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Abstract: Physiological responses are currently widely used to recognize the affective state of subjects
in real-life scenarios. However, these data are intrinsically subject-dependent, making machine learn-
ing techniques for data classification not easily applicable due to inter-subject variability. In this work,
the reduction of inter-subject heterogeneity was considered in the case of Photoplethysmography
(PPG), which was successfully used to detect stress and evaluate experienced cognitive load. To
face the inter-subject heterogeneity, a novel personalized PPG normalization is herein proposed.
A subject-normalized discrete domain where the PPG signals are properly re-scaled is introduced,
considering the subject’s heartbeat frequency in resting state conditions. The effectiveness of the
proposed normalization was evaluated in comparison to other normalization procedures in a binary
classification task, where cognitive load and relaxed state were considered. The results obtained on
two different datasets available in the literature confirmed that applying the proposed normalization
strategy permitted increasing the classification performance.
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1. Introduction

In recent years, sensor technology has significantly improved and wearable devices
have become increasingly popular, allowing easily registering subjects’ physiological re-
sponses during their daily activities [1,2]. Physiological signals are successfully used to
measure arousal [3–5]. Arousal is an uncontrolled human reaction, related to attention and
cognitive alertness, activated by stimuli that require high psycho-physical engagement, and
thus activated in particular during cognitive tasks and stressful conditions. Although it has
been proven that, sometimes, stress can have a positive effect on a person by improving
his/her alertness state or his/her ability to react [6], it has also been proven that a high and
continuous level of stress or cognitive load can affect the physical and mental well-being of
the subject. Illnesses such as depression, anxiety, and sleep disorders are, indeed, often due
to excessive stress or workload [7].

In view of its importance, the automatic recognition of stress and excessive cognitive
load has recently become an object of study, even in different application areas. For instance,
systems able to recognize emotion and, above all, stress experienced by subjects can be used
in working or academic environments [8] in order to monitor and identify the emotional
state of employees or students. In this regard, it has been proven that a high level of stress
or cognitive load due to excessive workload can increase the level of fatigue, decrease the
subject’s working capability, and consequently, bring physical and mental illness, which can
lead to workplace absence [9]. Similarly, automatic stress recognition systems can be used
in the context of vehicle driving for the detection of excessive mental fatigue states, which
can reduce a person’s driving skills [10]. Finally, algorithms of stress detection can also be
used in recreational areas for the development of systems able to modify their parameters

Signals 2022, 3, 249–265. https://doi.org/10.3390/signals3020016 https://www.mdpi.com/journal/signals

https://doi.org/10.3390/signals3020016
https://doi.org/10.3390/signals3020016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0000-0002-6279-6660
https://orcid.org/0000-0003-1308-8497
https://orcid.org/0000-0002-1168-3711
https://orcid.org/0000-0002-7056-0543
https://doi.org/10.3390/signals3020016
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals3020016?type=check_update&version=1


Signals 2022, 3 250

based on the user’s emotional state. Concrete examples concern music-retrieval systems
able to interact with a user to suggest a music playlist using both external inputs and
his/her physiological signals [11] or video games in which some internal game parameters,
such as the difficulty, are set based on the player’s emotions and stress level [12]. Moreover,
systems able to recognize the subject’s emotional state can also be involved in the medical
area. For instance, emotion recognition systems can be used to monitor the health state of
convalescent patients [6] or to help elderly subjects during their daily activities [13,14]. In
all of these contexts, the development of systems able to recognize, interpret, and simulate
human affect can be seen as a necessary step to make technologies user friendly and able to
interact actively with people.

Several works in the literature have focused their attention on the analysis of physio-
logical signals as an honest indicator of humans’ emotion and mood [3,4]. In particular,
the heart rate of a person is positively correlated with the perceived level of arousal
and stress [15], thus resulting in being promising in the recognition of this specific emo-
tional state [16]. Several stressors have been adopted in the literature to elicit arousal and
mental stress [17]. Among them, mental arithmetic calculus or the Stroop test has been
applied as a stressor in numerous experiments to evoke a high level of cognitive load in
the participants [18]. In many of these studies, the use of physiological signals related to
heartbeat has allowed positive performance both in statistical [19,20] and classification
analysis [21–23].

Despite the progress in sensor technology and the relative simplicity of acquiring
physiological signals from the human body, there are still some critical issues that must be
addressed to fully exploit the potential that the analysis of physiological signals can offer.
Although it is currently easier to acquire data, which can overcome the low cardinality
of datasets, the application of machine learning techniques is still limited by inter-subject
heterogeneity. Even in the same resting condition, without external stimuli, physiological
signals appear to be significantly subject-dependent.

In this work, the reduction of inter-subject heterogeneity was faced in the case of the
heartbeat, mainly detected through Photoplethysmography (PPG) [24]. The PPG signal
is one of the most-used signals to measure arousal [5,25] and, consequently, to detect
stress and evaluate the experienced cognitive load [20,26]. The PPG signal of each subject
appears different, both in terms of amplitude and beat frequency. Regarding the amplitude,
differences can be due to the subjects’ skin characteristics or to different sensor adherence
during the acquisition phase. Concerning the diversity in terms of heartbeat, according to
the American Heart Association, the heartbeat frequency of a resting adult can vary in the
range between 60 and 100 beats per minute, and it depends on many different factors, both
personal (such as age, sex, ethnicity, sports ability, diet, illnesses, prescribed medications,
etc.) and environmental (humidity, temperature, etc.) [27]. Normalization procedures based
on data rescaling are often used [28] to overcome amplitude variability within subjects. The
main strategies adopted involve rescaling to the range [0, 1] [29], normalizing by dividing
by the maximum value of the signal [30], and applying the Z-score [31]. None of these
methods, however, take into account the effective differences in the subjects’ heartbeat,
which are not only related to amplitude, but also to frequency.

The aim of this work was to solve this inter-subject variability, proposing a novel person-
alized PPG normalization based on the heartbeat of the subject in a resting state condition.

To validate the normalization procedure presented here, PPG data belonging to two
different datasets were considered: the Cognitive Load and Affective Walkability in Differ-
ent Age Subjects(CLAWDAS) dataset, partially introduced in [32–34], and the Cognitive
Load, Affect and Stress recognition (CLAS) dataset, available in [35].

The proposed normalization was analyzed considering a binary classification task to
discriminate cognitive load in the relaxed state and compared with normalization strategies
adopted in the literature.

The paper is organized as follows. In Section 3, the two considered datasets are
described, while the preliminary signal preprocessing strategies applied to each of them
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are reported in Section 4. The novel personalized PPG normalization strategy, based on the
subject’s resting state heartbeat, is presented in Section 5. Extracted features, classification
strategies, and the adopted cross-validation approach are reported in Section 6. The
comparison of the classification performances on the two datasets, obtained with different
normalization strategies, is then reported and analyzed in Section 7. Finally, the conclusions
are drawn in the last section.

2. State-of-the-Art

In the last decade, the number of publications and citations related to heartbeat
signals collected by photopletysmography has widely increased [36]. In particular, the
growing popularity of cheaper and non-invasive wearable devices has allowed extending
the analysis of such signals from health applications to other areas of interest such as
entertainment [25,37], driving monitoring [38,39], or emotional analysis [40,41]. In many of
these applications, the pipeline used to pre-process the PPG signals is similar and includes
noise and motion artifact removal, as well as signal de-trending [42]. In [43], the PPG
signals were pre-processed using a two-step procedure: first, each signal was filtered
using a three-order low-pass Bessel filter and a notch filter to remove basic noise and
baseline shift, then a direct comparison between PPG and ECG signals was performed to
detect and eliminate the motion artifacts. Similarly, in [44], a bandpass filter was used to
remove power line interference and motion artifacts and de-trend the signals, while a visual
analysis was performed to remove the high peaks of noise. Other PPG denoising strategies,
including methods based on empirical mode decomposition or wavelet decomposition,
were summarized in [45]. In several literature works, the denoising and de-trending steps
were followed by an amplitude normalization step performed to take into account subjects’
heterogeneity. The amplitude of the PPG signals varies from person to person, and it is
both influenced by subjective and environmental factors [45,46].

Many strategies of data rescaling have been proposed in the literature to normalize
the signals of each person in a similar range of values [47]. A min–max normalization
was applied to the filtered signal of each participant to rescale the heart rate data in the
range [0, 1] in [29,48,49]. Similarly, in [5], the amplitude of each subject’s PPG signal was
rescaled in the range [0, 1000] using a min–max normalization strategy followed by the
multiplication by a constant factor α = 1000. Another normalization strategy usually
applied in the literature is the Z-normalization or Z-score normalization. In this method,
the amplitude of each subject’s signal is standardized using the formula Xn = (Xi − µ)/σ,
where µ and σ are, respectively, the mean and variance of the analyzed PPG signal. This
method was applied in [50] as the last step of the pre-processing phase, while in [51], it was
applied as an intermediate operation between the denoising step and the motion artifact
removal step. Finally, in [19,52], an amplitude normalization based on the subject’s baseline
was considered using the formula (Xi − µb)/max|Xi − µb|, where Xi is the PPG signal, µb
is the mean baseline value, and max|Xi − µb| is the maximum range of each subject.

While the amplitude normalization is usually considered in the analysis of PPG signals,
the definition of a normalization strategy that considers the differences in the subjects’
heartbeat from a frequency point of view is still an open area of research. In [5], the PPG
signals of each subject were segmented into single-peak frames, and each frame was used as
a separate signal in the analysis. This method allows solving the issue of subject’s heartbeat
heterogeneity, but restricts the features involved in the analysis to only peak morphological
characteristics. In the following sections, our novel personalized PPG normalization based
on the heartbeat of the subject in a resting state condition is introduced and described. In
particular, a cognitive load classification task is considered in the analysis. We selected
this task because it is widely analyzed in the literature, with positive results in terms of
accuracy, making the validation of our proposal easier.
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3. Dataset Description

Several datasets exist in the literature that acquire multimodal physiological data in
the field of emotion recognition, among them DEAP [53], MAHNOB-HCI [54], EMDB [55],
AMIGOS [56], ASCERTAIN [57], CASE [58], CLAS [35], and CLAWDAS [32,33]. Three
main criteria have been applied for the selection of the two datasets, CLAS and CLAW-
DAS, considered here: the presence of cognitive load tasks, the use of wearable devices
for physiological signals’ acquisition, and the presence of a baseline in the resting state
condition. Both selected datasets fit these criteria, thus resulting in being suitable for the
analysis proposed. In particular, CLAWDAS was selected as the proprietary dataset, while
CLAS was chosen for the high number of participants involved, as well as for the use of
the same wearable devices adopted in CLAWDAS. Below, the two datasets are described
in detail.

In the CLAS dataset, the physiological signals of 60 healthy volunteers (mostly stu-
dents between 20 and 27 years old, 17 women) were acquired while they were performing
interactive or perceptive tasks. In particular, the interactive tasks were introduced to
evaluate the level of concentration and the cognitive capacity of different individuals by
solving Math Problems, Logic Problems, and Stroop Tests. In the perceptive tasks, dif-
ferent emotions were elicited in the participants by images and video selected from the
DEAP dataset [53]. During the whole experiment, three types of physiological signals were
simultaneously recorded by means of Shimmer sensors [34] Electrocardiography (ECG),
Plethysmography (PPG), and Electrodermal Activity (EDA). The signals were acquired
with a sampling rate of 256 Hz and a resolution of 16 bits per sample. In addiction, for each
subject, 3D accelerometer data and metadata were also collected.

For the purpose of this work, only PPG signals collected during the interactive tasks
were considered. For each participant, this phase of the experiment was characterized by
the following steps:

• 1 min of Baseline (BL) in the resting state condition;
• 3 min of Math Problems in which the participant solves different simple Mathematical

Problems (MPs) in a limited interval of time;
• 30 s of the Neutral State (NS), in which neutral audio-visual stimuli are displayed;
• 3 min of Stroop Tests (STs), where the user is expected to correctly match the color

of the text with the meaning of the word, having a strict time constraint for each
assignment;

• 30 s of the Neutral State (NS), in which neutral audio-visual stimuli are displayed;
• 5 min of Logic Problems (LPs) consisting of several simple logical problems often used

during IQ tests;
• 30 s of the Neutral State (NS), in which neutral audio-visual stimuli are displayed.

Moreover, the 3 Neutral State repetitions of 30 s for each subject in the picture test of
the perceptive session were also considered. For further details of this dataset, please refer
to [35].

CLAWDAS is a dataset collected in a controlled laboratory environment at the Research
Center for Advanced Science and Technology (RCAST) at The University of Tokyo. The
experiments performed at RCAST were focused on finding differences in physiological
responses related to different ages of the subjects, involved in several tasks, from cognitive
to listening and walking ones.

The experiments involved two different groups of subjects: a population of 16 Japanese
young adults with average age = 24.7 years old (4 women) and a population of 20 Japanese
elderly people with average age = 65.15 years old (10 women). During the whole experi-
ment, the heartbeat of each participant was collected though Photopletysmography (PPG)
using the Shimmer3 GSR+ Unit [34] with a sampling frequency of 128 Hz. In addition to
PPG, the Electrodermal Activity (EDA) of each subject was acquired using the same sensor.
The Shimmer3 GSR+ Units are non-invasive and completely painless sensors that could be
easily worn by the participants, as shown in Figure 1.
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Figure 1. Sensors used to collect physiological data in the CLAWDAS dataset.

CLAWDAS data acquired during cognitive and listening tasks were considered here.
The experimental protocol was composed of the following steps:

• 3 min of questionnaires to collect the personal details and the current emotional state
of each participant using STAI Questionnaires;

• 1 min of Baseline (BL) in the resting state condition;
• 6 min of Reading (R) and Comprehension (C) tasks composed by two repetitions

(trials) of 2 min of R followed by 1 min of self-assessment and C questions;
• 1 min of Baseline (BL) in the resting state condition;
• A 15 min sequence composed of six repetitions of the following two tasks:

1. 2 min of Audio Listening (AL); in this task, relaxation was induced by natural
sounds (Figure 2, right);

2. 30 s of cognitive load, induced by mental Math Calculations (MCs) that involve
sums, subtractions, and multiplications (Figure 2, left).

Each repetition has a different audio track and Math Calculation.
• 1 min of Baseline (BL) in the resting state condition

The experimental protocol was reviewed and approved by the Research Ethics Com-
mittee at The University of Tokyo, Japan (Nos. 19-283 and 19-376). The CLAWDAS dataset
was partitioned into two distinct subsets, according to the age of the participants: CLAW-
DAS Young, which included all the signals acquired from young adults, and CLAWDAS
Elderly, which grouped all the signals collected from the elderly. In the following analysis,
the two groups were considered separately.

Table 1 reports the number of instances for each task in the CLAS and CLAWDAS
datasets, keeping distinct the two subsets of CLAWDAS related to subjects’ age (Young
and Elderly).

Table 1. Number of instances for each task in the CLAS dataset (first 5 columns) and in the CLAWDAS
dataset (last 5 columns), distinguished into CLAWDAS Young and CLAWDAS Elderly. BL = Baseline,
MP = Math Problem, ST = Stroop Test, LP = Logic Problem, NS = Neutral State, MC = Math
Calculation, R = Reading, C = Comprehension.

Num Subj. BL MP ST LP NS BL MC AL R C

CLAS 60 60 60 60 60 360 - - - - -

CLAWDAS Young 16 - - - - - 46 96 96 32 32

CLAWDAS Elderly 20 - - - - - 60 120 120 40 40
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Figure 2. Example of signal acquisition in the CLAWDAS dataset: (left) math calculation; (right) re-
laxing audio listening.

4. Signal Preprocessing: Denoising and Amplitude Normalization

In this section, the preprocessing operations applied to raw PPG data are detailed and
differentiated for CLAS and CLAWDAS, respectively.

4.1. Denoising Strategies

The raw PPG signals are usually corrupted by noise and motion artifacts, which can
undermine their interpretation and use [59]. In the CLAS dataset, the signals had already
been preprocessed by the authors during the acquisition phase [35], and thus, no further
denoising procedure was applied.

Concerning the CLAWDAS, the PPG raw signals of each subject were preprocessed
by a multiresolution wavelet denoising strategy, as suggested by [59,60]. The signal was
divided into frequency sub-bands using the Stationary Wavelet Transform (SWT) [61]
with the Fejer–Korovkin mother wavelet [62] and four levels of decomposition. A soft
thresholding was applied to the detail coefficients of each sub-band. The universal threshold

calculated by the formula Tk =
√

2log(Nj) was adopted, where Nj is the length of the j-th
wavelet coefficient and k is the sub-band [63]. The SWT was implemented with the à trous
algorithm [64]. A preliminary operation of replicate padding was applied to the signal in
order to obtain a length divisible by 2level [61], with level = 4.

4.2. Amplitude Normalization

In order to normalize the signals with respect to the amplitude, a Z-score operation,
defined by the formula Z = (x − µ)/σ, was applied to the PPG recordings after the
denoising procedure.

In CLAWDAS, the amplitude normalization, (AmpN), as well as the denoising pre-
processing were applied to the signal of each subject, before splitting it into the different
experimental trials.

A similar procedure was also applied to the CLAS dataset signals. However, in this
case, the authors already split the data into single trials, according to their experimental
protocol (see Section 3), with no preliminary amplitude normalization. Thus, in order
to apply a similar procedure to both datasets, the segmented trials of each subject were
concatenated to re-build the original acquired signal. Then, the Z-score amplitude normal-
ization was applied to each subject signal. Finally, the amplitude normalized signals were



Signals 2022, 3 255

split back into the trials, related to single tasks, using the markers properly defined during
the previous phase of concatenation.

5. Personalized PPG Normalization Based on Subject Resting State Heartbeat

The American Heart Association has underlined that the heart rate frequency of an
adult in a resting state can vary in the range between 60 and 100 beats per minute. This inter-
subject variability depends on many different factors, both personal and environmental. In
the case of the CLAS and CLAWDAS datasets, the subjects’ heartbeat range of the baseline
recordings belongs to the one reported by the literature, as depicted in Figure 3, where the
average heartbeat distribution for each dataset is plotted.

Figure 3. Distributions of the average heartbeat of the resting state PPG signals in CLAS (left),
CLAWDAS Young (middle), and CLAWDAS Elderly (right) datasets.

In order to remove this inter-subject variability, the core idea of our normalization
procedure is to map PPG signals, defined in the Discrete Time Domain (DTD), into a new
Subject Normalized discrete Domain (SND), applying a mapping procedure based on the
resting state heartbeat frequency. In this SND, all the subjects have the same resting state
heart frequency. For each subject, a subject-based resampling frequency can be calculated,
so that for all the subjects, the heart frequency of the resting state in the SND is equal,
despite the original subject-peculiar frequency in the Continuous Time Domain (CTD).

Then, the PPG data acquired during all the experimental tasks were also mapped into
this new domain, applying the calculated subject-based resampling frequency and obtain-
ing subject normalized PPG signals that can be considered for population-based analysis.

Defining fc[
sample
second ] as the sampling frequency of the PPG signal, given by the acquisi-

tion device, and fb[
beat

second ] as the heartbeat frequency in the resting state condition in the
CTD, the corresponding normalized heartbeat frequency fNb[

beat
sample ] in the DTD is:

fNb =
fb

beat
second

fc
sample
second

(1)

We now define the subject normalized heartbeat frequency of the resting state in the
SND as fSNb[

beat
SNsample ], where SNsample stands for Subject Normalized sample, which is

the independent variable of the SND.
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The subject-based resampling frequency that permits mapping the DTD PPG signal
into the SND one is defined as fSNc[

SNsample
sample ] and can be calculated as follows:

fSNc =
fNb

beat
sample

fSNb
beat

SNsample

(2)

As our goal was to obtain a domain where the inter-subject variability is discounted,
the fSNb for all subjects’ baseline should be the same. Once this constant value is chosen, the
fSNc resampling frequency for each subject can be calculated from Equation (2). Then, all
the PPG data of the same subject can be resampled accordingly and mapped into the SND,
making the SN data reliable for population-based analysis. In Table 2, the notation intro-
duced is summarized for the sake of clarity. Taking this into account, Equations (1) and (2)
can be rewritten as follows:

fSNc =
fb
fc
∗ 1

fSNb
(3)

Table 2. Correspondences between the three domains.

Domain Continuous Time Discrete Time Subject Normalized

Acronym CTD DTD SND

Heartbeat f [ beat
second ] fN [ beat

sample ] fSN [ beat
SNsample ]

Resting state Heartbeat fb [ beat
second ] fNb [ beat

sample ] fSNb [ beat
SNsample ]

Sampling frequency – fc [ sample
second ] fSNc [ SNsample

sample ]

The resting state heartbeat in the SND ( fSNb) can be arbitrarily chosen, only paying
attention to possible aliasing effects. In our calculations, we set fSNb = 1

128 [
beat

SNsample ], which
corresponds to one beat on 128 SNsamples in the SND.

To analyze the effect of our normalization proposal, let us consider some numerical
examples. In the case of a sampling frequency of fc = 128 Hz, as in the case of the
CLAWDAS dataset, we can observe from Equation (3) that, in the case of a subject with
a baseline heartbeat frequency of 60 beat

minute , corresponding to 1 beat
second , the subject-based

resampling frequency is fSNc = 1 SNsample
sample , meaning that there are no differences between

the signal in the DTD and in the SND. Note that 60 beat
minute is generally considered as the

minimum value for normal people. For heartbeat frequencies higher than 60 beat
minute , the

mapping from the DTD to the SND implies an over-sampling, while for lower frequencies,
the consequent under-sampling does not introduce aliasing, as 128 samples are guaranteed
between two consecutive peaks.

In Figure 4, PPG signals corresponding to the first baseline in the CLAWDAS Elderly
dataset of Subjects 11 and 18, respectively, are considered. In the first row, the signals
in the DTD are reported, showing the difference between the two subjects’ heartbeat
frequencies: for Subject 11, fNb = 1

78
beat

sample , corresponding to 84 beat
minute , while for Subject 18,

fNb = 1
94

beat
sample , corresponding to about 82 beat

minute . In the second row, the same two signals
resampled in the SND are shown. Note that we assumed in defining our procedure that
the heartbeat during a resting state is a stationary and periodic signal; however, this is not
the case in real life, justifying not having fNb strictly equal to 1

128
beat

SNsample for both subjects
in the SND.

In the case of multiple baseline signals, the heartbeat frequency is evaluated as the
average of the heartbeat frequency of all of them. This procedure was applied, for example,
during the normalization of the CLAWDAS signals. In this case, in fact, three different
baseline signals were acquired from each subject.
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The pseudocode that allows applying the personalized normalization to the PPG
signals of a generic subject “s” is reported in Algorithm 1. The first two rows initialize
the counter variable “i” to 0 and set the SND resting state heartbeat frequency (FSNB) to
the value arbitrarily chosen. In Rows [3–11], the resting state heartbeat of subject “s” is
computed. Using this value, the subject-based resampling frequency “fsnc” is evaluated in
Row 12. Finally, in Rows [13–15], all the signals collected from subject “s” are resampled
using the new sampling frequency “fsnc”.

Figure 4. PPG data in resting state conditions for Subjects 11 (left) and 18 (right) are herein reported,
in the original discrete time domain (DTD) and in the Subject Normalized Domain (SND) (top and
bottom rows, respectively). Before the proposed normalization (top row), the subjects have different
heartbeat frequencies, while, in the SND, they are more similar.

Algorithm 1 Pseudocode of the personalized PPG normalization applied to the signals of
subject “s”.

1: i← 0
2: FSNB← resting state heartbeat frequency in subject normalized domain
3: for each baseline signal “bl” collected from subject “s” do
4: f btrail[i]← compute the heartbeat frequency of “bl” as beats/second
5: i← i + 1
6: end for
7: if subject “s” has more than one “bl” signal then
8: f b← mean of the value in fbtrial
9: else

10: f b← the only element in fbtrail
11: end if
12: f snc← multiply fb for FSNB
13: for each signal “t” acquired from subject “s” do
14: resample “t” using the new subject normalized sampling frequency fsnc
15: end for

6. Classification Setting

A binary classification task is herein proposed on CLAS, CLAWDAS Young, and
CLAWDAS Elderly, to evaluate the performance of the personalized PPG normalization
presented in this work. In particular, a cognitive load recognition task was considered in
the analysis. We selected this task of classification because it is widely analyzed in the
physiological signals’ literature with also positive performance [21,22]. Two classes were
thus considered: the class corresponding to signals collected during high cognitive load
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tasks: High CL, and the class related to low cognitive load tasks: Low CL. The tasks used
as representative of each class changed according to the dataset considered.

In particular, according to [35], in the CLAS dataset, the PPG data collected during
the three cognitive tasks (MP, ST, and LP) were labeled as High CL, while the NS data
were labeled as Low CL. In order to make the two classes balanced, MP, ST, and LP signals
were split into two non-overlapped segments of equal length, reaching a cardinality of
360 instances for both classes.

In CLAWDAS Young and CLAWDAS Elderly, the data collected during the MC task
were selected for the High CL class, while the data collected during the AL task were chosen
as representatives of the Low CL class. Thereby, the two classes were equally balanced, with
96 instances each for CLAWDAS Young and 120 instances each for CLAWDAS Elderly. In
this study, the Math Calculation task was preferred over the Reading and Comprehension
tasks as the High CL class because it is able to elicit high mental stress according to what
has been defined in the literature [17].

In all the performed analysis, seven handcrafted features were extracted as character-
istics useful to describe the PPG signals:

• Minima, Maxima, Mean, and Standard Deviation of the signal;
• Peak Rate, which represents the mean number of peaks;
• Inter-Beat Interval (IBI), which represents the mean distance between two peaks in

a row;
• Root Mean Square of Successive Distance (RMSSD), which represents the variance of

the distance between two consecutive peaks [65].

The last three features were evaluated in the discrete domain and reported with
respect to samples. For the sake of clarity, it is recalled that the meaning of samples changes
according to the type of normalization strategy adopted. In particular, samples refer to
subject normalized samples when the features are evaluated on signals with personalized
normalization based on resting state heartbeat, while this term refers to discrete time
samples in all the other cases. All the features so evaluated were also standardized by
applying the z-score before being used as the input to the different classifiers.

Using the the seven features introduced above, three binary classification experiments
were performed for each of the two datasets considered, comparing the following three
normalization strategies:

• AmpN: Amplitude Normalization, as described in Section 4.2;
• SubjFeatN: amplitude normalization followed by a Subject Feature Normalization.

This feature normalization was performed with respect to the subject baseline on the
Peak Rate, IBI, and RMSSD features as follows:

f eatNormi =
f eaturei − f eatureBLi

f eatureBLi
(4)

where i ∈ PeakRate, IBI, RMSSD; f eaturei represents the feature value before the
normalization; f eatNormi is the new normalized value; and f eatureBLi is the mean
value of the i− th feature evaluated on the subject resting state;

• PersFreqN: amplitude normalization followed by the Personalized Normalization
based on the resting state heartbeat, described in Section 5.

The pre-processing and feature extraction operations applied to each signal and the
three considered normalization strategies are summarized in Figure 5.

For each analysis, four different classification models were tested: a Classification and
Regression Tree (CART) with Gini’s diversity index as the criterion of splitting and 100
as the max number of decision splits, and three Support Vector Machines (SVMs) with
different kernels: Linear (SVM Linear), Gaussian (SVM Gaussian), and polynomial Cubic
(SVM Cubic). In particular, for the Gaussian kernel SVM, the kernel scale was set to 3.3 in
order to consider a medium Gaussian SVM.
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A Leave One Subject Out (LOSO) cross-validation [66] was applied to evaluate the
performance of the trained classifiers. At each iteration, the data used to train the classifier
consisted of the signals collected from all the subjects, except one, whose instances were
instead used to test the performance of the model. An overall confusion matrix was finally
generated, joining the single confusion matrices resulting from each iteration. From this
confusion matrix, several well-known evaluation metrics were extracted. In particular, we
selected accuracy to evaluate the general performance of the classifier and the single class
F1-score [67] to assess, instead, the goodness of the classification model in recognizing the
single classes. The classification settings described above are summarized in Table 3.

Figure 5. Pre-processing and feature extraction pipeline applied to the signals of the two datasets.
The operations performed change according to the experiment considered: Amplitude Normaliza-
tion (AmpN), amplitude normalization followed by a Subject Feature Normalization (SubjFeatN),
and amplitude normalization followed by the Personalized Normalization based on resting state
heartbeat (PersFreqN).

Table 3. Summary of the classification settings.

Types of Normalization Considered AmpN, SubjFeatN, PersFreqN

Features Used Maximum, Minimum, Mean, Standard Deviation, Peak Rate, IBI, RMSSD

Classifier Involved SVM Linear, SVM Cubic, SVM Gauss, and CART

Performance Evaluation Method LOSO

Evaluation Metrics Accuracy, single-class F1-score

Dataset CL High Class CL Low Class
Task Num. of signals Task Num. of signals

CLAS Math, Stroop, and Logic Test 360 Neutral State 360
CLAWDAS Young Math Calculation 96 Audio Listening 96
CLAWDAS Elderly Math Calculation 120 Audio Listening 120

7. Results and Discussion

The three different types of normalization, AmpN, SubjFeatN, and PersFreqN, are
compared in this section, considering the high class and low class cognitive load binary
classification task for the two chosen datasets. The performance corresponding to each
of the classification settings described in Table 3 are reported in Tables 4–6, for CLAS,
CLAWDAS Young, and CLAWDAS Elderly, respectively. In particular, the results of the
different normalization strategies are reported in terms of accuracy and single-class F1-score
generated using the LOSO cross-validation approach.
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Table 4. Performance comparison on the CLAS dataset, varying the normalization strategies
(columns) and classification models (rows). Two performance metrics are evaluated using a LOSO
validation strategy: Accuracy (Acc) and single-class F1-score. The best performances reached for each
type of normalization are underlined, while the highest accuracy value of all is highlighted in bold.

AmpN SubjFeatN PersFreqN

Classifier High CL Low CL High CL Low CL High CL Low CL
Acc F1-Score F1-Score Acc F1-Score F1-Score Acc F1-Score F1-Score

SVM Linear 66% 0.65 0.67 67% 0.68 0.67 76% 0.77 0.76
SVM Cubic 74% 0.74 0.73 73% 0.74 0.72 81% 0.81 0.81
SVM Gauss 72% 0.72 0.71 73% 0.72 0.73 78% 0.78 0.77

CART 72% 0.71 0.73 66% 0.65 0.66 73% 0.72 0.73

Table 5. Performance comparison on the CLAWDAS Young dataset, varying the normalization
strategies (columns) and classification models (rows). Two performance metrics are evaluated
using a LOSO validation strategy: Accuracy (Acc) and single-class F1-score. The best performances
reached for each type of normalization are underlined, while the the highest accuracy value of all is
highlighted in bold.

AmpN SubjFeatN PersFreqN

Classifier High CL Low CL High CL Low CL High CL Low CL
Acc F1-Score F1-Score Acc F1-Score F1-Score Acc F1-Score F1-Score

SVM Linear 66% 0.62 0.69 68% 0.63 0.72 79% 0.77 0.80
SVM Cubic 66% 0.66 0.66 68% 0.67 0.68 72% 0.72 0.72
SVM Gauss 63% 0.59 0.66 66% 0.61 0.70 76% 0.75 0.76

CART 56% 0.59 0.51 68% 0.67 0.69 64% 0.63 0.64

Table 6. Performance comparison on CLAWDAS Elderly, varying the normalization strategies
(columns) and classification models (rows). Two performance metrics are evaluated using a LOSO
validation strategy: Accuracy (Acc) and single-class F1-score. The best performances reached for
each type of normalization are underlined, while the the highest accuracy value of all is highlighted
in bold.

AmpN SubjFeatN PersFreqN

Classifier High CL Low CL High CL Low CL High CL Low CL
Acc F1-Score F1-Score Acc F1-Score F1-Score Acc F1-Score F1-Score

SVM Linear 59% 0.58 0.60 69% 0.65 0.72 80% 0.80 0.81
SVM Cubic 59% 0.55 0.62 64% 0.61 0.66 72% 0.71 0.73
SVM Gauss 63% 0.61 0.64 75% 0.74 0.76 78% 0.78 0.78

CART 54% 0.51 0.57 68% 0.68 0.67 75% 0.75 0.74

Note that, despite the considered classifier, SVM Linear, SVM Cubic, SVM Gauss,
and CART, in all the experiments carried out, the normalization strategy herein proposed,
PersFreqN, outperformed the other two normalization procedures, for all the datasets. This
observation is further supported by a visual comparison of the performance of the classifiers
reported in terms of accuracy in the bar plot of Figure 6, varying the normalization strategy
and the involved dataset. In particular, PersFreqN achieved the best accuracy for all
the dataset and type of classifier, with the sole exception of the CART classifier for the
CLAWDAS Young dataset, where the best performance was achieved by the SubjFeatN
strategy. On the other hand, the AmpN normalization was in general the worst approach.



Signals 2022, 3 261

Figure 6. Bar plot comparison of the accuracy obtained using different classifiers and normalization
procedures. Three datasets are considered: CLAS, CLAWDAS Young, and CLAWDAS Elderly.

Comparing the datasets, the best performance was observed on the CLAS dataset.
In this case, the proposed PersFreqN allowed reaching an accuracy of 81% adopting the
SVM classifier with the polynomial cubic kernel. This result significantly outperformed the
accuracy of 74% reached using AmpN and the 73% obtained using SubjFeatN.

For the CLAWDAS datasets, the highest accuracies achieved were 79% for CLAWDAS
Young and 80% for CLAWDAS Elderly, both obtained with the proposed PersFreqN and
SVM with a linear kernel. These values show a significant improvement with respect to the
other normalization strategies AmpN and SubjFeatN, which were always lower than 66%.

Another consideration regards the classifier that allowed reaching the best results. In
general, from the three Tables 4–6, it emerged that the highest accuracy values were usually
achieved by the SVM classifiers with the linear or cubic kernel, whereas the lowest ones
were generally obtained by the CART classifier.

Finally, a last consideration should be made on the SubjFeatN normalization strategy.
In general, this normalization produced a performance higher than that of AmpN, even
if it appeared less effective compared to the proposed PersFreqN strategy. These results
confirmed that a normalization strategy that takes into account not only amplitude nor-
malization, but also subject’s characteristics should be adopted to remove inter-subject
variability.

As a final remark, all the adopted classification settings were able to classify with
comparable performance both classes, as indicated by the values of the single-class F1-score
in all the tables. However, the introduction of the proposed PersFreqN seemed to produce
even more balanced classification results.

8. Conclusions

While considering physiological data, signal normalization not only with respect to
amplitude, but also with respect to personal characteristics is mandatory to perform subject-
based analysis, especially if machine learning techniques should be applied. Personalized
normalization on PPG data, both at the feature level, SubjFeatN, and with respect to
heartbeat frequency, PersFreqN, introduced an increase in the classification performance,
considering different classification models and datasets. In particular, the personalized PPG
normalization based on subject heartbeat herein proposed, PersFreqN, outperformed the
other strategies and permitted significantly reducing inter-subject heterogeneity. Moreover,
the proposed normalization could also be useful for intra-subject analysis, especially when
comparing the physiological responses of the same subject, on different days or even at
different moments of the day: it is well known, in fact, that the physiological responses not
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only depend on external stimuli, but also on physical and internal conditions, which can
significantly vary for the same subject with respect to time.
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