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Abstract: Due to impaired mobility caused by aging, it is very important to employ early detection
and monitoring of gait parameters to prevent the inevitable huge amount of medical cost at a later
age. For gait training and potential tele-monitoring application outside clinical settings, low-cost
yet highly reliable gait analysis systems are needed. This research proposes using a single LiDAR
system to perform automatic gait analysis with polynomial fitting. The experimental setup for this
study consists of two different walking speeds, fast walk and normal walk, along a 5-m straight line.
There were ten test subjects (mean age 28, SD 5.2) who voluntarily participated in the study. We
performed polynomial fitting to estimate the step length from the heel projection cloud point laser
data as the subject walks forwards and compared the values with the visual inspection method. The
results showed that the visual inspection method is accurate up to 6 cm while the polynomial method
achieves 8 cm in the worst case (fast walking). With the accuracy difference estimated to be at most
2 cm, the polynomial method provides reliability of heel location estimation as compared with the
observational gait analysis. The proposed method in this study presents an improvement accuracy of
4% as opposed to the proposed dual-laser range sensor method that reported 57.87 cm ± 10.48, an
error of 10%. Meanwhile, our proposed method reported ±0.0633 m, a 6% error for normal walking.

Keywords: LiDAR; step length; distance measurements; gait parameters

1. Introduction

The physical mobility of an individual is one of the indicators of quality of life. A de-
cline in mobility due to aging or other physical/mental disability has been linked to a surge
in chronic illness and mood changes, amongst others [1]. The bulk of the research touching
on mobility has been directed towards older adults since loss of mobility is prevalent with
age. Physical mobility challenges lead to dependence and costly healthcare attention [2,3].
From this, it is extremely important to identify mobility problems as early as possible, to
ensure remedial actions are taken early enough. This is usually achieved using gait analysis.

Gait is a term to describe an individual’s pattern of walking. A gait cycle can be
categorized into two different phases, as shown in Figure 1. The sub-categories in stance
phase is initial contact, loading response, mid stance, terminal stance, and pre-swing. Swing
phase consists of initial swing, mid swing, and terminal swing. Hence, the gait cycle starts
when the heel of one foot is in contact with the ground and ends when the heel of the same
foot is again in contact with the ground. By observing the gait cycle, parameters such as
step time, swing time, step length and width, weight distribution, cadence, etc., can be
obtained and utilized for clinical analysis to identify and isolate gait disorders.

To identify gait deviations or to make a diagnosis for appropriate therapy, acquiring
the spatiotemporal gait parameters is necessary [4]. Stance time, swing time, and step
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length are several parameters that are frequently studied. By focusing on the detection of
foot contact with the ground, also known as single-leg support, other spatiotemporal gait
parameters are readily obtained.
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According to the authors in [5], gait disorders and falls are largely underdiagnosed and
often receive inadequate evaluation. The causes of gait disorders may include neurological
conditions, orthopedic problems, and medical conditions. In order to evaluate the gait
disorders, careful clinical observations of gait-related neurological functions should be
regularly analyzed, as early as possible. Axial motor symptoms are usually less well
documented in medical reports than other parts of the neurological examination [5]. One of
the commonly reported neurological gait disorder is freezing of gait (FoG). Tracking of the
occurrence of the disorder has been shown to be a challenging task for clinicians [6,7]. On
the other hand, if the information leading to development of the disorder can be availed
through self-reported devices or clinician reports, optimization of therapy, which has been
proven to be beneficial, can be properly adopted.

There are two approaches to evaluate the presence of gait disorders: gait testing using
appropriate devices or by response-based evaluation by patients through questionnaires.
Gait analysis using devices gives objective results to assist the clinician in making an
accurate diagnosis. As an example, to predict the risk of fall and mobility performance in
elderly adults, maximal step length has been reported to have this ability, and is easy to
measure in clinical settings [8,9]. It is reported that older adults with a history of falls use
stepping responses more frequently than non-fallers. Particularly, when having to change
leg or direction, a slowed voluntary stepping is observed [10–12].

With the problem at hand, accurate diagnosis is principally tied to the quality of the
detection of gait parameters. As such, manufacturers have focused on the development of
a cost-effective gait measurement device. In the 21st century, democratization of healthcare
and telemonitoring trends is pushing the needs for accessible/wearable measurement
devices and approaches utilizing recent technological feats [13]. To this end, a lot of
research has been focusing on developing a small and low-cost device that is reliable
enough to measure the gait parameters accurately [14–17].

Conventional gait analysis is performed using multi-camera systems or a pressure-
sensitive walkway [18–21]. These two systems have been signified to be the gold standard
for analyzing and validation of spatiotemporal gait parameters. Although they offer the
measurement accuracy needed for healthcare professionals to evaluate gait quality, the
high cost of the equipment is a limiting factor. Thus, to counter this problem, gait analysis
system that are versatile and accessible outside of clinical settings, while still achieving
accurate measurement, have been proposed in literature.

Two general distinctions of the proposed measurement system can be identified: wear-
able and non-wearable gait measurement systems. For wearable systems, the commonly
used approach is the use of inertial measurement units (IMU) equipped with gyro and
accelerometer sensors that gets the acceleration and angles of the attached body parts, in
this case the legs. The system has been utilized in areas like sport science, rehabilitation,
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pose tracking, among others [22,23]. The biggest appeal is on the ease-of-use that wearable
measurement units afford the user. On the other hand, IMU systems, as reported in various
studies, face some challenges. The obtained IMU data may produce low accuracy and noisy
data that must be pre-processed using a fusion algorithm and calibrated beforehand [24].
Moreover, the relative orientation between the sensors and the subject body cannot be fixed
over different data acquisition sessions [25]. In a system developed by [26], the accuracy of
IMU in estimating 3D orientation was investigated by using a simple pendulum motion.
The authors reported an RMS error of between 8.5◦ and 11.7◦ of the IMU raw data processed
by the supplied Kalman filter algorithm supplied by the vendor. However, with the custom
fusion algorithm developed by the authors, the RMS error was reduced to between 0.8◦

and 1.3◦. For the wearable sensors, to increase the accuracy, a fusion algorithm that suits
the physical activities tracking and the multiple use of body-worn sensors can potentially
reduce the ease of use. One of the solutions to encounter the limitations face by body-worn
sensors is the use of a non-wearable system. This approach employs alternative sensing
elements, such as cameras and lasers, for gait monitoring.

For non-wearable systems, camera-based methods have been widely studied by re-
searchers [27–29]. For camera-based methods, there are two different approaches: marker-
based and marker-less. A study by [30] indicated that marker-based systems, such as Vicon
Nexus, offer a more accurate result compared to marker-less systems. Vicon’s motion-
capture systems use high-speed and high-resolution imaging cameras positioned around
the space where the action is taking place to detect the reflective markers attached to the
body in real-time. Equipped with specialized software, Nexus can precisely determine
where the cameras are positioned in space. Thus, marker coordinates are computed faster
and effortlessly. However, this system requires carefully configured camera settings in a
laboratory setting with sufficient markers on the subject. In addition, this type of system
requires more time, technical expertise, and equipment to assess the analysis outcomes [31].
Hence, there has been a growing interest in developing marker-less-based technologies.

For a marker-less-based system, an RGB-depth camera that can extract kinematic
information has been developed by Microsoft Kinect and Intel RealSense, among oth-
ers [32–35]. The pros for this type of method would be the absence of markers, which
maximize the subject’s movement comfortability and reduction in preparation time prior
to the experiment. Furthermore, by extracting the kinetic information, the accuracy can
be improved. Nevertheless, most of the currently available methods are still based on
laboratory settings and have limitations regarding the capture rate, capture volume, and
even uncontrolled lighting conditions [36,37]. In a system developed by [38], the authors
developed a 3D marker-less motion capture technique using OpenPose, a state-of-the-art
machine-learning, posture-tracking algorithm, from cameras. Several other researches are
adopting motion-capture technology leveraging on deep-learning algorithms [39,40]. The
current challenge this and other strategies are trying to solve is to make detection systems
applicable in vast environments, such as open air or welfare fields.

Besides the camera systems, in recent years, laser range scanners have been gaining
interest to be used for gait analysis. This is because the cost of a laser range scanner has
decreased greatly and real-time multi-line LiDAR (Light Detection and Ranging), such as
Velodyne HDL-64E [41], Puck, and SICK TiM7xx [42], provide three-dimensional range
information to a target using multiple laser beams in real time. Additionally, it has a fairly
long range of measurement of over 25 m. However, this type of particular LiDAR is mainly
used for person identification and recognition activity [43,44]. There have been few studies
on detecting spatiotemporal gait parameters only using Velodyne LiDAR.

A research study on spatiotemporal parameters gait analysis based on a LiDAR
approached was conducted by the authors in [45]. The study focused on step length
measurement using LiDAR utilizing dual laser range sensors. The authors reported that
the measurement using a laser range sensor is quick and easy to set up. The proposed
method involved installing dual laser range sensors at the opposite ends of a 5 m walking
path. The objective was to analyze a longer-range gait measurement from ten healthy
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participants. The authors proposed a walking test on three different speeds—slow, normal,
and fast walking—and compared the validity of the proposed method to the instrumented
walkway measurements.

In this paper, we propose a measuring system to estimate the step length of the subject
using a single LiDAR system. The aim of the present study is to develop and validate
the usability of the single LiDAR system as a step length measurement that can perform
outside the laboratory setting, building on the setup as reported in [45]. Two-dimensional
LiDAR data of below the ankle area, as the subjects walked forward, were used to evaluate
the walking experiments of two different walking speeds, namely, a normal walk and fast
walk. Normal walking speed is defined as the participants’ preferred walking speed in a
comfortable manner. Meanwhile, for fast walking speed, the participants were instructed
to walk twice as fast as one’s preferred normal walking speed. We employed polynomial
fitting methods to identify the foot off and step lengths. We utilized visual inspection to
confirm the validity of the proposal and compared the performance of the two approaches.

2. Materials and Methods
2.1. Experimental Setup

We conducted an experiment to characterize the walking gait in an uncontrolled
environment. The setup involved gathering 3D LiDAR data and analyzing the data in
MATLAB. For the data acquisition part, the personal computer is connected to the 3D
LiDAR (Velodyne VLP-16) device via an ethernet cable. Participants were asked to walk
along a straight path, as shown in Figure 2. The VLP-16 was placed 1 m away from the
subject on a flat ground. Altogether the walking distance from the LiDAR is 5 m. Two
different walking speeds were experimented for each different speed. The first experiment
is walking in a normal speed and the second experiment is walking in a faster speed.
During the recording of the walking test using 3D LiDAR, each participant was asked
to stand still for 3 s before starting the walk and after finishing the walk. The current
experiment was conducted in an office setup with many objects, as will be discussed. This
we believe is a fairly representative (messy) environment to perform data recording that
would simulate an outdoor environment.
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2.2. Apparatus

A Velodyne LiDAR, particularly, the VLP-16, was used for this experiment. This
LiDAR was used to record the leg trajectory of the participants. The VLP-16 has real-time
technology, 3D distances, and calibrated reflective measurements. The small yet powerful
device makes it flexible to use in any environment. The LiDAR sensor has a scanning range
of 360◦ horizontal field of view and 30◦ (+15◦ to −15◦) vertical field of view, with a rotation
rate of 5–20 Hz.

The LiDAR’s real-time visualization and processing application of the data sensor is
called VeloView [46]. It has the ability of pre-recorded playback data stored in pcap files as
well as recording live streams as pcap files. Using this viewing application, the user can
use it to display, select, and measure information about the cloud points captured from
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the sensor. For further analysis of data extraction, MATLAB was used to calculate the step
length automatically of the extracted csv files that contains the necessary parameters, such
as cloud points coordinates and distance in meter.

2.3. Lidar Projection Analysis
2.3.1. LiDAR Laser Channel Selection

A single laser channel of the LiDAR device has a 903 nm laser emitter and detector pair.
There are altogether 16 laser channels, as shown in Figure 3 below. Each laser channel with
a given laser ID number is fixed at a particular elevation angle relative to the horizontal
plane of the sensor. For example, a laser ID of 15 will have an elevation angle of 15◦. Hence,
to select only the best one that fits the region of interest (ROI), which is the ankle area of the
subject’s leg, the laser ID of number 1 with a 1◦ elevation angle was selected, as shown.
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2.3.2. Cloud Point Data Extraction

The cloud points captured from LiDAR was viewed using VeloView software, as
shown in Figure 4. Environmental data were captured showing the walls and other office
structures. By comparing with Figure 5a,b, the selection of a laser ID of 1◦ angle of elevation
provides a clearer view of the ankle of the subject since the main focus here is to capture
the firing of the laser onto the ankle only when walking. In VeloView, one rotation can be
referred to as a single “frame” of data, beginning and ending at approximately 0◦ azimuth.
For the walking experiment, the RPM was set to 600 for both walking speeds. Hence,
600 RPM will produce 10 frames per second. The recorded data with only the selection ID
number 1 were then exported as XYZ data in csv format for further analysis.
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2.3.3. Single-Support Leg Identification

Single-support leg is the period when only one leg is at stance while the opposite leg is
swinging. In this experiment, the single-support leg is identified by the high concentration
of cloud points, as shown in Figure 6. The high concentration of cloud points is where the
leg is in contact with the ground while the opposite leg is swinging in the air.
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Figure 6. Scatter plot of the cloud points after frame extraction.

After the frame extraction, unwanted cloud points can be seen since the laser from the
LiDAR device is projecting 360◦ of the environments. These outliers can be a consequence
of the step length analysis method, as it is considered as noisy data. By specifying the range
of the current horizontal distance of x and vertical distance of y in Figure 6, the outliers can
be removed. For instance, in Figure 6, the outlier can be removed by specifying outside the
range −0.4 < X > 0.4.

2.3.4. Heel Tracking from Laser Scans and Step Length Calculation

Figure 7 shows the recognition of the right and left heel from the raw point cloud data
of the LiDAR device during walking. The frames represents the time frames of walking
duration and the distance (m) represents the horizontal x-axis value obtained from the
LiDAR device. Values less than 0 m determined the left leg while the right leg is identified
by values more than 0 m. Hence, when the heel values change from negative to positive,
then the position of the left leg changes to right leg, and vice versa. As a result, the distance
between the point of initial contact of one foot and the point of initial contact of the opposite
foot can be computed as the step length.

During walking, the laser projection from the LiDAR device onto the lower leg of the
subjects generates a round shape. These round shapes are the contours of the back of the
subject’s heel, as shown in Figure 8. As the subject walks towards the end of the walking
distance, the clarity of the cloud points decreased. Therefore, in order to increase the
accuracy of the heel estimation, we fitted a 4th-order polynomial for each LiDAR scanning
frame, as shown in Figure 9a,b.
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As shown in Figure 9, the reported values of R2 of the cubic polynomial is 0.9133
and 0.5908 for Frames 10 and 17, respectively. Meanwhile, the R2 value for the 4th-degree
polynomial is 0.9916 and 0.8451 for Frames 10 and 17, respectively. The R2 values of the
lower-order polynomials were unacceptable. For the higher-order polynomial, despite the
better R2 values, the u shape that represented the heel was distorted. Hence, the 4th-degree
polynomial was selected as it retains the u shape significantly. Equation (1) represents the
4th-degree polynomial, where n = 4.

p(x) = p1xn + p2xn−1 + . . . + pnx + pn+1 (1)

As shown from Figure 7, the frame that represents the single-support leg (SSL) phase
was identified. From these identified frames (FrameSSLi ) of i = [1, 10, 17, 23, 31, 37, 45],
we calculated the lowest local minima, which represents the heel (HeelSSLi ), as shown in
Table 1.

Table 1. Tabulated 2-dimensional sample array of SSL.

SSL

Frame Heel (m)

1 1.0174
10 1.6750
17 2.3338
23 2.9590
31 3.5844
37 4.1045
45 4.4287

As shown in Figure 10, the average Step Length (SL) can be obtained by calculating
the differences between the adjacent rows of (HeelSSLi ) in (FrameSSLi ) with an SSL array
dimension of N. Equation (2) represents this operation.

SL =
1
N

N

∑
i=1

(
‖HeelSSLi − HeelSSLi+1‖

)
(2)



Signals 2022, 3 166Signals 2022, 3, FOR PEER REVIEW  10 
 

 

 
Figure 10. Determination of step length from the cloud points data. 

2.4. Participants 
There were altogether 10 healthy volunteers that participated in this experiment as 

shown in Table 2. The participants were recruited among the students of the university. 
The subjects were free from any cardiovascular, neurological, or musculoskeletal disease 
and had no walking difficulties. 

Table 2. Number of participants with the corresponding standard deviation. 

Subjects  Height (cm) Weight (kg) Age 
6 males 172.2 ± 4.3 74.3 ± 7.8 28.8 ± 6.1 

4 females 153.8 ± 4.3 51.5 ± 11.4 26.8 ± 2.9 
Average 164.8 ± 10.0 65.2 ± 14.6 28 ± 5.2 

3. Results 
Figure 11 represents the time-course data of foot contact and the foot-off position 

calculated during walking. The frames on the y-axis signifies the time data from the Li-
DAR sensor. The distance on the x-axis signifies the location of the single-support leg dur-
ing walking. If the right leg is in contact with the floor, the opposite left leg must be in 
mid-air during walking, and vice versa. Both the left-leg and right-leg data were calcu-
lated using the moving average over a sliding window of length 2, thus removing the DC 
offset. 

Figure 10. Determination of step length from the cloud points data.

2.4. Participants

There were altogether 10 healthy volunteers that participated in this experiment as
shown in Table 2. The participants were recruited among the students of the university.
The subjects were free from any cardiovascular, neurological, or musculoskeletal disease
and had no walking difficulties.

Table 2. Number of participants with the corresponding standard deviation.

Subjects Height (cm) Weight (kg) Age

6 males 172.2 ± 4.3 74.3 ± 7.8 28.8 ± 6.1
4 females 153.8 ± 4.3 51.5 ± 11.4 26.8 ± 2.9
Average 164.8 ± 10.0 65.2 ± 14.6 28 ± 5.2

3. Results

Figure 11 represents the time-course data of foot contact and the foot-off position
calculated during walking. The frames on the y-axis signifies the time data from the LiDAR
sensor. The distance on the x-axis signifies the location of the single-support leg during
walking. If the right leg is in contact with the floor, the opposite left leg must be in mid-air
during walking, and vice versa. Both the left-leg and right-leg data were calculated using
the moving average over a sliding window of length 2, thus removing the DC offset.

Figure 12a,b shows the individual results of the average step length from all 10
participants for each of the fast walk and normal walk experiments obtained from both
the visual inspection and polynomial methods. From the figure, it can be observed that
each participant tends to have a unique or individualistic step length. Since they were
instructed to walk on their own pace for both walking speed experiments, it resulted in an
individually selected walking pace.
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Figure 12. Experimental results obtained from both a fast and normal walking speed: (a) the
differences in step length value between the visual inspection method and polynomial fitting curve
method for normal walk; (b) the differences in step length value between the visual inspection
method and polynomial fitting curve method for fast walk.

In Figure 13, the average male step length was 0.7439 m and 0.6292 m for fast and
normal walk, respectively. This translates to an increase of 11.5% in step length from
normal walk to fast walk. The average female step length was 0.6545 m and 0.5856 m
for fast and normal walk, respectively. For female participants, normal to fast walking
corresponded to an increase of 6.9% in the experiment. Other factors, such as aging or
physical complications, might affect the results of step length. In this study, since the
subjects consisted of healthy young adults, the trial results for both fast walk and normal
walk are observed to be in the same walking gait for young adults, i.e., an increase in
distance in step length with an increase in walking speed.
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Figure 13. Comparisons of step length during fast walking speed and normal walking speed between
male participants and female participants.

Figure 14 shows the scatter plot between the height of each participant and their
represented average step length for normal walk and fast walk, respectively. A linear fit is
applied to the data, as shown. The correlation coefficient between the mean step length of
normal walk and the subject’s height is R = 0.1482. Meanwhile, for fast walk, the correlation
coefficient against the subject’s height is R = 0.4951.
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Figure 14. Correlation of subject’s height and step length for normal walking speed and fast walking speed.

Table 3 shows the summary of the step length gait parameter for both normal speed
and fast speed using the visualization inspection and the quadratic polynomial method.
From the table, the visual inspection method of step length agrees with the proposed
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method. The SD value is taken to represent the accuracy of the measurement. From the
data, visual inspection is accurate up to 6%, which translates to 6 cm, while the polynomial
method achieves 8 cm in fast walking.

Table 3. The standard deviation (SD) of step length in comparison with the quadratic polynomial
curve fitting value and the visually detected value.

Participants Visualization Inspection Polynomial Value

Normal Speed Fast Speed Normal Speed Fast Speed

Step Length SD Step Length SD Step Length SD Step Length SD

Subject 1 0.5604 ±0.0943 0.7495 ±0.0896 0.6008 ±0.0501 0.7830 ±0.0563

Subject 2 0.5077 ±0.0355 0.6107 ±0.0845 0.5086 ±0.0353 0.5690 ±0.0969

Subject 3 0.5771 ±0.0234 0.6238 ±0.0701 0.5834 ±0.0637 0.6297 ±0.0930

Subject 4 0.5888 ±0.3786 0.6447 ±0.0326 0.5838 ±0.0473 0.6644 ±0.0455

Subject 5 0.6351 ±0.0836 0.7597 ±0.0705 0.6662 ±0.0298 0.7394 ±0.1188

Subject 6 0.6145 ±0.0597 0.7234 ±0.0768 0.6398 ±0.0618 0.7437 ±0.0615

Subject 7 0.6121 ±0.0163 0.5991 ±0.1104 0.6116 ±0.0104 0.6109 ±0.1529

Subject 8 0.5751 ±0.4267 0.7376 ±0.0593 0.6174 ±0.0568 0.7970 ±0.0687

Subject 9 0.6262 ±0.1082 0.7393 ±0.2300 0.6659 ±0.0427 0.8327 ±0.0664

Subject 10 0.4758 ±0.0804 0.6956 ±0.0571 0.4707 ±0.0919 0.6826 ±0.0715

Average ±0.0515 ±0.0625 ±0.0633 ±0.0874

4. Discussion

This paper proposes the development of a measuring step length method using a
single LiDAR on healthy individuals. The aim is to validate the use of the single LiDAR to
estimate accurately the heel cloud point using a polynomial method during both normal
walk and fast walk.

Figure 8 shows the cloud points data along the projected walkway. Despite the
difficulty in obtaining a clearer U shape of the heel as the walking speed increases, by
utilizing mathematical algorithms such as the polynomial curve fitting, as shown in Figure 9,
further accuracy of the location of the cloud points can be achieved. Detailed summarization
of the performance is available in Table 2.

From Table 2, the measurements of the step length and standard deviation for normal
walk and fast walk for all subjects are presented for both the visual inspection method
and polynomial method. From the results, the average error in step length was found
as ±0.0515 and ±0.0625 for normal walk and fast, respectively, while that of the visual
inspection method reported ±0.0633 and ±0.0874 for normal walk and fast, respectively.
This translates to a 5–9 cm error in step length. From this, the performance of the proposed
method is comparable to the visual inspection with an acceptable error.

With the accuracy difference estimated to be at most 2 cm, the polynomial method
provides reliability of heel location estimation as compared with the observational gait
analysis. Moreover, polynomial method offers automated analysis when it comes to huge
data as opposed to visual inspection by clinicians. This is because, for visual inspection
analysis done by clinicians, there might exist inconsistencies or disagreements in the
descriptive terminology between them [47].

There was a significant difference between the two methods, with a p-value of 0.5053.
The interquartile range (IQR) of the visualization inspection method and polynomial fitting
method for normal speed walk were 0.0541 and 0.0564, respectively. For faster speed walk,
the interquartile range of the visualization inspection and polynomial fitting method were
0.1155 and 0.1533, respectively. From the reported IQR, the polynomial estimation method
performs on par with the expert inspection.
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In comparison, the dual-laser range sensor results reported in [45] achieved an average
error of 10% or 10 cm. The current setup, though using a single LiDAR, achieved results
comparable to those of the dual sensors. The proposed method in this study presented an
improvement accuracy of 4% using the result as a standard in normal walk. In addition,
with the aim of non-obstructive gait step length measurement on the subject, this proposed
LiDAR-based approach achieved the intended purpose.

Overall, using the polynomial best-fitting curve for the cloud points reported promis-
ing results individually than when using the visual inspection method. Subject 9 had
the highest standard deviation by using the visual inspection than using the quadratic
polynomial fitting value approach. This is because, since the heel-shaped contour of the
cloud points is incomplete as the subject walks faster and farther away from the device, it is
difficult to determine the estimated position of the heel of the leg. By using the curve-fitting
approach, the incomplete heel shape of the cloud points can be achieved by estimating the
heel position of the leg.

In Figure 11, the result shows that the proposed method of polynomial estimation of
the heel cloud point is able to detect the foot contact and foot off during walking from both
the left leg and right leg. A similar pattern of a shorter step length in females than males,
as seen in Figures 12 and 13, has also been reported in [48]. The differences in step length
may be related to the differences in body proportions between men and women.

In Figure 14, the association between the step length and the subject’s height for normal
walk has a very low correlation while, for fast walk, it is considered to be moderately
correlated. There is little significant relationship between the height of the subject and step
length. In adults, there is no relation between step length and height at normal walking
speed; however, there is a significant difference in step length given the lower extremity
length [49]. Assessment of varied step length may include the measurement of the lower
leg instead of the subject’s height.

This particular LiDAR device also imposed drawbacks for gait step length analysis.
As shown in Figure 3, the angle of direction of shift is not entirely parallel to the floor as the
distance increases. Each firing of the laser scans creates a path of hyperbola across the plane
and a slight affine distortion to each hyperbola in the forward motion of the scanner [50].
In this paper, we proposed to use only the 1◦ angle for both experiments because it only
focuses on the chosen region of interest, which is the ankle of the subject. That is why the
walking distance proposed is limited to only 5 m, which is appropriate enough to proof the
validation of using LiDAR for step length measurement purposes.

By limiting the gait parameters to only step length, we can reduce the immense size
of the cloud points data. Furthermore, LiDAR provides not only the x, y, and z axes
of the cloud points but also the timing, which can be extracted further to obtain other
gait parameters such as the speed. This may be included for future work improvements.
Other limitations present in this study is the limited sampling of the test subjects, which
was predominated by healthy, young participants. To determine the gait disorders of the
proposed method for clinical gait analysis, elderly subjects will be considered for further
work improvements.

5. Conclusions

In this paper, we have successfully developed a system for step length measurement
using LiDAR. Velodyne VLP-16 was used as a tool to capture the walking step movement,
particularly below the ankle area of the subject. For measurement analysis, MATLAB
algorithms provide essential calculations that resulted in acceptable step length estimations.

The experimental results indicate that the measurement distance of walking step can
be calculated relatively accurately. With the aim of a convenient and reduced-cost measure-
ment system, this experimental setup and results reached the desired goals. Furthermore,
with the inclusion of various age groups, especially older people, in future studies, the
highest level of comfort and usability could be assessed. In this study, all participants were
able to do the walking experiment without difficulty and any discomfort. Further research
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improvement might include an automation of the measurement analysis and enhancement
of the algorithm to increase the measurement accuracy.
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