without the inharmonicity parameter in the model, with 4 distinct random
seeds each. The results for the random seeds of 11 are displayed in Figure 9. While the
difference appears small on a global scale, it is consistent.
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Figure 9. Observed loss convergence on the isolated piano track.

4.2. URMP

The URMP dataset [42] consists of samples with two or more acoustic instruments. It
was not created for blind separation, so the samples are generally too “hard” to be used
in that context. Nevertheless, in [20], a subset of potentially appropriate samples was
determined, and we compare the performance of our new algorithm on these samples.

As can be seen in Table 2, the results vary widely. For the first and the fourth sample,
we have to declare a failure compared to the other two algorithms. On the second and the
third sample, however, our algorithm is universally dominant. The good performance on
the sample with trumpet and saxophone is especially surprising, since we deemed this a
very challenging sample due to the similarity of the sounds of the instruments.



Signals 2021, 2 656

Table 2. Comparison of the separation algorithms on a selection of samples from the URMP [42]
dataset. Best numbers are highlighted.

Method Instrument SDR SIR SAR

Ours

Flute −4.7 17.5 −4.6
Clarinet 5.0 10.1 7.0
Trumpet 7.7 19.9 8.0

Violin 9.7 30.7 9.7
Trumpet 8.4 30.3 8.4

Saxophone 13.0 24.9 13.3
Oboe 2.9 6.9 5.9
Cello −0.6 19.2 −0.5

[20]

Flute 2.4 9.5 3.9
Clarinet 6.2 25.3 6.3
Trumpet 5.3 16.6 5.7

Violin 7.7 25.1 7.8

Trumpet −2.4 1.1 2.7
Saxophone 0.1 22.5 0.2

Oboe 6.3 17.0 6.8
Cello 4.2 17.1 4.5

[18]

Flute 3.4 19.6 3.6
Clarinet 2.1 5.9 5.4

Trumpet — — —
Violin — — —

Trumpet 1.2 9.4 2.3
Saxophone 6.9 17.2 7.4

Oboe −0.8 13.1 −0.4
Cello 3.4 6.4 7.3

Oracle Dictionary

In order to investigate the failure of the separation method on the first and the fourth
sample, we first train oracle dictionaries by providing the algorithm with the ground-truth
individual tracks for the respective instruments. We then supply the separation procedures
with these dictionaries as initial values. In one instance, we keep the dictionaries fixed
throughout the training, and in another one, we train then at the normal rate, starting from
oracle dictionaries. For each separation, we use 4 different random seeds. The results are
displayed in Table 3. While we usually use the direct prediction zdir[k, l] for resynthesis,
we here also include the resynthesis based on the dictionary prediction z[k, l] for analysis.

With the fixed oracle dictionary, the results are generally much better than with the
normal training in Table 2. However, when allowing training from the oracle dictionary,
the separated flute and the cello tracks become unacceptably bad again. When using the
dictionary prediction for resynthesis, all the results are of very poor quality, indicating that
the dictionary model (10) is not an accurate representation of the spectral characteristics of
the tones.
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Table 3. Separation with an oracle dictionary on a selection of samples from the URMP [42] dataset.
The “Fix” column indicates whether the dictionary is kept constant during the separation, and the
“Pred.” column specifies whether the direct or the dictionary prediction is used. Best numbers are
highlighted when they also exceed the performance from Table 2.

Fix Pred. Instrument SDR SIR SAR

Yes

Flute 1.2 9.4 2.4
Clarinet 5.7 25.7 5.8

Oboe 5.3 11.2 6.8Dir.

Cello 3.0 30.3 3.0

Flute −0.5 1.0 0.3
Clarinet 1.8 30.2 1.8

Oboe 0.5 9.6 1.6Dict.

Cello −1.4 25.4 −1.4

No

Flute −0.4 21.6 −0.3
Clarinet 7.0 13.2 8.4

Oboe 3.7 8.0 6.3Dir.

Cello 0.4 26.1 0.5

Dict.

Flute −5.1 24.6 −5.1
Clarinet 2.2 17.3 2.4

Oboe −1.8 4.6 0.6
Cello −2.8 23.7 −2.8

Upon manual inspection of the flute track, we noticed that it contains a number of
tones which are “half-overblown,” such that the spectra of both the higher octave and of
the lower octave are present. This does not represent the normal spectral characterics of the
flute sound, so the oracle dictionary contains a “compromise,” while the trained dictionary
fails to represent these half-overblown tones. In the cello track, there is no obvious technical
peculiarity, but the tones are simply very diverse, involving different open strings and
also different articulation between the tones, so even the training of the oracle dictionary
is problematic.

Generally, for instruments with inconsistent spectral characterics, the method from [20]
may be at an advantage since it prunes and randomly reinitializes parts of the dictionary in
regular intervals; so, given enough tries, it can reach an appropriate dictionary by chance,
even if it is potentially suboptimal with respect to the loss function.

4.3. Duan et al.

In [18], a number of original samples are used. As we mentioned, their algorithm has
the unique ability of separating a representable instrument track out of a mixture with a
non-representable residual, which can, for instance, be a singing voice. Since our algorithm
is not designed for such signals, we selected the samples for which all the instruments
can be represented. In total, these are one sample with acoustic oboe and euphonium, one
sample with synthetic piccolo and organ, and a third sample with a synthetic oboe track
added to the previous sample.

The problems with these samples are that they have a different sampling frequency
( fs = 22.05 kHz) and they are also very short. Whereas in [20], the signals were converted
to a different sampling frequency as a preprocessing step in order to reduce the loss of
resolution due to smoothing, we do not have this problem here. While we keep the value
of ζ from (9) constant in terms of absolute units, the relation to the sampling frequency
consequently changes to ζ fs = 470.4. The frequency constant changes proportionately
with the sampling frequency to β = 1.794 433 593 75 Hz. Since the samples are short, we
choose an even smaller time constant compared to (9) by setting α = 16/ fs ≈ 0.73 ms in
the acoustic sample and α = 128/ fs ≈ 5.80 ms in the synthetic ones, each with α̃ = α/4 for
training. The results are displayed in Table 4.
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Table 4. Comparison of the separation algorithms on the data by [18]. Instruments labeled as “s.” are
synthetic, those labeled as “a.” are acoustic. Best numbers are highlighted.

Method Instrument SDR SIR SAR
Oboe (a.) 9.6 47.2 9.6

Euphonium (a.) 8.7 33.7 8.7
Piccolo (s.) 17.2 36.5 17.2
Organ (s.) 14.3 50.3 14.3
Piccolo (s.) 6.8 22.1 6.9
Organ (s.) 7.3 19.2 7.7

Ours

Oboe (s.) 8.3 46.3 8.3
Oboe (a.) 18.6 33.6 18.8

Euphonium (a.) 14.7 31.5 14.7
Piccolo (s.) 11.2 25.9 11.3
Organ (s.) 10.1 20.7 10.5
Piccolo (s.) 4.2 24.8 4.3
Organ (s.) 6.0 20.0 6.3

[20]

Oboe (s.) 5.3 12.4 6.4

[18]

Oboe (a.) 8.7 25.8 8.8
Euphonium (a.) 4.6 14.5 5.3

Piccolo (s.) 14.2 27.9 14.4
Organ (s.) 11.8 25.1 12.1

Piccolo (s.) 6.5 20.0 6.7
Organ (s.) 6.6 17.3 7.1
Oboe (s.) 9.0 21.9 9.2

While the results for the acoustic sample are better than in the original publication,
they are still not nearly as good as those in [20]. Our explanation is that while the time
resolution of the spectrogram is almost as high as that of the time-domain signal (α̃ = 4/ fs),
there is still just not enough data in the sample to train the neural network, and thus
hand-crafted methods are at an advantage.

By contrast, our method delivers very good results with synthetic instruments, clearly
and universally outperforming the other methods on the sample with two instruments and
providing the best average performance on the sample with three instruments.

5. Conclusions

We have developed a blind source separation method that unmixes the contributions
of different instruments in a polyphonic music recording via a parametric model and a
dictionary. The model parameters are predicted by a deep convolutional neural network,
and with respect to those that do not possess a useful backpropagation gradient, we use
the policy gradient instead.

Unlike other algorithms, ours operates directly on the complex output of the STFT,
which is linear and preserves the phase. Rather than using spectral masking, we let the
network give a direct prediction for the complex amplitudes of the harmonics.

In general, the algorithm exhibits very good performance on a variety of samples. It
is especially dominant in terms of SIR, which is relevant since eliminating cross-talk is
the main objective in separation. We attribute this to the use of a complex-valued direct
prediction for the individual instruments that can properly handle interference between
the instrument tones in the spectral domain. Such interference is particularly prevalent
in synthetic samples, on which the performance of our algorithm surpasses that of the
competing methods. It also clearly outperforms the other methods on the sample with the
acoustic piano, which poses the challenge of detecting tones with inharmonicity.

As is usual with blind separation, however, problems arise when the structural as-
sumptions are not satisfied. In two samples from the URMP database, there was one
instrument each whose sound in the recording varied too much to be accurately rep-
resented by the dictionary. While we found that using oracle dictionaries, satisfactory
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separation can be achieved, these dictionaries are not attained as the result of training, even
when they are supplied as the initial value.

Due to the use of neural networks, our approach is very flexible with respect to the
choice of the loss function. In the spirit of blind separation, we chose the weights for the
respective distances such that they constitute a reasonable comprise for all the samples
on which we tested them, but this choice is not necessarily optimal for the individual
samples. While a linear combination is the most straight-forward way to account for all the
considered distances, a non-linear mapping could potentially be better. Moreover, even
though we have not found any distance functions yielding better performance than the
ones we use, more experiments could be conducted.

With our approach, we hope to provide a blueprint for the combined use of backprop-
agation gradients and policy gradients in the application of neural networks on non-convex
parameter identification problems.
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