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Abstract: In this paper, we propose robust image-smoothing methods based on `0 gradient min-
imization with novel gradient constraints to effectively suppress pseudo-edges. Simultaneously
minimizing the `0 gradient, i.e., the number of nonzero gradients in an image, and the `2 data
fidelity results in a smooth image. However, this optimization often leads to undesirable artifacts,
such as pseudo-edges, known as the “staircasing effect”, and halos, which become more visible
in image enhancement tasks, like detail enhancement and tone mapping. To address these issues,
we introduce two types of gradient constraints: box and ball. These constraints are applied using
a reference image (e.g., the input image is used as a reference for image smoothing) to suppress
pseudo-edges in homogeneous regions and the blurring effect around strong edges. We also present
an `0 gradient minimization problem based on the box-/ball-type gradient constraints using an
alternating direction method of multipliers (ADMM). Experimental results on important applications
of `0 gradient minimization demonstrate the advantages of our proposed methods compared to
existing `0 gradient-based approaches.

Keywords: image smoothing; detail enhancement; total variation; `0 pseudo-norm; alternating
direction method of multipliers

1. Introduction

Image smoothing is a key technique in image processing and is used in applications
such as deblurring [1–4], detail enhancement [5,6], tone mapping [7–9], and so on.
Furthermore, it is used in various fields, such as in medical imaging [10–12], computer
graphics [13–15], remote sensing [16–18], and character recognition [4,19,20].

Filtering-based smoothing methods, e.g., a bilateral filter [6,21], a guided filter [22–25],
and a nonlocal mean filter [26,27], have been actively studied for a long time and are often
used in practical situations, as they can easily obtain smooth images that roughly maintain
the structural gradients of input images with a relatively low computational cost.

Optimization-based smoothing methods were recently proposed in [1,28–41], and
they can flexibly incorporate a priori information into minimization problems. The most
standard a priori knowledge of natural images is local smoothness. The popular total
variation (TV) [1] is designed as the total magnitude of the vertical and horizontal discrete
gradients of an image and promotes this smoothness property on optimization. This
method can be employed in more advanced image restoration problems, e.g., reflection
removal [42,43], rain streak removal [44–46], intrinsic image decomposition [36,47,48],
image blending [49], and multispectral pansharpening [50–53], which are complex problems
to solve using filtering-based techniques; this is because optimization-based methods can
explicitly and quantitatively design observation models by modeling using some norms
and specific functions approximately. For example, we can flexibly define not only the

Signals 2023, 4, 669–686. https://doi.org/10.3390/signals4040037 https://www.mdpi.com/journal/signals

https://doi.org/10.3390/signals4040037
https://doi.org/10.3390/signals4040037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0000-0003-4774-1183
https://orcid.org/0000-0002-3245-2672
https://doi.org/10.3390/signals4040037
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals4040037?type=check_update&version=1


Signals 2023, 4 670

commonly used `2-norm but also the `1-norm [54,55] and Huber loss function [49,56,57],
which are robust to outliers, and so on, as a data-fidelity term in minimization problems.

Among these optimization-based methods, the `0 gradient minimization proposed
in [31] is known to provide the best approximation of the properties of the local piece-wise
flatness of natural images, which is among the most essential prior knowledge in image
processing. In this method, the `0 gradient, which is the number of nonzero gradients
of an image, is minimized together with the `2 data fidelity to an input image. Recently,
the applications of this method were actively studied, such as algorithm acceleration [58],
deblurring [3,4], multi-dimensional data smoothing [58], and layer separation [48,59]. Ono
investigated the `0 gradient projection in [37], which allows us to control the degree of
smoothing of the output image intuitively. Several extensions of the `0 gradient minimiza-
tion were recently proposed to flexibly separate the structure and texture components in
smoothing texture-rich images [39–41].

However, the `0 gradient-based smoothing methods have inherent issues, resulting
in undesirable artifacts, such as pseudo-edges and halos in the output images. When an
input image contains regions with gradations, the output image often exhibits a piecewise
constant appearance, commonly referred to as the staircasing effect. These gradation re-
gions produce strong edges in the output, which are not present in the input image. These
issues arise because characteristics related to the intensity and sign of gradients within
the observed images are not explicitly considered constraints in optimization problems.
Furthermore, these artifacts become more noticeable, particularly in detail enhancement
and tone-mapping applications. For example, although these applications are frequently
used for diagnosing X-ray images, the staircasing effect introduces a potential risk of misdi-
agnosis. Similarly, tone mapping is often applied in low-light scenes, such as autonomous
driving applications. However, this effect may lead to a reduction in object recognition
accuracy. Our primary objective is to mitigate those unexpected artifacts caused by the
staircasing effect by incorporating appropriate constraints into the gradient domain within
optimization problems.

In this paper, we propose effective smoothing methods based on minimizing the `0
gradient with novel gradient constraints that suppress those pseudo-edge artifacts. In
particular, we introduce two types of gradient constraints: a box-type gradient constraint
and a ball-type constraint. We incorporate them in the `0 gradient minimization problem.
These constraints are imposed using an appropriate reference image (e.g., an input image
is used as a reference for image smoothing) to suppress pseudo-edges in homogeneous
regions and the blurring effect of strong edges. We find a solution to the proposed mini-
mization problems via the alternating direction method of multipliers (ADMM) [37,60,61]
for nonconvex optimization.

The contributions of this paper are as follows.

1. Image smoothing while maintaining gradient characteristics of reference image: Exist-
ing smoothing methods based on the `0 gradient and TV do not explicitly consider
any constraints in the gradient domain. In the proposed method, the local smoothness
properties of a reference image can be explicitly considered constraints in the gradient
domain. Therefore, we can suppress artifacts, including the staircasing effect, through
image smoothing.

2. Strict or flexible gradient constraints on the sign of gradients: Since the box-type gradient
constraint is strict with respect to the sign of gradients, gradient reversals are well
suppressed. In contrast, the ball-type constraint is flexible with respect to the sign of
gradients, allowing robust image smoothing, even when a reference image is degraded
by noise and has different shading characteristics, including gradient reversals.

The remainder of this paper is organized as follows. In Section 2, we present several
mathematical preliminaries and the ADMM algorithm. In Section 3, we introduce the
novel box- and ball-type gradient constraints and the minimization problems for image
smoothing. In Section 4, several examples are shown to confirm the validity of the proposed
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methods compared with the existing smoothing methods based on the `0 gradient. Finally,
Section 5 concludes the paper.

In the previous paper [62], we introduced only the box-type gradient constraint to
extend the `0 gradient minimization. Additionally, robustness to noise and performance
when using some reference images with different luminance and colors with/without
reversed edges were not sufficiently evaluated. In this paper, we show the limitation of the
box-type gradient constraint and propose a novel ball-type gradient constraint that can be
applied flexibly, even when using references with noise or edge reversals. We also extend
the proposed gradient constraints to the `0 gradient projection [37] and the details of the
algorithm derivation. Furthermore, we examine an experiment on JPEG artifact removal.

2. Preliminaries

Throughout this paper, bold-faced lowercase and uppercase letters indicate vectors
and matrices, respectively, and RN denotes N-dimensional vector space. We define the set
of M× N real-valued matrices as RM×N , and the block diagonal matrix of A1, . . . , AM by
diag(A1, . . . , AM). The transpose operation of a vector and matrix is denoted as (·)>.

2.1. `0 Gradient

Let x ∈ RN be an input vector. The `0 pseudo-norm (note that this norm does not
satisfy the properties of the norm; for simplicity in this paper, we refer to the `0 pseudo-
norm as the `0-norm) counts the number of nonzero elements, and it is denoted by

‖x‖0 :=
N

∑
n=1

C(xn), C(xn) :=
{

0, if xn = 0,
1, otherwise.

(1)

Let x := [x>R x>G x>B ]
>(∈ R3N) be a vectorized color image, and let N be the number of

pixels. Further, let Dv and Dh∈RN×N be the vertical and horizontal first-order differential
operators with a Neumann boundary, respectively; the differential operator is then defined
by D1 := [D>v D>h ]

>(∈ R2N×N) for a gray image and D := diag(D1, D1, D1)(∈ R6N×3N)
for a color image. In the `0 gradient minimization, the group sparsity of the RGB gradients
is considered by concatenating the `1-norm [31,37,48], and it is defined as

‖Dx‖0,1 :=
N

∑
n=1

C( |(DvxR)n|+|(DhxR)n|+|(DvxG)n|+ |(DhxG)n|+|(DvxB)n|+|(DhxB)n| ). (2)

A piece-wise smooth image is obtained by minimizing an optimization problem
based on (2). In [31,48], a half quadratic optimization method is used to solve this
optimization problem.

2.2. Alternating Direction Method of Multipliers

Alternating the direction method of multipliers (ADMM) [60] is a method of the
proximal splitting algorithm that can treat convex optimization problems of the form

min
x∈RN1 , z∈RN2

F(x) + G(z) s.t. z = Lx, (3)

where F and G are usually assumed to be quadratic and proximable functions, respectively,
and L ∈ RN2×N1 is a matrix with full-column rank. For any x(0) ∈ RN1 , z(0) ∈ RN2 , b(0) ∈
RN2 and γ > 0, the ADMM algorithm is given by

x(τ+1) = arg min
x

{
F(x) +

1
2γ
‖z(τ) − Lx− b(τ)‖2

2

}
,

z(τ+1) = arg min
z

{
G(z) +

1
2γ
‖z− Lx(τ+1) − b(τ)‖2

2

}
,

b(τ+1) = b(τ) + Lx(τ+1) − z(τ+1).

(4)
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When the optimization problem is convex, the sequence generated by (4) converges to
an optimal solution of (3) under the existence of a saddle point.

2.3. Proximal Tools

The proximity operator [63] is a key tool of proximal splitting techniques. Let x ∈ RN

be an input vector. For any γ > 0, the primary operator of f over RN is defined by

proxγ f (x) := arg min
y∈RN

f (y) +
1

2γ
‖x− y‖2. (5)

For a given nonempty closed convex set C, the indicator function of C is defined by

ιC(x) :=
{

0, if x ∈ C,
+∞, otherwise.

(6)

The proximity operator of ιC is expressed as

proxγιC
(x) := arg min

y∈RN
ιC(x) +

1
2γ
‖x− y‖2

2. (7)

The solution of proxγιC
should be in the set C and minimize ‖x− y‖2

2. Thus, for any
index γ > 0, this proximity operator is equivalent to the metric projection onto C, i.e.,
PC(x) = proxγιC

(x).
Let l and u ∈ RN be the lower and upper bounds, respectively. The box constraint

forces each element of x into the dynamic range [li, ui] for i = 1, . . . , N, and its closed
convex set is defined as

C[l,u] :=
{

x ∈ RN | li ≤ xi ≤ ui (i = 1, . . . , N)
}

. (8)

The computation of the metric projection onto C[l,u] for i = 1, . . . , N is given by

[
PC[l,u](x)

]
i
=


li, if xi < li,
ui, if xi > ui,
xi, if li ≤ xi ≤ ui.

(9)

The `2 ball constraint forces the Euclidean distance between the vector x and the
centered vector v to be less than the radius ε, and its closed convex set is defined as

Bv,ε :=
{

x ∈ RN | ‖x− v‖2 ≤ ε
}

. (10)

The computation of the metric projection onto Bv,ε is given by

PBv,ε(x) =

{
x, if ‖x− v‖2 ≤ ε,
v + ε x−v

‖x−v‖2
, otherwise . (11)

3. Proposed Methods

To suppress the undesirable artifacts mentioned in Section 1, we introduce the follow-
ing two types of gradient constraints.

3.1. Gradient Constraints
3.1.1. Box-Type Gradient Constraint

Let x := [x>R x>G x>B ]
> (∈ R3N) be a vectorized color image. We introduce the box-type

gradient constraints in the positive and negative ranges:

0 ≤ (Dx)i ≤ (Dxref)i, i ∈ Ω+, (12)
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(Dxref)j ≤ (Dx)j < 0, j ∈ Ω−, (13)

where xref ∈ R3N is a vectorized reference color image, D is the differential operator for a
color image introduced in (2), and Dx, Dxref (∈ R6N) are gradient images. The notations Ω+

and Ω− are the index sets of positive and negative elements in Dxref, respectively, where
these sets satisfy Ω+ ∪Ω− = {1, . . . , 6N} and Ω+ ∩Ω− = ∅. The gradient intensity of an
output image obtained by solving a minimization problem with (12) and (13) is limited
to the range of the gradient values of the reference image xref. Thus, these constraints
suppress pseudo-edges that do not exist in the reference image.

The major drawback of minimizing the total variation regularization based on the `0-
or `1-norms is that it yields pseudo-edge artifacts, such as an undesirable staircasing effect
on the homogeneous regions in many cases. These artifacts are more severe in the case of
the `0-norm, as it has significant flattening effects. Figure 1 plots an example of the vertical
first-order gradient signals of an input image and the smoothing results obtained by the
two conventional methods—one is the `0 gradient minimization [31], and the other is the `0
gradient projection [37]—and the proposed methods with the box-type gradient constraint.
The gradient signals of the `0 gradient minimization and the `0 gradient projection contain
the gradients denoted by arrows that do not originally exist in the input image. Owing to
the proposed gradient constraint, the gradient signal of the proposed methods is lower
than that of the input image. When a reference image has local smoothness properties,
artifacts such as halos and pseudo-edges can be suppressed by the proposed constraint.
Similar results are obtained with the other channels and the horizontal direction.

Figure 1. Example of image smoothing: The black line, the dotted blue line, the dotted green line,
and the dotted red line show the gradient signals of the input image, the smoothing results of the
`0 gradient minimization [31], the `0 gradient projection [37], and ours with the box-type gradient
constraints, respectively. Each gradient signal is the vertical first-order gradient of the G channel. The
red arrows indicate pseudo-edges.

Figure 2a illustrates an example of the box-type gradient constraint in the case where
the vertical gradient is positive, and the horizontal gradient is negative in the reference
image. We see from the figure that the ideal gradient is not included in the box-type
gradient constraint. This often occurs when there is noise in the input image. Because the
sign of gradients is sensitive to noise, our method generates better results for noise-free
images; however, the method may generate unexpected artifacts for noisy images. To
overcome this limitation, we introduce a ball-type gradient constraint.
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(a) (b)

Figure 2. Examples of the proposed gradient constraints: vertical and horizontal axes dv and dh
represent gradient values of vertical and horizontal directions, respectively. The blue solid arrow
and the dotted red arrow indicate the gradient vectors of reference and ideal images, respectively.
The dotted blue box and circle represent areas that satisfy the gradient constraints, respectively.
(a) Box-type gradient constraint. (b) Ball-type gradient constraint.

3.1.2. Ball-Type Gradient Constraint

Let the sets of indexes G1, . . . ,GN ∈ G be Gn := {n, N +n, . . . , 5N +n} for n = 1, . . . , N.
We introduce the ball-type gradient constraint with respect to the n-th pixel as

‖(Dx)Gn‖2 ≤ ‖(Dxref)
Gn‖2, (14)

where (Dx)Gn ∈ R6 is the n-th sub-vector of Dx with the entries specified by Gn, such as

(Dx)Gn := [(Dx)n (Dx)N+n (Dx)2N+n (Dx)3N+n(Dx)4N+n (Dx)5N+n]
>

= [(DvxR)n (DhxR)n (DvxG)n (DhxG)n(DvxB)n (DhxB)n]
>.

(15)

The ball-type gradient constraint limits the magnitude of the gradients of an output
image to less than that of a reference image. Note that the signs of the gradients are not
considered explicitly in these constraints.

Figure 2b illustrates an example of the ball-type gradient constraint with the same
reference image as in Figure 2a. We see from this figure that the ball-type constraint
is defined by a circle whose radius is the gradient magnitude of the reference image
(see the dotted blue circle). Furthermore, the range of the ball-type constraint is more
relaxed compared with the box-type one in Figure 2a, even with the same reference image.
Therefore, even when we use a noisy image as a reference, in which the sign of the gradients
varies locally, the ball-type constraint enables us to generate a smooth image that is locally
smoother and more natural than the box-type one.

As described above, the ball-type constraint can obtain better results than the box-type
one for a noisy image. However, when it is applied to a noise-free image, gradient reversals
may occur, especially in the case of small-magnitude texture.

3.2. `0-Smoothing Based on Box-Type Gradient Constraint
3.2.1. Minimization Problem

Let sin and sref be a vectorized input color image and a vectorized reference image for
the proposed box-type gradient constraint, respectively. The image-smoothing problem
with the proposed gradient constraints (12) and (13) is defined by
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min
s
‖Ds‖0,1 +

λ

2
‖s− sin‖2

2

s.t. 0 ≤ (Ds)i ≤ (Dsref)i, i∈Ω+, (Dsref)j ≤ (Ds)j < 0, j∈Ω−,
(16)

where λ is a balancing weight of the two costs. The first term in (16) is defined by (2).
The second term is a data-fidelity term calculating the squared error between the input
and output images. Note that the objective function, excluding the gradient constraints
from (16), is equivalent to that of the `0 gradient minimization introduced in [31].

To find a solution of (16), we use ADMM described in Section 2.2. Since the first term
of (16) is a nonconvex function, there is no guarantee that the solution obtained by ADMM
is a global minimum solution of (16). However, as stated in [37,61], we experimentally
confirmed that a reasonable solution satisfying the constraints can be obtained by carefully
decreasing the step size of the algorithm in each iteration.

3.2.2. Optimization

Let g+ := PDsref, g− := MDsref, where P and M are the matrices that extract the
elements from Dsref corresponding to the indexes included in Ω+ and Ω−, respectively.
The convex sets C[0,g+ ] and C[g− ,0] are defined as

C[0,g+ ] := {x ∈ Rm+ | 0 ≤ xi ≤ g+i , i = 1, . . . , m+},

C[g− ,0] := {x ∈ Rm− | g−j ≤ xj < 0, j = 1, . . . , m−}.

where m+ and m− denote the number of the indices in their sets, which satisfy 6N =
m+ + m−, and 0 is a vector filled with zeros. To apply ADMM, we first reformulate (16)
into the following unconstrained problem:

min
s
‖Ds‖0,1 +

λ

2
‖s− sin‖2

2 + ιC[0,g+]
(PDs) + ιC[g− ,0]

(MDs) (17)

where ιC[0,g+]
(·) and ιC[g− ,0]

(·) are the indicator functions (let x ∈ RN be an input vector; for a
given non-empty closed convex set C, the indicator function of C is defined by ιC(x), which
returns 0 if x ∈ C, and +∞ otherwise) of C[0,g+ ] and C[g− ,0]. These functions guarantee that
the positive and negative gradient intensities of the optimal image s∗ fall in the ranges
[0, g+] and [g−, 0]. The role of the third and fourth terms of (17) correspond to the role of
the first and second constraints of (16), respectively.

By introducing auxiliary variables z1, z2, and z3, we rewrite the minimization
problem (17) into the following equivalent expression:

min
s,z1,z2,z3

F(s) + G(z) s.t. z = Ls,

F(s) :=
λ

2
‖s− sin‖2

2, G(z) := ‖z1‖0,1 + ιC[0,g+]
(z2) + ιC[g− ,0]

(z3),

z = [z>1 z>2 z>3 ]
> (z1 ∈ R6N , z2 ∈ Rm+ , z3 ∈ Rm−),

L =

 D
PD
MD

(∈ R12N×3N
)

.

(18)

The algorithm for solving Equation (18) with γi (i = 1, 2, 3) is summarized in
Algorithm 1.
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Algorithm 1 Proposed algorithm for (18).

1: Input : z(0)i , b(0)
i , γi (i = 1, 2, 3), λ, µ, η (0 < η < 1)

2: Output : s(τ)

3: while A stopping criterion is not satisfied do
4: s(τ+1) ← arg mins

λ
2 ‖s− sin‖2

2 +
1

2γ1
‖z(τ)1 −Ds−b(τ)

1 ‖2
2 +

1
2γ2
‖z(τ)2 −PDs−b(τ)

2 ‖2
2 +

1
2γ3
‖z(τ)3 −MDs− b(τ)

3 ‖2
2;

5: for n = 1 to N do
6: zGn(τ+1)

1 ← proxγ1‖·‖0,1

(
(Ds(τ+1) + b(τ)

1 )Gn
)

;
7: end for
8: z(τ+1)

2 ← P[0,g+ ]

(
PDs(τ+1) + b(τ)

2

)
;

9: z(τ+1)
3 ← P[g− ,0]

(
MDs(τ+1) + b(τ)

3

)
;

10: b(τ+1)
1 ← b(τ)

1 + Ds(τ+1) − z(τ+1)
1 ;

11: b(τ+1)
2 ← b(τ)

2 + PDs(τ+1) − z(τ+1)
2 ;

12: b(τ+1)
3 ← b(τ)

3 + MDs(τ+1) − z(τ+1)
3 ;

13: γ1 ← ηγ1;
14: γ2 ← ηγ2;
15: γ3 ← ηγ3;
16: τ ← τ + 1;
17: end while

The update of s in Algorithm 1 is achieved by solving the following quadratic mini-
mization problem (hereafter, the superscript (τ) is omitted for simplicity):

min
s

λ

2
‖s− sin‖2

2 +
1

2γ1
‖z1 −Ds− b1‖2

2 +
1

2γ2
‖z2 − PDs− b2‖2

2 +
1

2γ3
‖z3 −MDs− b3‖2

2. (19)

Thus, by setting the first-order derivative to zero, the optimal solution is characterized
by the system of linear equations:

As = q,{
A = λI + γ−1

1 D>D + γ−1
2 D>P>PD + γ−1

3 D>M>MD,
q = λsin + γ−1

1 D>(z1 − b1) + γ−1
2 D>P>(z2 − b2) + γ−1

3 D>M>(z3 − b3),
(20)

where A is a matrix of size {3N × 3N}, q is a 3N-dimensional vector, and I ∈ R3N×3N is
an identity matrix. The optimal solution is obtained by the inverse problem s∗ = A−1q.
If we set γ3 = γ2, the third term of the right side in the formula A can be rewritten
as γ−1

2 D>D = γ−1
2 D>P>PD + γ−1

3 D>M>MD. Since the boundary condition of D is
periodic and the matrix A is a block circulant matrix with circulant blocks (BCCB), it is
diagonalized by the 2D fast discrete Fourier transform (2DFFT). Thus, the inverse problem
of (20) can be calculated as

s∗ = F∗
{

λI + (γ−1
1 + γ−1

2 )Σ
}−1

Fq, (21)

where F and F∗ are the 2D-FFT and its inverse matrices, respectively, and Σ is the diagonal
matrix with its entries being the Fourier-transformed Laplacian filter kernel. Therefore, its
inversion is reduced to entry-wise division.

For the update of z1, we need to compute the pseudo-proximity operator of the `0,1-
norm. By dividing z1 to sub-vectors as z1 := [zG1>

1 . . . zGN>
1 ]>, in which Gn (n = 1, . . . , N)

is introduced in Section 3.1.2 and zGn
1 can be regarded as the auxiliary variable for (Ds)Gn

(see (15)), the pseudo-proximity operator equals to a group hard-thresholding operation for
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each sub-vector [48,61]. Thus, the optimal solution of the n-th sub-vector zGn
1 is obtained by

zGn∗
1 ← proxγ1‖·‖0,1

(dn) =

{
dn, if

√
∑6

m=1 d2
n,m ≥

√
2γ1,

0, otherwise,
(22)

where dn,m is the m-th element of dn := (Ds + b1)
Gn (∈ R6).

To update z2 and z3, we need to compute the proximity operator of the indicator
functions ιC[0,g+]

and ιC[g− ,0]
. By (9), these are simply projections onto each set, respectively,

i.e., for i = 1, . . . , m+ by

z2 ←
[
PC[0,g+]

(PDs + b2)
]

i
=


0, if (PDs + b2)i < 0,
g+i , if (PDs + b2)i > g+i ,
(PDs + b2)i, if 0 ≤ (PDs + b2)i ≤ g+i ,

(23)

and for j = 1, . . . , m− by

z3 ←
[
PC[g− ,0]

(MDs + b3)
]

j
=


g−j , if (MDs + b3)j < g−j ,
0, if (MDs + b3)j > 0,
(MDs + b3)j, if g−j ≤ (MDs + b3)j ≤ 0.

(24)

To stabilize ADMM for nonconvex optimization, a scalar 0< η < 1 is introduced to
gradually decrease the value of γi (i = 1, 2, 3) as in the 11th–13th lines of Algorithm 1. The
algorithm continues until the following stopping criterion is satisfied:

‖s(τ+1) − s(τ)‖2

‖s(τ+1)‖2
≤ µ, (25)

where we set a small value to µ (e.g., µ ≤ 10−4). Although there is no theoretical guar-
antee of convergence for our algorithm, we show that the sequence generated by this
algorithm experimentally converges to a reasonable solution with sufficiently small values
for γi (i = 1, 2, 3); similar strategies have been employed in the existing minimization
algorithms for the `0-norm [37,48,61].

3.3. `0-Smoothing Based on Ball-Type Gradient Constraint

The image-smoothing problem with the proposed ball-type gradient constraint (14),
which is the modified version of (16), is defined by

min
s
‖Ds‖0,1 +

λ

2
‖s− sin‖2

2 s.t. ‖(Ds)G
n‖2 ≤ ‖(Dsref)

Gn‖2, n = 1, . . . , N. (26)

Similar to the preceding section, we solve the minimization problem (26) by applying
ADMM to it. Now, the convex set B0,εn is defined for n = 1, . . . , N by

B0,εn := {x ∈ R6 | ‖x‖2 ≤ εn}, (27)

where εn := ‖(Dsref)
Gn‖2. We reformulate (26) into the following unconstrained problem

by introducing the indicator functions of B0,εn (n = 1, . . . , N), and then, we also introduce
auxiliary variables z1 and z2 to non-differential functions

min
s,z1,z2

λ

2
‖s− sin‖2

2 + ‖z1‖0,1 +
N

∑
n=1

ιB0,εn
(zGn

2 ) s.t. z1 = Ds, z2 = Ds, (28)

where zGn
2 is the n-th sub-vector of z2 specified by Gn.
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The algorithm for solving (28) is obtained by slightly modifying Algorithm 1. In
particular, the update of s in line 4 of Algorithm 1 is obtained by

s∗ = F∗
{

λI + (γ−1
1 + γ−1

2 )Σ
}−1

Fq′,

where q′ = λsin + γ−1
1 D>(z1 − b1) + γ−1

2 D>(z2 − b2).
(29)

In the update of z2, we calculate the following metric projection onto the `2 ball
according to (11) instead of the 8th and 9th lines of Algorithm 1, i.e., for n = 1, . . . , N, by

zGn
2 ← PB0,εn

(
(Ds− b2)

Gn
)
=

{
(Ds− b2)

Gn , if ‖(Ds− b2)
Gn‖2 ≤ εn,

εn
(Ds−b2)

Gn

‖(Ds−b2)Gn‖2
, otherwise.

(30)

3.4. `0 Gradient Projection with Gradient Constraint

Our proposed box-/ball-type gradient constraints can be incorporated with not only
the minimization problem of the `0 gradient minimization [31] but also with that of the `0
gradient projection [37]. An image-smoothing problem based on the `0 gradient projection
(for simplicity, we only discuss using the ball-type gradient constraint; note that the box-
type gradient constraints can be also used as well) with the proposed gradient constraint is
defined by

min
s

1
2
‖s− sin‖2

2 s.t. ‖Ds‖0,1 ≤ α, ‖(Ds)Gn‖2 ≤ ‖(Dsref)
Gn‖2, n = 1, . . . , N. (31)

where α is the parameter specified by a user that is the least upper bound of ‖Ds‖0,1. It
allows us to intuitively control the degree of smoothing of the output image s∗.

Similar to the preceding section, a solution of (31) can be estimated based on Algorithm 1
after transforming it into an equation applicable to ADMM (the indicator function of the
inequality constraint on ‖Ds‖0,1 is defined in (9) of [37], and its pseudo-metric projection is
derived in (16) of [37]).

4. Experiments

To clarify the differences in the characteristics of the proposed methods with the box-
and ball-type gradient constraints, we first conducted noise removal experiments using
some reference images. We then applied the proposed methods to various applications,
such as image smoothing, detail enhancement, tone mapping, and JPEG artifact removal,
and the results were compared with those of two existing methods based on the `0 gradient:
`0 gradient minimization [31], and `0 gradient projection [37] (for the implementation of
the existing methods, we used the source code distributed by the authors of each paper).

All experiments were performed using MATLAB R2021a on a computer with an AMD
EPYC 7402P 2.80 GHz processor and 128 GB RAM. To accelerate the computation time of
the proposed methods, we used an NVIDIA GeForce RTX 3090 GPU. For the parameters of
our methods, we set γi = 5 (i = 1, 2, 3), η = 0.97, and µ = 10−4 in all experiments. For the
reference image sref, we set sin in the three experiments described in Sections 4.2, 4.3 and 4.4,
respectively. Note that the dynamic range of input images was normalized in [0, 1].

4.1. Box-Type vs. Ball-Type Gradient Constraint

The performance of our methods depend on the variation of the luminance and color
in a reference image. Accordingly, we studied the sensitivity of our methods with respect
to a reference image by conducting an experiment on Gaussian noise removal.

We generated a noisy image, which is shown in Figure 3b, by adding zero-mean
Gaussian noise with standard deviation σ = 5.0× 10−3 to the ground truth image shown
in Figure 3a. Then, four types of images, shown in Figure 4(a-1) ground truth image, a-2
horizontally flipped image of a-1, a-3 hue shift image of a-1, and a-4 horizontally flipped
and hue shift image of a-1, were prepared, each of which was used as a reference image of



Signals 2023, 4 679

our proposed gradient constraints. For the quality metric, we used the peak signal-to-noise
ratio (PSNR). For the smoothing parameter setting, the balancing weight λ was set to
maximize PSNR. Note that the purpose of this experiment is not to evaluate the pure
performance of noise removal but to clarify the sensitivity of the method.

(a) (b)

Figure 3. Ground truth and input images on zero-mean Gaussian noise removal (σ = 5.0× 10−3).
(a) Ground truth. (b) Input image.

(a-1) (a-2) (a-3) (a-4)

(b-1) 31.89 (b-2) 31.36 (b-3) 32.40 (b-4) 31.38

(c-1) 32.60 (c-2) 32.18 (c-3) 33.29 (c-4) 32.40

Figure 4. Noise removal results and their PSNR values [dB]: (from left to right) (a1–4) reference
images, (b1–4) our image with the box-type constraint, and (c1–4) our image with the ball-type one.

Figure 4 shows the noise removal results and their PSNR values. One can see from
Figure 4b,c that our images with the ball-type constraint have higher PSNR and visually
better results than the box-type image for all cases. The results of Figure 4(b-2,b-4) are
over-smoothed because the reference images have luminance variations that are consider-
ably different from those of the input image (there are flipped relationships between the
luminance variations of the input and reference images in the horizontal direction). This is
because the sign of the gradients of the reference images is often reversed from the ideal
one around the edges. The box-type constraint does not prevent the smoothed image from
having the gradients whose sign is reversed from that of the reference image, thus yielding
blurred images. In Figure 4(b-1,b-3), this constraint generates a better smooth result with
sharper edges similar to those of the ground truth image; however, pseudo-color artifacts
often occur around edges as shown in Figure 4(b-3). Thus, this constraint is very sensitive



Signals 2023, 4 680

to the sign of image gradients unless an input image is used as a reference. In contrast, the
ball-type constraint robustly generates a better smooth result with sharper edges that is
the same as that in the input image, even if the reference images have luminance and color
variations considerably different from those in the input image.

4.2. Detail Enhancement

Based on the methods [5,6], we performed the detail enhancement as follows: (i) obtain
a base layer by applying each method to an input image; (ii) calculate a detail layer by
subtracting the base layer from the input image; (iii) amplify the detail layer by scaling
factor s > 1; and (iv) reconstruct a detail-enhanced image by summing the base layer and
the enhanced detail layer.

Figures 5 and 6 show the smoothing and detail enhancement results obtained by
the existing methods and the proposed methods (we took input images from an exten-
sive database of royalty-free images https://pixabay.com/en/ accessed on 8 January 2018).
In Sections 4.2 and 4.3, since there are visually no differences between the results of the pro-
posed methods with the box- and ball-type gradient constraints, we only show the results
of the proposed method with the box-type gradient constraint. For a fair comparison, we
adjusted the smoothing parameters of each method so that the `2-norms are the same in the
input and output images. The scaling factor s was set to 2.5. Figures 5 and 6 indicate that
the contrast in the entire image is maintained for all methods. However, the results of [31]
have halo-like artifacts in the region with gradation indicated by the red square window in
(b), and the color of the clouds is changed. Pseudo-edge artifacts, such as the staircasing
effect, occur in the sky region of the results of [37] (indicated by the yellow and red square
windows in (c)). In contrast, our methods do not have these undesirable artifacts because
the gradient constraints suppress pseudo-edges in the homogeneous regions.

(a) (b) (c) (d)

Figure 5. Detail enhancement results 1: (upper) smoothing results and (lower) detail enhancement
results. (a) Input. (b) `0 gradient minimization [31]. (c) `0 gradient projection [37]. (d) Ours. ©2018
IEEE. Reprinted, with permission, from [62].

https://pixabay.com/en/
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(a) (b) (c) (d)

Figure 6. Detail enhancement results 2: (upper) smoothing results and (lower) detail enhancement
results. (a) Input. (b) `0 gradient minimization [31]. (c) `0 gradient projection [37]. (d) Ours. ©2018
IEEE. Reprinted, with permission, from [62].

4.3. Tone Mapping

Next, we applied these methods for layer separation in the tone-mapping framework [7].
Figure 7 shows the tone-mapping results, where we also show the result of Reinhard et al.’s

global tone-mapping operator [64] for reference. Figure 7b,c show that the halo and pseudo-
edge artifacts occurred, especially at the boundary between the bright and dark regions. In
contrast, the proposed methods sufficiently suppressed these artifacts.

To show the robustness of the degree of smoothing, we applied the `0 gradient mini-
mization [31] and the proposed methods to an input HDR image with different smoothing
parameters. The smoothing parameters were adjusted so that the mean squared error
(MSE) of the smoothing results was 1.2× 10−5, 1.9× 10−5, and 2.5× 10−5, and these results
are shown in Figure 8. One sees from Figure 8(b-1,c-1,d-1) that the staircasing effects and
pseudo-color edges occur. In addition, these artifacts are more noticeable as the smooth-
ing degree increases. In contrast, the results of the proposed methods have few artifacts.
Even in Figure 8(d-2), which is the smoothest result, noticeable artifacts do not appear. In
Sections 4.2 and 4.3, we applied the proposed methods to dozens of images and obtained
similar results.

(a) (b) (c) (d)

Figure 7. Tone-mapping results. (a) Global operator [64]. (b) `0 gradient minimization [31]. (c) `0

gradient projection [37]. (d) Ours. ©2018 IEEE. Reprinted, with permission, from [62].
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(a) Global operator (b-1) 1.2 ·10−5 (b-2) Ours, 1.2 ·10−5

(c-1) 1.9 ·10−5 (c-2) Ours, 1.9 ·10−5

(d-1) 2.5 ·10−5 (d-2) Ours, 2.5 ·10−5

Figure 8. Tone-mapping results obtained by different smoothing parameters and their MSE values:
(a) Reinhard et al.’s global operator [64], (b–d) are obtained by Durand and Dorsey’s tone-mapping
framework [7] with (·-1) `0 gradient minimization [31] and (·-2) our methods. ©2018 IEEE. Reprinted,
with permission, from [62].

4.4. JPEG Artifact Removal in Clip-Art Images

Input images were generated from clip-art images (we took ten test images from
the dataset provided in https://google.github.io/cartoonset/ accessed on 20 July 2019),
which were compressed by standard JPEG with quality values in the range of [10, 90].
The resultant images were evaluated by using two quality metrics: PSNR and structural
similarity (SSIM) [65]. In each method, we adjusted the degree of noise removal to obtain
the visually best restoration results, i.e., maximizing the smoothness while preserving
the edges of the images as much as possible (we only showed the results of the proposed
methods obtained with the ball-type gradient constraint because it is more robust than
the box-type constraint for noise removal).

Figure 9a,b plot the PSNR [dB] and SSIM values averaged over ten test images,
respectively. It can be seen that the PSNR and SSIM of the proposed methods are higher
than those of the existing methods in most cases.

Figure 10 shows the results and their PSNR values [dB] of two images in the cases of the
quality value with 20. Block-wise artifacts in the JPEG images shown in Figure 10(b-1,b-2)
are sufficiently removed by the proposed methods, while the existing methods retain them
(see close-up images indicated by the red and blue boxes). Our methods have the highest
PSNR in both images.

https://google.github.io/cartoonset/
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(a) (b)

Figure 9. Comparison PSNR and SSIM for clip-art JPEG artifact removal. (a) Peak signal-to-noise
ratio (PSNR) [dB]. (b) Structural similarity (SSIM) [65].

(a-1) (b-1) (c-1) (d-1) (e-1)

(a-2) (b-2) (c-2) (d-2) (e-2)

Figure 10. Results of clip-art JPEG artifact removal and their PSNR [dB]. (a) Ground truth, (b) In-
put image, (c-1) [31], 31.51, (c-2) [31], 32.18, (d-1) [37], 31.19, (d-2) [37], 31.89, (e-1) Ours, 31.81,
(e-2) Ours, 32.23.

5. Conclusions

We proposed effective smoothing methods based on minimizing the `0 gradient using
novel gradient constraints. To suppress the pseudo-edge artifacts such as the staircasing
effect, box- and ball-type gradient constraints were introduced. These constraints limited
the gradient intensity of an output image to the range of a reference image. By solving the
`0 gradient minimization problem based on the proposed gradient constraints via ADMM
for nonconvex optimization, we effectively preserved the strong edges and removed weak
edges without yielding pseudo-edges and halo artifacts. It was confirmed that the smoothed
image obtained by the proposed method can generate better contrast-enhanced images
and tone map images without pseudo-edges or halos. These results suggest the potential
for delivering more dependable image diagnosis and recognition outcomes in medical
imaging and autonomous driving applications, where image enhancement applications are
essential. Throughout all our experiments, we consistently observed the effectiveness of
the proposed methods in comparison to existing `0 gradient-based methods.

In future work, we will apply our proposed gradient constraints for other optimiza-
tion problems, e.g., intrinsic image decomposition, reflection removal, and flash/no-flash
image blending.
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