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Abstract: Millimeter-wave radar has demonstrated its high efficiency in complex environments in
recent years, which outperforms LiDAR and computer vision in human activity recognition in the
presence of smoke, fog, and dust. In previous studies, researchers mostly analyzed either 2D (3D)
point cloud or range–Doppler information from radar echo to extract activity features. In this paper,
we propose a multi-model deep learning approach to fuse the features of both point clouds and range–
Doppler for classifying six activities, i.e., boxing, jumping, squatting, walking, circling, and high-knee
lifting, based on a millimeter-wave radar. We adopt a CNN–LSTM model to extract the time-serial
features from point clouds and a CNN model to obtain the features from range–Doppler. Then
we fuse the two features and input the fused feature into the full connected layer for classification.
We built a dataset based on a 3D millimeter-wave radar from 17 volunteers. The evaluation result
based on the dataset shows that this method has higher accuracy than utilizing the two kinds of
information separately and achieves a recognition accuracy of 97.26%, which is about 1% higher than
other networks with only one kind of data as input.

Keywords: human activity recognition; millimeter-wave radar; deep learning; feature fusion; point cloud;
range–Doppler

1. Introduction

With the fast development of communication networks, such as 5G and WiFi networks,
millimeter waves have emerged as a key technology to achieve high data rate transmission.
With the increase in frequency, the perception ability of wireless signal improves. In the
future, wireless signals will not only have communication ability but also have sensing
ability, such as millimeter waves in 5G and Terahertz in 6G. Compared with the traditional
communication technologies, millimeter waves have the capability of sensing. Hence,
wireless sensing based on millimeter waves has attracted more research attention. Human
activity recognition is widely investigated in the field of ubiquitous sensing based on
inertial sensors, computer vision, or LiDAR. Compared with those traditional approaches,
human activity recognition based on millimeter-wave radar has many unique advantages.
Firstly, compared with LiDAR, millimeter-wave radar has a better penetration ability of
floating particles such as smoke and dust. This advantage means that the process of activity
recognition of millimeter-wave radar has strong environmental adaptability. Secondly,
because the millimeter-wave radar uses radio frequency signals, it will not return the
privacy screen of the target person, which means that the radar monitoring will not reveal
personal identity information. This edge enables indoor activity recognition based on the
millimeter-wave radar more widely applicable, such as nursing homes, kindergartens,
wards, etc.

In previous studies, researchers generally used collected data such as point cloud,
range–Doppler, and echo intensity from millimeter-wave radar echo signals for activity
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recognition. For instance, RadHAR [1] shows how to voxelize sparse and non-uniform point
clouds and feed them into a classifier. Additionally, in [2], since the single-sensor system can
only observe the radial component of the micro-Doppler signal, researchers propose a multi-
static sensor consisting of two bistatic micro-Doppler sensors to enhance the classification
of micro-Doppler signatures to improve activity recognition accuracy. In [3], also using
Doppler information, the researchers propose an environmental impact mitigation method
by analyzing millimeter-wave signals in a Doppler–range domain. In terms of extracting
activity features, deep learning is favored by researchers [4], among which convolutional
neural networks (CNN) and long short-term memory networks (LSTM) are widely used.
Because most human actions have time-series characteristics, these two network models
are often combined. For example, some researchers [5] adopt LSTM + CNN network to
classify activities.

However, most of these studies only focus on a single type of data that cannot com-
prehensively depict the activity feature. The approaches based on point clouds merely
leverage the distributions of point clouds in 3D space but do not consider the moving
speed. In contrast, the methods using range–Doppler does not take the distributions of
point clouds into consideration. Our goal is to design a multi-model network by fusing
multiple types of input data to increase the recognition accuracy based on mmWave. We
are going to extract the features from the two kinds of data, fuse them, and then classify
the activities. Therefore, in this work, we propose a new method for activity recognition
that uses both 3D point cloud data and range–Doppler data as input. We summarize the
main contributions in this work as follows.

• First, we propose a multi-model deep learning model to fuse the point cloud and
range–Doppler to achieve activity recognition based on millimeter-wave radar. We
voxelize and merge the 3D point cloud data in multiple frames into a 4D array. We
further merge and convert the range–Doppler data in the same number of frames
into a 3D array. Afterward, we use two sub-networks to train these two kinds of data
separately. The 3D CNN + LSTM network is applied for the point cloud data, while
the 3D CNN network is used for the range–Doppler data. Next, we fuse the outputs of
the two networks, that is, the activity features contained in each kind of data, to obtain
a more comprehensive activity feature than utilizing only one kind of data. Finally,
the fused features are input into the fully connected layer for classification.

• Second, we use the IWR1843 device of Texas Instruments to collect data on six activities,
i.e., boxing, jumping, squatting, walking, circling, and high-knee lifting, and construct
a dataset for activity recognition.

• Finally, experimental results show that the classification using the fused features of
these two kinds of data is about 1% more accurate than merely using point cloud
or range–Doppler, which shows that the use of multiple types of information has a
positive effect on the recognition accuracy.

The paper is organized as follows. Section 2 is related work. Section 3 is the preliminary
of millimeter-wave radar that introduces the working principle. Section 4 introduces the
pre-processing of data and different network structures. Section 5 expounds on the process
of the experiment and analyzes the experiment results. Section 6 gives the conclusion of
this paper.

2. Related Work

Research on classification and identification using millimeter-wave radar has been
increasing in recent years. Many researchers use millimeter-wave radar to identify human
gait [6,7], gestures [8,9], and activities [10–16]. They extract different types of data from the
raw data returned by the radar and use machine learning [17] and deep learning to extract
the features of the target to achieve the purpose of classification and identification. For
example, in [7], researchers collect a large variety of human walking data with millimeter-
wave radar and use this data set to evaluate the performance of some deep learning
networks. In [8], the researchers discuss the feasibility of AI-assisted gesture recognition
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using 802.11 ad 60 GHz (millimeter wave) technology in smartphones. They design a
CNN + LSTM sequence model and a tiny pure CNN model to recognize different gestures,
including hands and fingers, with high precision and small size.

In the experiments of recognizing human activities, the experimenters use a variety
of methods. For example, in [10], the experimenters converted the obtained point cloud
data into micro-Doppler features and used CNN to extract the features to classify actions.
In [11], the researchers proposed a new point network. They collect human echo signals
through radar, extract the range–velocity sequence, and then add the time dimension on
the basis of two-dimensional data to form the range–velocity–time data. Compared with
directly processing the original point cloud, the point network can learn the structural
features from the micromotion trajectory more effectively; that is, it can learn the dynamic
motion better. In [12], the researchers find that measurements with very high azimuth
and elevation resolution can locate scatterers from the human body. The authors extract
features from the point cloud using deep recurrent neural networks with two-dimensional
convolutional networks (DRNN). Some researchers are dissatisfied with using a single
type of feature for identification but use multiple data as input. In [13], the researchers
extracted the time–range, time–Doppler, and range–Doppler features of the radar signal
and fused them, and then used CNN for learning and classification and obtained a higher
accuracy than the traditional two-dimensional recognition method. Some researchers try to
improve the speed of human action recognition. In [14], the researchers propose a field-
programmable gate array (FPGA) based convolutional neural network (CNN) acceleration
method. They use the spectrogram of the millimeter-wave radar echo as the CNN input
and finally find that the method not only maintains a high classification accuracy but also
improves the execution speed. Some researchers have built a system framework for higher
accuracy. In [15], the researchers propose a hands-free human activity recognition frame-
work leveraging millimeter-wave sensors. They implement the network in one architecture
and optimize it to have higher accuracy than those networks that can only obtain a single
result (i.e., only pose estimation or activity recognition). Some researchers focus on solving
some application problems in the real world. For example, in [16], researchers tried to solve
these two problems: poor recognition accuracy in noisy environments and being unable to
provide a real-time response due to long time delay. They propose m-activity, a method that
can reduce the noise caused by the environmental multipath effect and run smoothly while
realizing har. The off-line accuracy and implementation accuracy of this method are verified
in the gym, and good results are obtained.

3. Preliminary of Millimeter Radar

The carrier wavelength of millimeter-wave radar is electromagnetic waves in the range
of 1–10 mm, which has the characteristics of a short wavelength, a wide frequency band,
and it is not easy for it to interfere. Millimeter-wave radar was used in the military in the
early days, and in recent years, with the development of technology, it has been gradually
used in automotive electronics, drones, and other fields. At present, the frequency bands of
millimeter-wave radars are mainly divided into three categories: 24 GHz frequency band,
77 GHz frequency band, and 76–81 GHz frequency band. The radar used in this paper
works at 76–81 GHz. The biggest feature of this frequency band is the wide bandwidth,
so it has a high range resolution and is suitable for distinguishing different actions of the
human body.

Due to its high resolution, low signal processing complexity, and low cost, FMCW is
the most used modulation method for millimeter-wave radar. FMCW radar system mainly
includes transceiver antenna, RF front-end, modulation signal, a signal processing module,
etc. Millimeter-wave radar can detect the distance, azimuth, and relative speed of the target
through the correlation processing of the received signal and the transmitted signal. The
principle of ranging and speed measurement of FMCW radar is introduced below.
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3.1. The Principle of Ranging of FMCW Radar

FMCW radar transmits continuous waves with frequency changes in the frequency
scanning period. There is a certain frequency difference between the echo reflected by the
object and the transmitted signal. The distance information between the target and the
radar can be obtained by measuring the frequency difference.

Let fS(t), fR(t) be the frequency variation functions of sending and receiving signals,
respectively, and f0 be the initial frequency. Assuming that the relative speed vr is zero.
The relationship on the rising edge of the signal is as follows:

fS(t) = f0 +
fc

tc
· t (1)

fR = fS(t − τ) (2)

There is a beat frequency function:

fb = fS(t)− fR(t) (3)

Hence, we can draw the Figure 1 below, where tc is half of the frequency sweeping
cycle, fc is the frequency sweeping bandwidth, and τ is the time from signal transmission
to reception.
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Figure 1. The curves of the sent signal frequency and the received signal frequency versus time.

Because of R = τ·c
2 , from the geometric relationship fb

τ = fc
tc

in Figure 1, it can be
concluded that:

R =
c
2
· tc

fc
· fb (4)

where c is the speed of light.
To sum up, the detection range of the FMCW radar is determined by Equation (4), and

the key parameter is the frequency difference between transmission and reception, which
directly affects the selection of ADC sampling rate. Although the scanning bandwidth also
has an impact on the detection distance, it does not affect the selection of ADC when it is a
fixed value.

3.2. The Principle of Speed Measurement of FMCW Radar

If there is no Doppler frequency, the frequency difference during the rising edge is
equal to the measured value during the falling edge. For moving targets, the frequency
difference during the rising or falling edge is different. We can measure the distance and
speed through these two frequency differences. Therefore, we can draw the curve of the
beat frequency versus time, as shown in Figure 2, where fb refers to beat frequency.
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From the Doppler effect, we know:

fb1 = fb − fd (5)

fb2 = fb + fd (6)

fd =
2 f · vr

c
(7)

f is the central frequency of the transmitted signal, and from Equation (4), we can obtain:

fb =
2 · R · fc

c · tc
(8)

Substituting Equations (5)–(7) into Equation (8) yields Equations (9) and (10):

fb1 =
2 · R · fc

c · tc
− 2 f · vr

c
(9)

fb2 =
2 · R · fc

c · tc
+

2 f · vr

c
(10)

Subtracting Equation (9) from Equation (10), then we can obtain the formula of the
relative speed vr (11):

vr =
c

4 · f
· ( fb1 − fb2) =

λ

4
· ( fb1 − fb2) (11)

Thus, FMCW radar can realize ranging and speed measurement.

4. Activity Recognition Based on Fusion of Point Cloud and Range–Doppler
4.1. Data Pre-Processing

In the actual data acquisition process, the signal will be disturbed by noise due to the
influence of the environment, hardware, and other factors. Therefore, denoising is needed
in data pre-processing. There are many signal denoising methods, such as CFAR (Constant
False-Alarm Rate) algorithm, Fourier transforms, wavelet transforms [18], compressed
sensing [19–21], and so on. They have different advantages and are applied in different
scenarios. Here we use CA-CFAR (Cell Average Constant False-Alarm Rate) algorithm.
CFAR refers to the technology where the radar system judges the signal and noise output by
the receiver to determine whether the target signal exists under the condition of keeping the
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false alarm rate constant. CFAR detector first processes the input noise and then determines
a threshold, which is compared with the input signal. If the input signal exceeds this
threshold, it is judged as having a target; otherwise, it is judged as having no target. CA-
CFAR algorithm is one of the most classical mean CFAR algorithms. It uses the average
value of a certain range of cells around the current data to be detected to determine the
threshold of the tested cell. It has the lowest loss rate of all CFAR algorithms.

Since the millimeter-wave radar has a wide coverage area, and the distance between
the collected person and the radar is relatively fixed, we consider removing some unnec-
essary data. This is performed to prevent excessive invalid data, which reduce the speed
and accuracy of recognition. Hence, we filter the data whose range values are between 1 m
and 2 m. In the following part, we explain how to pre-process 3D point cloud data and
range–Doppler data, respectively.

Considering the irregularity of the number of 3D point cloud data in each frame, we
must convert it into a data format with a fixed size and shape so that it can be effectively
input into a convolutional neural network (CNN). Therefore, we first establish a three-
dimensional discrete coordinate system. Then use Equations (12)–(14) for each frame to
calculate the scale of the x, y, and z axes, in which the two ends of the coordinate axis are
the minimum and maximum value of the point cloud data of the axis. Then we create a
10 × 32 × 32 array and fill the point cloud coordinates of each frame into the corresponding
position of the array. It is worth mentioning that we do not directly fill in the coordinate
value but count the number of points located in each array. This is to avoid having two
different coordinates filled in the same position. Thus, we achieve a three-dimensional
array of size 10 × 32 × 32 that represents the distribution of the point cloud in this frame.
However, when the sampling rate is eight frames per second, a single frame of data
cannot reflect the timing characteristics between frames. Therefore, we developed a fourth
dimension based on the three-dimensional data, which represents the time series, and
merged the eight frames of data to obtain a 4D array with a size of 8 × 10 × 32 × 32. So far,
the pre-processing of 3D point cloud data is over.

scalex =
Xmax − Xmin

10
(12)

scaley =
Ymax − Ymin

32
(13)

scalez =
Zmax − Zmin

32
(14)

On the other hand, the pre-processing of range–Doppler data is relatively simple. As is
shown in Figure 3, the range–Doppler data are presented in a picture-like form. Its abscissa
is the range, the ordinate is the Doppler speed, and the value in the picture is the thermal
value. Hence, we export the range–Doppler data from each frame separately and achieve
a 2D array of size 32 × 32. Then, to synchronize with the 3D point cloud, we merge the
range–Doppler data in eight frames and finally achieve a 3D array with a size of 8 × 32 × 32.

4.2. Using Only 3D Point Cloud Data as Input

We know that 3D point cloud data reflects the spatial and temporal characteristics
of actions. For the extraction of spatial features, we use three-dimensional CNN, and for
time series features, a simple CNN network may not be able to respond well to the time
series connection between frames, so we designed two kinds of networks for comparative
experiments. The first network uses only CNN, while the second network adds an LSTM
layer after the CNN.
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4.2.1. Three-Dimensional Convolutional Neural Network (3D CNN)

For 3D point cloud data, we first consider that it reflects the spatial features of actions,
and in the data pre-processing part above, we also voxelize each frame of data into a fixed
size 3D array, so it is not difficult to think that we can use 3D CNN to extract the spatial
features. However, considering the sparsity of point clouds (the number of point clouds
in a frame is generally less than 10), we merge the point cloud from eight frames into one
frame, that is, add eight consecutive three-dimensional arrays bit by bit to achieve a new
three-dimensional array with a size of 10 × 32 × 32, which is denser. Then it is used as the
input of the convolution network to train the network.

The structure of the network is shown in Figure 4. In the convolution part, we use the
‘Conv3D-Conv3D-Maxpooling’ structure three times. The 3D convolution layers all use the
convolution kernel of (3, 3, 3), the number of convolution kernels is 32, the padding is set
to ‘same’, the activation function is Relu, and the stride is set to (1, 1, 1). The pool size of
the maxpooling layer is set to (2, 2, 2), the stride is set to (1, 1, 1), and the padding is set to
‘valid’. Then the extracted features are flattened and input into the fully connected layer.
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4.2.2. Three-Dimensional Convolutional Neural Network and Long Short-Term Memory
Network (3D CNN + LSTM)

Considering that the activities are continuous, there is a timing characteristic between
the received frames. Hence, we use a 3D CNN + LSTM network for training and classifi-
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cation. Because the acquisition rate is eight frames per second, and the duration of each
activity is about one second, we pre-process the 3D point cloud data into a four-dimensional
array of size 8 × 10 × 32 × 32, which includes the merging of 3D point cloud data received
in one second. Because the input of LSTM must contain the parameter timesteps, we use
the ‘TimeDistributed’ layer wrapper to encapsulate the convolutional layer, pooling layer,
and flatten layer, adding a time dimension to the input data. As mentioned above, we set
the value on this dimension to 8.

The structure of the network is shown in Figure 5. In the convolution part, we use the
‘Conv3D-Conv3D-Maxpooling’ structure three times. The parameter settings are the same as
in the first network. Then the extracted features are flattened and input into the bidirectional
LSTM layer, whose number of hidden layer units is 16. Finally, a fully connected layer is
used for classification after regularization, whose activation function is Softmax.
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4.3. Using Only Range–Doppler Data as Input

In terms of data validity, it is not difficult to find that both 3D point cloud data and
range–Doppler data are theoretically valid. Both types of data contain activity features that
can be extracted by deep learning. Hence, we design two different networks and try to
train them on range–Doppler data in order to compare the results with networks using
other kinds of data as input. The two networks are: a three-dimensional convolutional
neural network (3D CNN) and a two-dimensional convolutional neural network (2D CNN).
The two networks are described below.

4.3.1. Three-Dimensional Convolutional Neural Network (3D CNN)

Because a piece of range–Doppler data is actually a superposition of multiple images
in the time dimension, we try to use a 3D CNN to train the range–Doppler data. The
structure of the network is shown in Figure 6. As we can see, this network is similar to
the convolutional part of the point cloud network. We used the structure of ‘Conv3D-
Conv3D-Maxpooling’ three times, where the parameter settings are consistent with the
network in Part B, without the ‘TimeDistributed’ layer wrapper encapsulating the lay-
ers. Then we input the features to the flattened layer and the fully connected layer for
classification successively. The network takes eight frames of range–Doppler data as a
set of input data, that is, the data with the shape of 8 × 32 × 32 × 1 can be regarded as
a three-dimensional single channel stereo image, so the network can be understood as a
classification network of three-dimensional images. However, different from the ordinary
image classification network, the input data has not only spatial characteristics but also



Signals 2022, 3 274

temporal characteristics. The temporal characteristics can be understood as the series
between frames, that is, the characteristics reflected by Doppler velocity. This network
can better learn the characteristics of dynamic actions rather than only extracting static
two-dimensional features.
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4.3.2. Two-Dimensional Convolutional Neural Network (2D CNN)

Since the duration of each activity is not strictly one second, it can be problematic to
treat eight frames of range–Doppler data as a full representation of activity. Thus, instead of
using 3D single-channel data as input, we consider designing a network that uses 2D multi-
channel data as input. The structure of the network is shown in Figure 7. It is worth noting
that, different from 3D CNN, the convolutional layers change from three-dimensional
to two-dimensional, and in the first convolutional layer, we set the input data shape to
(32, 32, 8)—two-dimensional data with eight channels, width and height being 32. In order
to make a valid comparison with the results of other networks, other parts of the network
remain unchanged except for changing the shape of the input data. Therefore, we use
the ‘Conv2D-Conv2D-Maxpooling’ structure three times and keep the parameters, such as
the number and size of the convolution kernel, step size, etc., unchanged but only delete
the depth dimension. Similarly, we input the features obtained by convolution into the
flattened layer and the fully connected layer for classification.
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4.4. Using Both 3D Point Cloud Data and Range–Doppler Data as Input

We know that the more types of information describing an object, the higher the
classification accuracy and loss will be. Multimodal fusion is based on this principle [22].
In our study, there are various kinds of information describing an activity, such as point
cloud information, echo intensity information, range–Doppler information, and so on. This
information describes the activity from different aspects, and the information contains
different characteristics of the activity. If we extract these features and fuse them effectively,
we can achieve more comprehensive features than using one kind of information alone.
Therefore, we propose to fuse the features contained in the 3D point cloud information and
the range–Doppler information. Of course, fusing more kinds of features will achieve a
more comprehensive description of the activity, but the difficulty of their fusion will also
increase accordingly, so this paper only fuses the features of point cloud information and
range–Doppler information.

Taking the second network of part B and the first network of part C as an example,
the network structure is shown in Figure 8. We parallelize the networks of parts B and
C and input the 3D point cloud data and range–Doppler data into these two networks,
respectively. The input of the fully connected layers of the two networks is the features
contained in the two kinds of information, so we output the results of the previous layer
of the fully connected layer separately and found that they are all two-dimensional, and
the first dimension is the amount of data. Hence, we feed these two features into the
concatenate layer, merge them in the second dimension, and achieve a feature that contains
two different features. Finally, we regularize this feature and feed it into a fully connected
layer for classification.
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5. Experiment and Results
5.1. Data Collecting and Experiment Setup

We adopt IWR1843, which is produced by Texas Instruments (TI), for data collecting.
The IWR1843 device is an integrated single-chip millimeter-wave sensor based on FMCW
radar technology, which can operate in the 76 GHz to 81 GHz band. IWR1843 includes
three transmitting antennas and four receiving antennas, ADC converters, and a DSP
subsystem [23].

Data sent by the radar to the serial port is the hexadecimal data that has been processed
by the above modules. The frame structure of the radar output is shown in Figure 9. Each
packet consists of the header, the TLV (Type, Length, Value) items, and the padding. Users
can set different Type values to different output types of data. We achieve the data by
setting the Type values corresponding to the 3D point cloud data and the range–Doppler
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data. Before collecting, we have configured the radar parameters, and some important
parameters are shown in Table 1.
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Table 1. Radar configuration.

Parameters Value

Start Frequency (GHz) 77
Scene Classifier best_range_resolution

Azimuth Resolution (deg) 15 + Elevation
Range Resolution (m) 0.044

Maximum unambiguous Range (m) 9.06
Maximum Radial Velocity (m/s) 1
Radial velocity resolution (m/s) 0.13

Frame Duration (ms) 125

Output Data Types
1 (List of detected objects)

and
5 (Range/Doppler heat-map)

After configuring, we connect the IWR1843 device to the computer and place it on a
platform with a height of 1.2 m. The side where the antenna array is located faces the person
doing the activity. In the process of data collection, the fixation of the millimeter-wave
radar must be guaranteed. We design six activities, which are boxing in place, jumping in
place, squatting, walking in place, circling in place, and high-knee lifting. Each activity is
completed by 17 collectors and repeated for 20 s per person. During the data collection
process, we decode the hexadecimal 3D point cloud data and range–Doppler data contained
in the signal received by the serial port in real-time. After using one-hot encoding to label
the data, we set the ratio of the amount of training data to the amount of validation data to
be 4:1; that is, the training set accounts for 80% of the total data, while the verification set
accounts for 20%. In order to control the variables to effectively compare the performance
of the networks, we use the same set of data for training. In our experiments, we use a
GPU server with a GTX3080 to train five kinds of networks.

5.2. Evaluation and Analysis

In order to train the model, the parameters are set as follows. First, we choose cross-
entropy as the loss function. This loss function applies when the labels are multi-class
patterns. Then we choose Adam as the optimizer. It uses the first-order moment estimation
and second-order moment estimation of the gradient to dynamically adjust the learning
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rate of each parameter. The advantage is that each iteration of the learning rate has a clear
range, which makes the parameter change very smooth. Accuracy is selected as the metrics
method. Batch_size is set to 20.

Five kinds of networks are trained below. We first train the two networks of only
inputting point cloud data and the two networks of only inputting range–Doppler data
mentioned above, and then pick out the networks with the highest accuracy and the
smallest loss, and then connect them in parallel. Then we input both point cloud data and
range–Doppler data into the new network for training.

5.2.1. Using Only 3D Point Cloud Data as Input

As mentioned above in the data pre-processing section, we input the acquired 3D
point cloud data into the two networks in two different data formats and then train
them by 100 epochs separately. After training, we plot the validation set accuracy and
loss downloaded from Tensorboard into Figures 10 and 11 and find their maximum and
minimum values, respectively, as shown in Table 2.
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Table 2. Accuracy and loss of the two networks using point cloud as input.

Network Structure Accuracy Loss

3D CNN 90.20 0.371
3D CNN + LSTM 96.59 0.129
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According to the above curves and tables, adding the LSTM network to the pure
convolution network improves the accuracy of the network, reduces the loss, and improves
the convergence speed. This verifies that the point cloud data has obvious timing character-
istics between frames. To better evaluate the precision, we visualize the confusion matrix,
as shown in Figure 12. Each column of the confusion matrix represents the predicted
category, and the total number of each column represents the number of the data predicted
as that category. While each row represents the true ascribed category of the data, the total
number of the data for each row represents the number of data instances of that category.
We find that the prediction difficulty of these activities, except circling, which is slightly
more difficult, is all close.
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5.2.2. Using Only Range–Doppler Data as Input

Similar to 3D point cloud data, we combine eight frames of range–Doppler data. For
consolidation, we use two methods, i.e., adding a new dimension to keep the number of
channels unchanged and increasing the number of channels while keeping the dimension
unchanged. As mentioned above, different networks are used due to different data formats.
The former uses a three-dimensional single-channel convolution network, while the latter
uses a two-dimensional multi-channel convolution network. Their network structures are
similar. After training the two networks with 100 epochs, respectively, we draw the curves
of verification accuracy and loss into Figures 13 and 14, find out the maximum value of
accuracy and the minimum value of loss, respectively, and make Table 3.

Table 3. Accuracy and loss of the two networks using range–doppler as input.

Network Structure Accuracy Loss

3D CNN 95.85 0.125
2D CNN (eight channels) 95.43 0.130
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Figure 14. Two loss curves of using only range–Doppler data as input.

As can be seen from the above figures and table, 3D CNN has a slight advantage over
2D CNN in terms of accuracy and loss, with an accuracy of 0.42% higher and a loss of
0.005 lower. Moreover, by observing the two curves, we find that 3D CNN has obvious
advantages in convergence speed, which also means that 3D CNN needs fewer hardware
resources on the basis of training the same amount of data. By printing the model structures
of the two networks, we find that the parameters of 3D CNN that need to be trained are far
less than those of 2D CNN. The 3D CNN needs to train 131,622 parameters, while 2D CNN
needs to train 279,076 parameters, which is more than twice as few as the latter. In order
to compare the verification accuracy of each action in the 3D CNN network, we draw the
confusion matrix, as shown in Figure 15. In this network, we find that high-knee lifting is
easy to predict while circling is relatively difficult to identify. The spectrograms of other
activities are similar.
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5.2.3. Using Both 3D Point Cloud Data and Range–Doppler Data as Input

It can be concluded that, for point cloud data, the 3D CNN + LSTM has the highest
accuracy and the lowest loss among the two networks, while for range–Doppler data, the
3D CNN performs best. Therefore, we choose these two networks to be the two parallel
branches of the feature fusion network mentioned above. The obtained network structure
is shown in Figure 8. Hence, we train this network and draw the accuracy and loss images
with the results of these three different networks in Figures 16 and 17 after obtaining the
results and tabulating the specific values, as shown in Table 4.
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Table 4. Accuracy and loss of the three networks using different kinds of input.

Input Data Kinds Network Structure Accuracy Loss

Only Range–Doppler 3D CNN 95.85 0.125
Only 3D point cloud 3D CNN + LSTM 96.59 0.129

Both 3D point cloud and
Range–Doppler

3D CNN + LSTM and
3D CNN Parallelized 97.26 0.088
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and range–Doppler data as input has better accuracy and loss than using one of them
alone. This shows that using more kinds of data can extract more action features, which
has a positive factor for the improvement of network performance. We also find that the
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The above experimental results tell us that the fusion network has better classification
results. We further study this fusion network and carry out an ablation analysis. We change
the depth of the network and then observe the changes in accuracy and loss value. We
change the depth of the network by changing the number of repetitions of the structure of
“Convolution Layer-Convolution Layer-Maxpooling Layer”. The purpose of this is not to
change the overall structure of the network as much as possible so as to achieve the effect
of controlling other variables. Based on the original network, we double and halve the
repetition times of the structure of “Convolution Layer-Convolution Layer-Maxpooling
Layer” in the two branch networks of the fusion network-3D point cloud branch network
and range–Doppler branch network, respectively. In this way, we have obtained two new
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networks, one of which has 20 layers of 3D point cloud branch network and 18 layers of
range–Doppler branch network, while the other has 11 layers of 3D point cloud branch
network and 9 layers of range–Doppler branch network. The 3D point cloud branch
network of the original network has 14 layers, while the range–Doppler branch network
has 12 layers. We train and verify the two new networks with the same data, respectively,
and draw the obtained accuracy and loss value into a table, as shown in Table 5.

Table 5. Accuracy and loss of fusion network of three different depth.

Layers of Two Branch Networks
(3D Point Cloud Branch/Range–Doppler Branch) Accuracy Loss

14/12 97.26 0.088
20/18 96.93 0.108
11/9 96.17 0.144

The above experimental results show that increasing or decreasing the number of
network layers will lead to a decrease in accuracy and an increase in loss value, which
means that the best number of network layers is the number of layers of the original
network. We know that, generally speaking, when the parameters are adjusted reasonably,
the more layers and neurons, the higher the accuracy, which explains why the network
performance will deteriorate after reducing the number of layers. However, this is in
contradiction with the phenomenon that the network performance still deteriorates after
increasing the number of network layers. The reason is that the increasing number of
network layers leads to overfitting.

6. Conclusions

Nowadays, with the deepening of the interconnection of all things, people pay more
attention to millimeter-wave radar, which can ensure privacy and performance at the same
time. In this paper, depth learning is used to classify people’s different actions collected by
millimeter-wave radar. Different from previous studies, we increase the types of input data,
input 3D point cloud data, and range–Doppler data into the network for training at the
same time and then fuse the extracted features, respectively. Finally, the network performs
better and achieves a recognition accuracy of 97.26%, which is about 1% higher than other
networks with only one kind of data as input. This represents the success of our attempt to
increase data types to achieve higher accuracy. We also consider that we can continue to
expand data types, optimize the process of feature extraction, and better integrate different
types of data in order to obtain better network performance, which requires further study.
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