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Abstract: As digital instrumentation in Nuclear Power Plants (NPPs) is becoming increasingly
complex, both attack vectors and defensive strategies are evolving based on new technologies
and vulnerabilities. Continued efforts have been made to develop a variety of measures for the
cyber defense of these infrastructures, which often consist in adapting security measures previously
developed for other critical infrastructure sectors according to the requirements of NPPs. That
being said, due to the very recent development of these solutions, there is a lack of agreement or
standardization when it comes to their adoption at an industrial level. To better understand the state
of the art in NPP Cyber-Security (CS) measures, in this work, we conduct a Systematic Literature
Review (SLR) to identify scientific papers discussing CS frameworks, standards, guidelines, best
practices, and any additional CS protection measures for NPPs. From our literature analysis, it was
evidenced that protecting the digital space in NPPs involves three main steps: (i) identification of
critical digital assets; (ii) risk assessment and threat analysis; (iii) establishment of measures for NPP
protection based on the defense-in-depth model. To ensure the CS protection of these infrastructures,
a holistic defense-in-depth approach is suggested in order to avoid excessive granularity and lack of
compatibility between different layers of protection. Additional research is needed to ensure that
such a model is developed effectively and that it is based on the interdependencies of all security
requirements of NPPs.
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1. Introduction

The digitalization of many of today’s Critical Infrastructure (CI) sectors has been
extended to nuclear power plants (NPPs). The main control rooms of NPPs have integrated
new digitalized human–system interfaces to facilitate the previously paper-based work and
analog controls used by personnel [1]. Nonetheless, the digitalization of Instrumentation
and Control (I&C) systems and the adoption of open-system architectures have escalated
the threat of cyber attacks into a serious CS issue [2].

One of the most well-known cyber attacks against NPPs in the last decade is the cyber
warfare weapon known as Stuxnet [3]. According to reports, hundred of thousands of
computers in multiple countries were affected by this worm attack, with 58% of the infected
systems being located in Iran [4]. Stuxnet used intermediary devices, such as USB sticks,
to gain access to the victim systems. It has been reported that almost one-fifth of Iran’s
nuclear centrifuges have been damaged by the attack [5].

To tackle cyber threats affecting NPPs and to prevent attacks similar to Stuxnet from
happening, safety regulations and standards have been published for digital safety system
development and protection [6] in order to be used to protect NPPs’ Critical Digital Assets
(CDAs), which are the assets that are fundamental to the functioning of the nuclear plant
and, therefore, are most sensitive to cyber attacks [7]. An example of a CS plan and related
activities for NPP protection is shown in Figure 1.
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Figure 1. CS plan and activities for NPP protection, from “Implementation of cyber security for
safety systems of nuclear facilities” by Park, J.; Suh, Y.; Park, C., 2016, Prog. Nucl. Energy, 88, 88–94.
Copyright 2021 by Elsevier [6].

The United States Nuclear Regulatory Commission (USNRC) has published various
regulatory guidelines and specific guides for the design and construction of nuclear plant
facilities that are internationally referenced. CS risk assessment practices involving system,
asset, threat, vulnerability risk analysis, and intrusion tests [8,9] to reduce the number of
vulnerabilities and potential damage have also been developed and proposed.

The definition of standards and policies and the installation of security software alone
are often not sufficient to ensure the security of nuclear facilities, or of any other critical
infrastructure. In fact, many of the recent CS incidents were linked to human carelessness
and unpreparedness of the personnel in detecting and preventing cyber attacks.

A great deal of research has been done to demonstrate the correlation between systems’
security and the human factor. The authors of [10] showed in their study how a number
of personality traits and attitudinal predispositions, such as impulsiveness, can affect an
individual’s ability in CS assurance. It was suggested by the authors that to address this
issue, focused training that accounts for the human attributes should be given to personnel.
The authors of [11] highlighted the importance of effective communication among individ-
uals in attaining safety and security in an NPP. To achieve this, they suggested using an
integrated training approach based on consultation with experts in each relevant discipline
on a continuous basis.

All of these procedures and others that will be discussed in this work are defined herein
as CS measures for NPP safety and security, meaning any type of method or instrument
that has been developed and applied for NPP CS. Specifically, these measures include all
types of CS procedures, tools, or other instrumentation, such as Intrusion Detection and
Protection Systems (IDPSs), CS awareness and training campaigns, and any other type of
solution used for CS assurance in NPPs.

Unfortunately, the lack of a comprehensive analyses and evaluations of current mea-
sures for NPP CS presents a challenge in the development of an effective and comprehen-
sive CS framework. Additionally, current research focused on surveying the literature on
solutions for NPP CS is noted to have proved very limited information on the attributes of
each proposal.

For this reason, in this work, we will be describing all of the CS measures proposed
in the literature for NPP protection based on their characteristics. This will later allow for
comparisons of these solutions and identification of gaps and challenges.

In more detail, we reviewed the literature to identify the state of the art in standards,
guidelines, and other security approaches developed for NPP CS. Furthermore, we an-
alyzed all of these measures to understand the interdependencies among them and the
current limitations, as well as to suggest potential improvements. Aside from providing
an up-to-date analysis of NPP CS measures, this work is meant to serve as a basis for the
development of holistic CS frameworks for NPP protection.

The rest of this paper is organized as follows: In Section 2, we describe the research
method used to conduct the literature review. Then, in Section 3, we discuss competing
or related surveys and other works discussing NPP CS, noting their limitations. Next, in
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Section 4, we present the results of our literature review. As will be shown, the results
have been grouped into three categories: Critical Digital Asset (CDA) discovery methods,
risk assessment and threat analysis methods, and, finally, additional measures for NPP
protection. Next, we summarize the findings from the literature review and analyze the
results in Section 5. Finally, we provide closing remarks and future directions for research
in Sections 6 and 7, respectively.

2. Research Method

The research method used to conduct this SLR is based on the guidelines proposed
by [12] in the PRISMA statement and by [13] for conducting structured literature reviews
in computer science fields. The authors of [13] indicated three main phases that should
compose a review: (i) planning, (ii) conducting, and (iii) composing.

Each phase can be divided into steps. During the planning phase, the key steps to
conduct are identifying whether there is a need for a review and, in that case, commission-
ing the review, defining the research questions, and developing and evaluating a review
protocol. During the conducting phase, the focus should be on identifying articles to
be included in the review through an initial search, and later, a quality assessment and
screening. Once the final list of articles is obtained, data extraction and synthesis should be
conducted. Finally, in the composing phase, the review should be formatted and evaluated.

This structure was also adopted for our work, with the integration of some other items
to include when reporting a systematic review, as indicated in [12].

2.1. Objectives and Scope

The objective of this work can be summarized as follows: to identify measures and
solutions proposed for Nuclear Power Plant (NPP) CS and the interdependencies among them,
where CS “measures” are defined as all types of CS procedures, tools, or other instrumen-
tation used for NPP CS. To achieve this goal, we conducted a systematic review to identify
articles discussing CS standards, guidelines, best practices, and any other CS measures and
solutions for NPP CS. Furthermore, we tried to analyze the attributes and factors that link
these solutions together. More precisely, we investigated the beneficial attributes of each of
these solutions to understand how these attributes can be used in a complementary way to
provide comprehensive, effective, and multi-layered CS assurance in NPPs. The various
objectives of this work can also be encapsulated as providing an answer to the following
research questions:

– RQ1: What measures and solutions have been proposed in the literature for nuclear
power plant CS?

– RQ2: What are the interdependencies among the measures and solutions?
– RQ3: How can these measures be utilized and implemented in NPPs to offer compre-

hensive and complementary CS?

2.2. Review Protocol

In order to make this work reproducible and expandable, a review protocol was
established based on the recommendations for systematic reviews suggested in [12]. The
protocol defines search methods for the identification of the studies, eligibility criteria,
and data extraction and data analysis methods; these are described in detail in the follow-
ing section.

2.3. Literature Search

To identify and collect scientific articles, three online databases were consulted: IEEE
Xplore, Scopus, and ACM Digital Library. In order to maximize the number of results
that may be pertinent to the goal of this study, only one query of keywords was utilized,
namely, “CS + nuclear”. Table 1 shows the number of results obtained by this search in
each of the three databases.
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Table 1. Results of the literature search from each online database.

Scopus IEEE Xplore ACM Total

CS + Nuclear 207 45 281 533

2.4. Practical Screening, Quality Assessment, and Selection of Studies

A set of inclusion and exclusion rules were put in place to screen the results of the
literature search:

– Only articles written in English were selected;
– Only scientific articles published in conferences, workshops, and journals were selected;
– Articles published before January 2010 were excluded;
– Duplicates found through multiple databases were excluded;
– Articles that were not accessible to the author were excluded.

Any article that did not include the keywords “CS” and “Nuclear” in its title, abstract,
or introduction was also excluded.

The number of articles remaining after two rounds of screening was 59.
After the screening, one last round of quality assessment was conducted. During this

quality assessment, any article that did not pertain to the initial topic of “CS measures
for NPP protection” or did not provide enough detail regarding suggested measures was
excluded. After the quality assessment, the number of remaining articles was 36.

2.5. Data Extraction and Monitoring

We later developed a data extraction review form, which was utilized to map the
articles selected for the review and the key findings described in each of these. The
following attributes were selected for the review form:

– Title and Year: title of the paper and year of publishing;
– Authors: list of contributing authors;
– Domain: area or domain of focus of the article;
– Proposed/Discussed Method: CS measures proposed or analyzed by the authors;
– Description: brief description of the content of the paper;
– Conclusions: final conclusions and outputs presented by the authors;
– Discussion and Review: Our own analysis and evaluation of the content of the individ-

ual papers. This included any criticism and suggestions for potential improvements.

2.6. Composing the Review

The final step consisted in writing the review, which was conducted by using the
method described in [12]. The topics included in the report are shown and summarized in
Table 2.

Table 2. Sections and topics included in the composition of the systematic review based on the checklist of items proposed
in [12].

Section/Topic Checklist Item

– Title, abstract, and structured summary;
– Research method;
– Synthesis of data items;
– Discussion and analysis of data items;
– Synthesis of results of analysis;
– Limitations and risks of bias;
– Conclusion and future work.

– Provided a structured summary including background, objectives, and methods;
– Indicated research methods, including protocols, screening and quality assessment

rules, and data extraction formats;
– Provided a summary of the data extracted from the literature, including results,

discussion, and limitations;
– Established attributes for comparison between the data extracted from each article and

conducted a comparative analysis of the data;
– Presented a synthesis of the main findings of the analysis of the data items;
– Discussed any limitations at the study and outcome level and specified any assessment

of risk of bias;
– Provided a general interpretation of the results in the context of other evidence and

implications for future research.
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3. Related Work

To the best of the author’s knowledge, only one work in the literature has reviewed
CS measures for NPPs.

The authors of [14] discussed the history of the implementation and application of CS
in nuclear power plants. A total of 51 studies on the subject were reviewed by the authors.
The authors cited regulations, policies, guidelines, CS frameworks, and software security
measures as some of the most adopted strategies for CS assurance in NPPs. A list of major
issues to be addressed was pointed out by the authors:

– Development and testing;
– Secure design;
– Biological approaches to security;
– Usable security;
– CS metrics;
– Anomaly and misuse detection systems;
– Policy security;
– Cyber retaliation;
– CS related to legal issues;
– The economics of CS;
– In security cyber defense;
– Spam dealing.

While the authors raised relevant criticisms of software and CS hazards, their work
was limited in providing an understanding of the interdependencies among preven-
tive measures.

In addition to this work, a number of reviews were identified that focused on CS for
other sectors of critical infrastructure. Many of the requirements and measures observed in
these works can be applicable to the nuclear domain or could be adapted to serve as cyber
defense tools for NPPs’ I&C systems.

For example, the authors of [15] conducted a review of Smart Grid CS. In their work,
the authors reviewed and categorized solutions based on the five categories that make
up different components of the Smart Grid: Process Control System (PCS) Security, Smart
Meter Security, Power System State Estimation Security, Smart Grid Communication
Protocol Security, and Smart Grid Simulation for Security Analysis.

The authors of [16] conducted a systematic review of countermeasures available to
combat internal threats in healthcare critical infrastructure. According to their analysis,
there was high heterogeneity across raw data, which indicated that the effectiveness of
security measures varied significantly and that no single solution was able to totally
mitigate an insider threat. For this reason, the authors suggested that a combination
of security measures be utilized, which should grant an additional layer of protection
according to the defense-in-depth model. The authors concluded by stating that significant
work still needs to be undertaken to create more effective IDPS techniques. Further work
also needs to be undertaken to create a model of threat mitigation that takes into account
an unknown malicious insider, as well as to understand the nature of insider threats so
that new technologies can be developed around potential further findings.

The authors of [17] conducted a survey of the risks, types of systems involved, and
additional information used to develop and maintain a robust process control system for
SCADA systems in critical infrastructure. The authors stated that an essential element and
key factor of developing and implementing an SCADA CS program is the selection and
implementation of a risk-based assessment method.

In Table 3, a summary of the recommendations from the authors of the above works
is given, together with the domains of application and challenges/shortcomings noted in
their works.
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Table 3. Recommendations, challenges, and shortcomings of related survey works.

Work Domain Recommendations Challenges Shortcomings

Khattak et al. [14] NPP CS Establish SC framework
composed of policies, CS
team, security
instrumentation, and a
CS plan.

Lack of research and
experience in NPP digital
security and process
control frameworks.

Work heavily relies on the
outdated and regional RG
1.152 US regulation. The
proposed NPP security
framework is not very
cohesive and is described at a
high level of abstraction for
various components.

Baumeister [15] Smart Grid security Used IDS in smart meters
and other Smart Grid
components; secure
communication
challenges; used a
simulation to evaluate
Smart Grid security.

Challenges due to the
physical nature of Smart
Grids, which causes them
to be spread over large
areas and be composed of
many pieces. There is a
need for advancements in
current Smart Grid
simulators.

The work describes various CS
solutions for Smart Grids in a
granular fashion instead of
proposing a holistic model.

Walker-Roberts et al. [16] Healthcare CI security Use of multiple security
measures at once. Ensured
that confidential
information is accessible
only to authorized
personnel. Improved the
accuracy of current
instrumentation.

Current machine learning
techniques used to predict
and prevent attacks and
incidents are not accurate
enough. Algorithms
need optimization.

The work only considered
certain aspects of healthcare CI
CS, excluding others, such as
personnel unawareness and
lack of sophisticated policies.

Henrie [17] SCADA CI security Mitigation approach based
on policies, procedures,
technological solutions,
standards, and best
practices.

It is hard to prevent
unintentional internal
incidents. Risk analysis
techniques sometimes do
not consider the ratio of
incident likelihood to
possible damages.

While the work does suggest a
well-structured and
multi-layered mitigation
approach, it does not describe
the layers with enough detail
to aid in developing an
appropriate framework.

As can be noted from Table 3, many of the works described above provided limited
descriptions of the analyzed solutions; this makes it challenging to compare them to
each other, but also allows the development of a well-structured framework. For this
reason, in the following sections, we will be describing all of the CS measures proposed
in the literature for NPP protection based on their characteristics. This will later allow for
comparisons of these solutions and identification of gaps and challenges.

4. Literature Review

The results of our literature review and the final selection of articles are depicted in
Table 4.

After analyzing and extracting data from the articles, it was evidenced that these
were distinguishable into three different categories of CS measures based on the focus of
their findings: (i) Critical Digital Asset (CDA) discovery methods, (ii) risk assessment
and cyber attack taxonomies, (iii) protection measures for NPPs’ I&C systems against
vulnerabilities and attacks. Based on this categorization, the selected works are described
in further detail in the upcoming sections to better understand and compare the solutions
proposed for each category.
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Table 4. Domain and proposed CS measures of the works included in the literature review.

Work Domain Proposed Measure

Kim et al. [18] Digital plant protection system; plant
monitoring annunciator system CS testbeds.

Symonov and Klevtsov [19] Cyber threats in an NPP regulatory framework
in the area of computer security of NPPs

Protection plans and attack mitigation; normative
document.

Wang et al. [20] NPPs’ vulnerable components and
failure points

Monte-Carlo-based exploration framework for
identifying components vulnerable to cyber threats
in NPPs.

Song et al. [21] Technical definition control Analysis of attack vectors and penetration tests.

Chung et al. [22] Digital Instrumentation and Control
(I&C) Systems

Implementable instrumentation and control system
analysis model.

Peterson et al. [23] Digital I&C systems Review of past cyber-vulnerability incidents.

Park and Lee [24] Digital I&C Systems Quantitative assessment framework for evaluating
NPP risk due to cyber attack scenarios.

Ibrahim and Al- Hindawi [25] NPP modeling and verification
Attack graph modeling for a nuclear power plant
modeled using the Architecture Analysis and Design
Language (AADL).

Soupionis et al. [26] Distributed Control Systems (DCSs)
Simulated the power grid network (including
nuclear plant), but emulated the Information and
Communications Technology (ICT).

Cho and Woo [27] Cyber terror attacks Defense-in-depth concept.
Shin et al. [28] Digital equipment and digital systems CS risk evaluation model.

Kim et al. [29]
Industrial Control Systems (ICSs) and
Supervisory Control and Data Acquisition
(SCADA)

Template for cyber attack taxonomy.

Cho et al. [30] Digital and cyber-based systems Levels/layers of protection to manage
cyber/physical security.

Kim et al. [7] Digital assets Criteria for identifying digital assets.
Kim et al. [31] CS incident affecting the NPP I&C CS vulnerability checking system.
Cho and Woo [27] Nuclear terror Study of twelve nuclear terror cases.

Kim [2] Digital control systems Countermeasures for protecting nuclear power
plants against cyber attacks.

Gupta et al. [32] Electrical Power System (EPS) design and
implementation

Cyber threat scenarios for the EPSs and EPS
interfaces.

Lee et al. [33] Digital I&C systems’ regulatory documents
Quantitative method for evaluating the efficacy of
security controls for DI&C systems in NPPs based on
the intrusion-tolerant concept.

Vaddi et al. [34] Digital I&C Systems Event classifier for classifying abnormal events.
Jharko et al. [35] Digital I&C Systems Early fault diagnostic system (EDS).
Zhao et al. [36] Risk assessment in NPPs Finite-horizon semi-Markov general-sum game.
“IEEE Standard Criteria for Security
Systems for Nuclear Power Generating
Stations” [37]

NPP design requirements Criteria for the design of an integrated security
system for nuclear-power-generating stations.

Adams et al. [38] CS attack prevention in NPPs Cyber emulation of a digital control system.

Son et al. [39] Digital assets

Approach to comparing and analyzing various
methods used in the CS field to discover
complementary points for the application of CS to
critical systems in NPPs.

Boring et al. [40] Role of reactor operators in detecting and
mitigating cyber attacks in NPPs Cyber concept of operations.

Park and Lee [41] Digital assets Importance analysis method for cyber attacks on
an NPP.

Khattak et al. [14] NPPs CS Review of CS applications in nuclear power plants.
Zou [42] NPPs CS Security risk analysis of NPPs.

Zhang and Coble [43] Digital I&C Systems
Localized kit for key equipment in a process as a
complementary detection method to improve the
robustness of key equipment under cyber attacks.

Jharko [44] Faults of safety-critical software
Approach based on the “safety functions” for
software verification of upper-level systems of
automated process control systems.

Liu et al. [45] Digital I&C Systems General configuration and functions of a digital I&C
system of an NPP.

Kim et al. [46] Digital I&C Systems
Analysis of the effects of safety system unavailability
on plant safety and human actions based on
emergency operating procedures.

Jones et al. [47] NPPs CS Systems-engineering-focused approach for
addressing NPP cyber threats.

Barker and Cheese [48] NPP CS Diode technology for providing corporate users with
real-time plant data.

Li et al. [49] Digital I&C Systems
Specific approaches to implementing a framework
for I&C systems for prevention, detection,
and response.
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4.1. Critical Digital Assets in Nuclear Power Plants

Prior to developing a risk-informed CS strategy, an analysis of the system should
be conducted to identify significant CDAs. Digital assets are classified and managed
as CDAs that have safety, security, and emergency preparedness functions if they are
the most sensitive to cyber attacks in terms of the functioning of the plant. On average,
CDAs represent 70–80% of all digital assets, and applying and managing the same security
control for all assets is inefficient [7]. The identification of these assets is necessary for the
development of CS systems, which will be dependent on numerous factors, such as attack
paths, methods, and potential target systems [41].

In the US, RG 5.71 is the regulatory guide that has been put forth to provide a frame-
work to aid in the identification of these CDAs. The goal of this regulatory guide is to
harmonize the set of security controls (based on NIST CS standards) that address potential
cyber risks to CDAs.

RG 5.71 defines a level-based defensive architecture and a set of security controls
addressing the potential cyber risks of CDAs. More specifically, RG 5.71 defines different
levels of protection and divides the security controls into three categories: (1) technology,
(2) operation, and (3) management.

That said, RG 5.71 only offers a general overview of tools and criteria for the identification
of these CDAs. For this reason, much research has been conducted to develop and discuss
methods in order to aid in the identification of assets that should be considered critical.

The authors of [7] presented criteria for identifying digital assets, which were classified
as Vital Digital Assets (VDAs) by the authors. Their proposed criteria for selecting VDAs
followed a step-based procedure. The procedure consisted of the following steps: first,
gathering information for selecting VDAs; then, selecting initial events that could be caused
by cyber attacks, and finally, selecting and analyzing accident mitigation facilities and
selecting VDAs from target sets. The authors found that it is more economically and
operationally efficient to manage the application of graded security controls to VDAs than
to apply equivalent security controls to a number of CDAs. The authors concluded by
indicating that further research should be conducted to understand how to apply and
regulate the VDA approach in actual nuclear power plants.

The authors of [39] suggested a selection of complementary points of CS to be used
to understand the requirements of nuclear regulations and to find complementary con-
siderations in nuclear CS. The authors believe that further work in this direction could
aid in resolving the nuclear CS issues and could help discover the deficiencies in nuclear
CS schemes.

4.2. Risk Assessment and Threat Analysis for NPPs

The CS guides and regulations formulated by international organizations and coun-
tries, such as RG 5.71, mostly provide general guidance for CS risk assessment.

According to [19], international regulatory guides present a series of shortcomings:

– Lack of assessment methods for computer security conditions and identification of
security vulnerabilities;

– Lack of assessment methods for computer risks and threats;
– The development stage does not consider computer security issues;
– Lack of consideration for aspects of training and attestation of personnel concerning

computer security.

The authors of [50] suggested classifying attacks by their format/character:

– Information-gathering attacks;
– Active attacks to disable or compromise the proper functioning of one or several

computers or other devices critical to a facility’s safety or security;
– Concurrent modes of attack.

The authors of [23] argued that the vulnerability assessment methodologies proposed
by the US Nuclear Regulatory Commission (NRC) require several key additions and
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changes to increase their efficacy. Some of the changes suggested by the authors include
conducting and storing a comprehensive inventory of digital systems and components,
conducting more penetration testing, using vulnerability databases and analysis software,
and improved use of vulnerability assessment methods.

The authors of [19] suggested categorizing threats to NPPs into cyber threats at the
stage of development of I&C systems and cyber threats at the stage of operation of I&C
systems at NPPs. Additionally, these threats could also be sub-divided based on whether
they are internal or external.

To identify possible risks and overcome the gaps found in the current regulatory
frameworks, many vulnerability assessment methodologies have been proposed in the
literature. A potential security risk analysis of NPPs should include probability of attack
by the adversary, attack purpose, and attack ability [42].

To evaluate CS risk in accordance with regulatory guides such as RG 5.71, the authors
of [28] proposed a CS risk model using a Bayesian Network (BN) for a Reactor Protection
System (RPS) of a nuclear reactor, as well as a methodology for applying analytical results
from a BN model to an event tree model. The model was developed to overcome the
limitations of previously used fault trees as a Probabilistic Safety Assessment (PSA) method.

Another risk assessment framework was proposed by [24]. The framework proposed
by these authors evaluates risk by defining the difficulty and consequences of a cyber
attack, basing assessment methods on Bayesian belief networks and probabilistic safety
assessment methods. The authors demonstrated the feasibility of the proposed framework
by quantitatively evaluating several cyber attack scenarios based on the developed models
for difficulty and consequences as a case study. Finally, the authors suggested that the
framework may be used for risk-informed regulation of cyber attack scenarios and CDAs
with quantitative goals, as well as risk-informed CS strategies and related evaluation
efficiencies.

According to RG 5.71, periodic checking of the I&C systems should be conducted to
identify any possible CS vulnerabilities. For this reason, CS vulnerability checking systems,
such as the one proposed by [31], should be used to reduce the impact of vulnerabilities, as
well as to ensure compliance with the automatic check regulatory guidelines. A fundamen-
tal requirement of these scanning tools is that they should not generate excessively high
network traffic or overhead on the objects to be scanned.

The work by [45] determined the levels of CS protection for the subsystems and
equipment of a digital I&C system of an NPP. These levels were determined using the
CS defense-in-depth model, an example of which is shown in Figure 2. The authors tried
to identify the potential CS risk factors, namely, assets, threats, and vulnerabilities. The
proposed risk analysis was then carried out each of the identified levels.

The authors of [41] proposed an importance analysis method for cyber attacks against
an NPP using the Probabilistic Safety Assessment (PSA) method. The authors started by
identifying possible cyber attacks with failure modes. The authors demonstrated the pro-
posed PSA method with two case studies. In the case studies, the risks of two cyber attack
scenarios were quantitatively evaluated with two risk metrics: Core Damage Frequency
(CDF) and Conditional Core Damage Probability (CCDP). The authors concluded that by
identifying significant CDAs and classifying cyber attacks using quantifiable measures, it
should be possible to develop a defense strategy against cyber attacks on NPPs that is both
reliable and efficient.

The authors of [51] presented a qualitative methodology for CS assessment that is
appropriate for nuclear I&C systems. The authors conducted an assessment based on a
questionnaire comprising 162 questions divided into five categories. An evaluation of the
questionnaires was then conducted by weighting each response depending on whether the
results showed the overall CS status for each category, and they conducted an evaluation
of the system as a whole. The authors suggested that this methodology could serve as a
CS index at an initial phase of the system development for the CS assessment of nuclear
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I&C systems. Nonetheless, further research needs to be conducted to assign detailed CS
countermeasures in each category.

Figure 2. Example of the layered security architecture of the defense-in-depth model.

Possible attacks may also be categorized into taxonomies to facilitate both their identi-
fication and preventive action planning. The authors of [7] highlighted that it is difficult
to study cyber attack taxonomies for NPPs considering the characteristics of ICSs and the
inadequacy of research compared to such issues in information technology. The authors
suggested a template for a cyber attack taxonomy based on the characteristics of NPPs,
exemplified a specific cyber attack case in the template, and proposed a systematic coun-
termeasure selection strategy by matching the countermeasures with CDAs and security
control in RG 5.71. The taxonomy included the attack procedure, attack vector, attack
consequence, vulnerability, and countermeasure selection.

The authors of [34] noted the importance of correctly classifying cyber attacks and
distinguishing them from fault-induced safety events. For this purpose, the authors devel-
oped an event classifier to classify abnormal events in NPPs as either fault-induced safety
events or cyber attacks. While the classifier was proven to be successful in distinguishing
different types of abnormal events, more work is needed to enable the classification of
combinations of safety events and cyber attacks.

The authors of [20] proposed a Monte-Carlo-based exploration framework for gen-
erating cyber attack scenarios in Cyber–Physical Systems (CPSs). The method takes into
account various failure modes of attacked components of the CPSs and outputs the possible
effects of the cyber threats on the system. According to their analysis, actuators are the most
vulnerable CPS components, as their failures may lead to the loss of system functionality
and integrity.

The authors of [22] proposed a method for calculating the degree of risk to a nuclear
reactor’s systems based on multiple factors for the purpose of safety. The authors presented
a security threat mapping table, which was used to define and specify security problems.
An important observation noted by the authors is that to create security profiles, environ-
mental elements, security assumptions, and the organization’s security policy must be
analyzed. The model developed by the authors has already been implemented in reactor
protection systems that are operating in the Republic of Korea. Nonetheless, additional
research on I&CS protection profiles and security functions is suggested.

A possible way to study attack vectors is by simulating threat scenarios both theoreti-
cally and with the aid of simulation platforms. The authors of [32] presented three threat
scenarios related to the Electric Power Systems (EPSs) of NPPs. This type of modeling is
believed by the authors to be a useful input for security analysis and closed-loop virtual
validation via simulation and Fault Tree Analysis (FTA).
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Another effective way of understanding threats to NPPs is by modeling attack scenar-
ios or attack graphs; this can be done by either taking the security-related details of the
NPP system into consideration or not [25].

The authors of [21] described methods of defining attack vectors in NPP systems.
Additionally, techniques for reviewing and selecting requirements in RG 5.71 were also
described. Finally, methods of integrating the results of the previous techniques to identify
possible technical security controls to counter respective attack vectors were also described.
To conduct the attack vector analysis process, analysis of the system architecture and of
attack vectors, modeling of the target system, assignment of the security level of its CDAs,
and investigation of the known vulnerabilities of these CDAs are all suggested.

The authors acknowledged that further studies are needed to research the details of the
practices of those control requirements and to develop security devices and technologies
best fitted to NPP I&C systems.

Study of attack procedures, vectors, and consequences should not be conducted only
on a theoretical basis, but should be supported by real-life occurrences. An example of such
a study is the analysis of the cyber terror attacks against NPPs that occurred in South Korea
conducted by [27]. This type of analysis aids in understanding the factors motivating the
attackers, and also gives a concrete outlook of the consequences of successful attacks on
these critical systems.

Another study that used historical incident analysis as a basis for developing a quan-
titative CS assessment method was discussed in [52]. The authors proposed organizing
initiating threats and their bounding groups for NPPs to determine threats based on actual
industrial incidents. It was also suggested to apply the same criteria to Probabilistic Safety
Assessments (PSAs) in order to describe scenarios and models of NPP cyber risk. Nonethe-
less, the authors argued that the quantification of the probability of each scenario should
also be conducted in order to understand the likelihood of each attack.

4.3. Measures for NPP Protection

After obtaining an understanding of the threats and vulnerabilities that afflict the
digital systems of NPPs, it is necessary to establish measures to protect them from computer
threats and techniques for the mitigation of cyber attacks. As indicated by [30], the
cyber/physical security of NPPs may require the management of different levels/layers of
protection in accordance with the standard set by RG 5.71. According to [19], standards
of minimum acceptable risks are challenging to develop due to the constant progress
and modernization of information technology and digital systems, in addition to the new
threats and tools that are constantly being developed. For the same reason, standardized
measures for protection from or mitigation of cyber attacks are just as arduous to define.

In the series of documents published by the International Atomic Energy Agency
(IAEA) [50], it was suggested that the basic principle to follow to protect against computer
threats is the use of the defense-in-depth model. This model is based on the idea of
using multiple layers of often independent protection measures to guarantee multi-level
protection without single points of failure.

The authors of [19] described an action list of activities to conduct during the devel-
opment, implementation, maintenance, and improvement of computer security in NPPs
in accordance with the procedures defined in the international standards and regula-
tory guides.

Approaches to CS threat prevention, detection, and response of (IT) systems that
have proven to be successful have also been suggested to be used for I&C systems of
NPPs. Naturally, differences in real-time operational requirements, distinct communication
protocols, and requirements for continuous availability of the systems need to be considered
when adapting these approaches for I&C systems in NPPs.

The authors of [49] proposed specific approaches to implementing a framework for
prevention, detection, and response for I&C systems. For prevention, the authors suggested
monitoring and auditing I&C systems to meet the real-time requirements. For detection,
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an intrusion detection approach based on physical data was proposed in order to deal with
the distinct communication protocols. Finally, for response, the intrusion-tolerant control
was proposed to maintain continuous availability. According to the authors, this overall
solution, when combined with a safety design principle, should provide an overall solution
for CS of I&C systems.

In addition to to adapted frameworks for CS, a number of approaches specifically
developed for the CS of I&C systems of NPPs have appeared in the literature.

The authors of [35] proposed a framework for CS assessment using an Early Fault
Diagnostics System (EDS) during the operational stage. The EDS aims to prevent the evo-
lution of the incident/accident by using a troubleshooting process in any plant operational
mode. This would allow plant operators to identify any significant deviation of plant
parameters from their normal value, well before reaching any undesired threshold that
would potentially lead to a prohibited plant state, together with the cause that generated
the deviation.

The authors of [47] laid out a new systems-engineering-focused approach for ad-
dressing threats to NPPs, which they named System-Aware Security (SAS) for NPPs. The
authors theoretically demonstrated a possible application of the methodology in order
to address cyber attacks employed via embedded infections in NP systems. The authors
highlighted that the approach still has several limitations, and further work in component
integration and security analysis may be necessary to improve the model.

To improve the robustness of key equipment under cyber attacks, the authors of [43]
proposed a localized kit for key equipment in a process as a complementary detection
method. The authors highlighted that the proposed model reduced the total number of
variables used and improved the computational speed when compared to other models.

The authors of [33] proposed a quantitative method for evaluating changes in CS
when specific CS controls are applied in NPPs. The amount of improvement achieved by
security controls was defined as the reduction of the probability that the system would
fail to protect essential functions from a cyber attack. Additionally, the authors applied
the concept of the intrusion-tolerant system. According to this concept, the tolerance to
intrusion of a system is defined as the extent to which the system is able to provide the
minimum level of safe operation when facing unexpected intrusions. The authors then
constructed an event tree with the investigated intrusion-tolerant strategies for the case
of protecting the availability of essential functions. The authors concluded that there still
exist some limitations in estimating the efficacy of CS controls due to the lack of detail in
the methods for obtaining the probability of the detection strategy and the GD strategy.

Many researchers have realized in recent years that the concept of having a multi-
layered CS defense system should not be exclusive to the implementation of safety and
security measures, such as firewalls, intrusion detection systems, and fail-safe safety
systems. It is not wise to expect that these measures will be able to anticipate all attack
vectors and, as such, it is highly recommended that operators are readily responsive when
it comes to detecting and preventing these types of incidents.

The authors of [40] reviewed the role of reactor operators in detecting and mitigating
cyber attacks in nuclear power plants. The authors introduced the idea of a cyber concept of
operations, in which operators treat cyber intrusions in the same way that they would other
hardware faults at the plant. A pilot study was conducted, in which reactor operators were
asked to and succeeded in navigating the plant to a safe state despite cyber spoofing across
multiple scenarios. The findings from the experiments confirmed that having dedicated
operators can help ensure plant resilience to cyber attacks.

By using n-conventional Fault Tree (FT) analysis, the author of kim2017systematic
conducted a study on the effects of safety system unavailability on plant safety and ana-
lyzed human actions based on emergency operating procedures. Based on this combined
analysis, the authors suggested a novel method of systematically developing cyber attack
propagation scenarios, where a cyber attack is linked to its consequences. The analysis
was focused on the operator’s actions and the effects on the system in case of the failure of
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action. Future research should focus on the study of the generation of the initiating event
of a cyber attack, which was not discussed in this author’s work. In addition, operator
behavior should also be analyzed in future studies in order to understand the effects of
different types of training and any other factors that may influence their behavior.

When it comes to evaluating the operator’s ability to successfully respond to malicious
attacks or undesired events, the authors of [38] suggested using a cyber emulation of a
digital control system coupled with a training simulator of a Generic Pressurized Water
Reactor (GPWR). In an experiment set up by the authors, licensed operators were asked
to complete a series of scenarios on the simulator, some of which were purposefully
obfuscated. The results from the experiments showed that even after obfuscating certain
indicators, the combination of security systems and operator actions was sufficient to detect
the attack and protect the system. Limitations in the number of participants and indicator
values should be overcome in later iterations of such experiments to allow for more realistic
evaluations.

To support cyber attack response and effective risk assessment, reduce the risk of
cyber attacks, and improve the resilience of NPPs, the authors of [36] proposed a finite-
horizon semi-Markov general-sum game between a defender and an attacker to obtain
the time-sensitive attack response strategy and the real-time risk assessment in NPPs. By
applying the model and the method to a simplified digital feedwater control system for a
generic pressurized water reactor, the authors showed that the defender’s optimal strategy
varies with different system states and different amounts of time remaining in the game.
The authors concluded that more research must be conducted in order to collect datasets,
understand real-world defender—attacker interactions, and integrate changes in operation
due to malfunctioning or other unexpected occurrences.

Unfortunately, it is not possible to conduct vulnerability tests directly on NPPs; this
is because of the risks of adverse effects, which could provoke serious damages to the
systems and interrupt their functioning. To circumvent this issue, testbeds are often used
to test technical solutions.

The authors of [18] suggested the design of a CS testbed for a Digital Plant Protection
System (DPPS) and Plant Monitoring and Annunciator System (PMAS). Network con-
nectivity was considered an important element for the analysis and design of the cyber
security testbed. Unfortunately, the testbed has yet to be completed. Once completed, the
authors have planned the development of a test to detect malware, such as APT for control
systems, as well as a vulnerability test.

The authors of [26] also presented the implementation of a cyber–physical testbed.
Their testbed included the implementation of two simulated and interconnected Critical
Infrastructures (CIs), namely, a power grid and a nuclear plant. Additionally, the following
components were included in the testbed:

– A simulated power market for providing the cost of the provided energy;
– An actual Programmable Logic Controller (PLC), which is interconnected with a

specific bus of the power network;
– An emulated cyber network that interconnects and controls all of the aforementioned elements.

The novelty of this system comes from interconnecting this diverse range of elements
and, by doing so, aiding the understanding of the consequences of the interdependencies
between the different systems. The authors showed that the effects of network parameters
on a coordinated attack could be significant. The authors are planning to make use of
the implementation to run more advanced experiments, which will include the actions of
real operators in the cyber–physical testing/simulation process. Additionally, they plan
to implement a set of countermeasures to tackle and mitigate the attacks based on the
exchanged signals and their statistical analysis to detect anomalies.

5. Discussion

According to our analysis and the data extraction from the articles selected for this
review, CS of NPPs requires three sequential phases: (i) identifying critical digital assets
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using discovery methods; (ii) establishing and conducting a risk assessment and threat
analysis; (iii) installing a layer of protective measures for NPPs’ I&C systems against
vulnerabilities and attacks.

An equivalent procedure is described in the current standards and guidelines that
define the CS risks, as well as the defensive architectures and security controls necessary to
address these risks, as is the case for the RG 5.71 regulatory guide [19].

The articles discussed in Section 4.1 offered more detailed instruments and methods
for identifying CDAs of NPPs, while in Section 4.2, we analyzed the various methods and
procedures suggested in the literature for risk assessment and threat analysis for NPPs.
Finally, defensive measures for detection and prevention of threats were discussed in
Section 4.3.

One of the main limitations noted during this analysis is that the majority of measures
proposed for NPP CS were not developed using this sequential approach. The lack of
holistic CS cyber defense based on the interdependences of critical assets, risks, and threats,
as well as different layers of protection requirements and results in accordance with the
defence-in-depth model, has been established.

Supplementing software-based security solutions with human competence develop-
ment and readiness has also been found to be lackluster. These two security components
are often developed separately; this limits the complementary aid that each can provide to
both the other component and to the security of the system as a whole.

Limitations to holistic approaches for cyber defense strategies for NPPs were often
motivated by the novelty of research specific to the nuclear domain and its intrinsic
requirements. Many of the models discussed were, in fact, adapted from the IT CS domain
and require further improvement in order to become fully applicable to NPP cyber defense.

6. Conclusions

The CS of NPPs is a growing concern. The digitalization of I&C systems has caused
cyber threats to be as dangerous as physical threats to the functioning and damages that
could be caused to nuclear facilities. In this work, we reviewed the literature to establish the
state of the art in CS measures for NPP protection. More specifically, we highlighted both
standards and regulations, as well as proposals for measures to identify CDAs, analyze risks
and threats, and establish cyber defense mechanisms and measures against these threats.

It has been noted that the development of solutions specific to the nuclear domain has
been mostly a recent focus of researchers, and as such, many of the proposed solutions are
often limited in their functionality or applicability in real-life NPP I&C systems.

Based on the findings of this work, the main challenge in current NPP CS is providing
a holistic security approach based on a layered Defense-in-Depth (DiD) model. While such
an approach is not novel and has, in fact, been adopted in many other industries and CI
sectors, both adoption and research specific to its development in NPPs were found to
be lacking.

Limitations in resources and the novelty of the research area have been identified as
the two main reasons for the current shortcomings.

Nonetheless, researchers are showing continuous efforts to adapt DiD models de-
veloped for different CI sectors to NPP protection, with additional promising software
solutions currently in progress.

7. Future Research

This work presents a theoretical study on current CS measures for NPP protection.
Many of the solutions described in this work have not been validated through experi-
mentation. For this reason, future research should concentrate on both expanding the
capabilities of current proposals and conducting tests to assess both the effectiveness and
applicability of these in the nuclear domain. Additionally, further work should be con-
ducted to harmonize the proposals to be in accordance with a holistic defense-in-depth
model, where requirements are built based on the interdependent security needs and
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objectives of each layer of protection. Finally, it is recommended to continue research that
is focused on improving the performance and reliability of IDPSs, the algorithms used in
risk assessment and communication channel security, and the capabilities and performance
of NPP simulators.
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