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Abstract: Over the last few decades, the electricity sector has experienced several changes, resulting
in different electricity markets (EMs) models and paradigms. In particular, liberalization has led to
the establishment of a wholesale market for electricity generation and a retail market for electricity
retailing. In competitive EMs, customers can do the following: freely choose their electricity suppliers;
invest in variable renewable energy such as solar photovoltaic; become prosumers; or form local
alliances such as Citizen Energy Communities (CECs). Trading of electricity can be done in spot and
derivatives markets, or by bilateral contracts. This article focuses on CECs. Specifically, it presents
how agent-based local consumers can form alliances as CECs, manage their resources, and trade on
EMs. It also presents a review of how agent-based systems can model and support the formation
and interaction of alliances in the electricity sector. The CEC can trade electricity directly with sellers
through private bilateral agreements. During the negotiation of private bilateral contracts, the CEC
receives the prices and volumes of their members and according to its negotiation strategy, tries to
satisfy the electricity demands of all members and reduce their costs for electricity.

Keywords: agent-based consumers; alliance formation; bilateral contracts; Citizen Energy Communities;
electricity markets

1. Introduction

Traditionally, the organization of the electricity sector was based on vertically in-
tegrated companies of the power sector, which produced, traded, transported, and dis-
tributed energy without any competition. Liberalization began in the earlier nineties,
separating the roles of production and trading from the natural monopoly roles of trans-
mission and distribution [1]. This process has led to the establishment of a wholesale
market, where competing producers offer their energy to retailers, and a retail market,
where retailers satisfy the needs of end-users [2,3]. Market forces now determine the price
of energy and reduce net cost through increased competition. Also, end-users can freely
choose their energy providers based on the best tariffs [1–6]. The participants in electricity
markets (EMs) are heterogeneous, autonomous, and follow their own goals and negotiation
strategies. Usually, production companies seek to adopt strategies that maximize profit,
while consumers adopt strategies that minimize electricity costs. Most strategies help
negotiating parties to reach mutually beneficial agreements [2,3,6].

Three major market models are often distinguished [7,8]: spot, bilateral contracts,
and hybrids models. A spot market is a centralized marketplace that clears the market
for sellers and buyers. Power system sellers/buyers submit bids to the pool for the
quantities of energy that they want to trade in the market. The bids are submitted to a
market operator, whose function is to coordinate and manage the different transactions
between the participants. Bilateral contracts are negotiable agreements of energy between
two traders. These contracts have the advantage of price predictability in comparison to
uncertain pool prices. The hybrid model considers several characteristics of the previous
two models. In this model, a spot market is not mandatory, and customers can either
negotiate energy directly with suppliers or at the power exchanges [1]. There are several
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procedures for bilateral contracting of electricity, notably the alternating offers and the
contract net procedures. The former involves only two parties and focuses on an iterative
exchange of offers and counter-offers. The contract net protocol involves typically a trader
and several opponents, e.g., a buyer sends a call for proposal (quantities of electricity) to
several sellers who reply by sending specific energy prices [9].

Decision making becomes very difficult in EMs because of their complexity and high
uncertainty, which increased in the last few decades. Recent changes in the electricity sector
have come to prove that the demand-side may also have a relevant influence on the whole
process, especially regarding strategic decisions made by end-users. In this new paradigm,
consumers and buyers of energy can play a much more active role in EMs and, through
appropriate strategies, achieve their objectives. However, EMs still present limitations, such
as the exclusive participation of very large players [5,10]. Furthermore, there is a practically
exclusive participation of producers in the ancillary services of power systems [4–6]. In
order to overcome these limitations, end-users can form alliances. Furthermore, alliances
of two or more end-users can significantly increase their negotiating power during bilateral
negotiation of electricity [11,12].

A Citizen Energy Community (CEC) is an alliance that can be composed of several
power system actors, such as consumers, prosumers, electric vehicles (EVs), storage facili-
ties, generators, aggregators, and system operators of a local area [12–14]. The legislation
of diverse countries of the European Union (EU) incentivizes the formation of CECs with
self-consumption by providing discounts to some fixed taxes of the variable term of the
electricity tariff [12,15]. Besides these discounts, CECs can also have enough weight to be
active market players, participating in spot and derivatives markets, but also negotiating
private bilateral contracts. Furthermore, they (potentially) can participate in ancillary
services, supporting system operators in balancing the power system and avoiding grid
congestions [16]. By forming alliances, such as CECs, power system agents can increase
their benefits by having the possibility of participating in several market products to trade
electricity or provide flexibility [17]. Power systems with increasing levels of variable
renewable energy sources (VRES) increase the uncertainty of the net load, and the need to
use ancillary services, guaranteeing power system stability. Currently, very fast-responsive
dispatchable power plants, such as natural gas, support the ancillary services, which are
becoming very costly [16]. CECs can provide the required flexibility to support the ancillary
services of carbon-neutral power systems at reasonable costs [17].

Taking into account the increasing complexity of EMs and limitations in existing
simulation tools, this paper describes the potential of agent-based technology to develop
a system for bilateral contracting and supporting alliance formation and management.
Alliances of consumers are equipped with decision making and team strategies to facilitate
managing the complexity of EMs. Specifically, the purpose of this paper is threefold:

(1) To review agent-based alliances in the electricity sector;
(2) To present and test a model for the formation and management of CECs;
(3) To present and test a model for bilateral trading of electricity between CECs and

opponents (e.g., producers, retailers, etc.).

Software agents have been developed using the Java programming language and the
JADE multi-agent platform [18]. JADE is an agent-oriented platform offering a framework
for multi-agent system (MAS) development and it can consider several agent models;
Agent communication is done by sending and receiving messages. This paper builds on
previous work in the area of multi-agent electricity markets. In particular, it updates the
material presented in [19–21] by formalizing the formation of alliances, and [12,22–24] by
formalizing a negotiation and decision making model for alliances.

The remainder of the paper is structured as follows. Section 2 presents how power
system alliances have been integrated into multi-agent systems. Section 3 presents an
overview of a negotiation model for alliances. Section 4 presents a case study. Finally,
Section 5 presents the conclusions.
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2. Power System Alliances in Multi-Agent Systems

Hunt and Shuttleworth [25] propose four models to chart the evolution of the elec-
tricity supply industry towards full competition: regulated monopoly, purchasing agency,
wholesale competition, and retail competition (see also [1]). Due to increased competitive-
ness and dynamism, the electricity sector is very exposed to external changes. Thus, it is
very important to support all involved players in this complex environment. Presently,
there are various simulation systems based on multi-agent technology that allow modelling
competitive EMs. Such systems allow market participants to simulate the negotiation of
prices and quantities through bilateral contracts, the trade of energy in spot markets, etc.
However, they have limitations, mainly because of the complexity of power systems.

There are several simulators using agent technology for simulating actual and fu-
ture market designs, such as AMES (Agent-based Modelling of Electricity Systems) [26],
EMCAS (Electricity Market Complex Adaptive System) [27], GAPEX (Genoa Artificial
Power Exchange) [28], MASCEM (Multi-Agent Simulator of Competitive Electricity Mar-
kets) [29,30], SEPIA (Simulator for Electric Power Industry Agents) [31] and MATREM
(for Multi-Agent Trading in Electricity Markets) [32]. Other simulation tools, which are
not agent-based, can also deal with EMs, such as Power Web [33], and SREMS (Short
Medium run Electricity Market Simulator) [34]. AMES is an open-source MAS developed
with the JAVA language, for the Repast platform, and involves four main components:
traders, transmission grids, markets (day-ahead and real-time), and an independent system
operator (ISO) with four functions, namely system reliability assessment, day-ahead unit
commitment, dispatch, and settlement [26]. Repast is a free, open-source, agent-based
modelling and simulation toolkit that can be used for several applications [35]. EMCAS
supports negotiation through bilateral contracts and pool markets, and includes agents
representing producers, intermediaries, consumers, and ISOs. The agents are autonomous
and perform decisions based on expected prices for pool and bilateral contracts, obtained
through historical analysis and future predictions [27]. GAPEX is implemented in MAT-
LAB. It models and simulates artificial power exchanges replicating the market-clearing
techniques of the most important European markets [28]. MASCEM includes agents that
can simulate market facilitators, generators, consumers, market operators, traders, and
system operators. It features bilateral contracts and a pool market, where accepted agree-
ments must be submitted for verification by the market operator [29,30]. SEPIA is a tool
for developing EM models with the purpose of gaining insights into the behaviour of its
participants and their impact on EMs. It only allows bilateral contracting, where agents
(composed of diverse layers) are as follows: grid zones, generators, GenCos, generator of
last resort, consumers, consumer companies, transmission grid, and system operator [31].
MATREM effectively supports market players in their key decisions related to the power
systems of the future (i.e., involving high levels of renewables and alliances) [32] and is
composed of agents capable of adapting to different market contexts and by various market
models, supporting market participants in their complex decisions [8]. The architecture,
characteristics, and capabilities of these agents can be found in [36]. MATREM is composed
of consumers, coalitions of consumers, producers, aggregators, retailers, and system and
market operators. MATREM can simulate day-ahead and intraday markets considering
zonal and nodal marginal pricing. It also allows trading on derivatives markets, mainly
forwards, futures, and contracts for differences [37]. Furthermore, it also allows the ne-
gotiation of private bilateral contracts. It is also equipped with secondary and tertiary
balancing markets and with an imbalances settlement algorithm that computes imbalance
prices [16]. Power Web allows to test and analyse different kinds of energy markets, but
only supports fixed demand for pool markets [33]. SREMS is based on game theory and
supports scenario analysis in the short–medium term. It evaluates the transacted power,
but was designed only for the Italian EM [34].

The majority of existing tools focus on the following types of entities:

• GenCos or generators—represent utility companies or single generators and operate
in a wholesale market;
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• Traders—promote liberalization and competition, and simplify dealings either be-
tween sellers/buyers and the market operator or between sellers and buyers. Some
traders can act as speculators in EMs.

• Consumers—represent end-use customers and operate in a retail market;
• System operator—maintains the system security, administers transmission tariffs,

coordinates maintenance scheduling, and analyses the technical feasibility of all
negotiated contracts;

• Market operator—regulates pool negotiations, and thus, is present only in a pool or
hybrid market; uses a market-clearing tool, typically a standard uniform auction, to
set market prices.

There are, however, other agents that play an important role in electricity markets, but
are not modelled by the majority of these tools, notably:

• Regulator agents—represent the agents that regulate transmission, distribution, last
resource supply, management of markets and, in some cases, approves the rules for
bilateral negotiation in the non-organized (sub-) markets;

• Aggregators—manage groups of players of the electricity market (currently these
agents are commonly used to manage groups of renewable producers);

• Retailer or supplier agents—represent electricity retailers and operate in both a whole-
sale and a retail market.

Also, there are some alliances that are emerging and have been modelled only in the
past few years, such as:

• Coalition of consumers—represents a set of end-users and, in addition to the role of
negotiating bilateral contracts in a retail market on behalf of these consumers, if the
coalitions are large enough, they may also trade energy directly in the organized market.

• Virtual power plants—responsible for managing alliances of producers (including the
responsibility of negotiating on behalf of such coalitions);

• Virtual power player (VPP)—responsible for managing a set of different technologies,
such as power plants, distributed generation, energy storage systems, prosumers, and
consumers, considering demand response programs.

• CECs—responsible for managing a set of supply and demand distributed resources,
such as distributed generation, consumption, and storage. Normally, these resources
are located on the local distribution grid of electricity, with the CEC bearing the
responsibility for the electricity trading required by its members.

An alliance is a set of self-interested autonomous agents that can negotiate different
items rationally [38]. In Sandholm and Lesser [11] the authors conclude that, generally, by
forming an alliance, the agents can sometimes save costs compared to operating individu-
ally. In EMs, an alliance of consumers could surpass dimension limitations and directly buy
electricity in the pool market or increase its negotiation power, achieving better electricity
tariffs while negotiating with retailers. The literature contains a richness of approaches
about the aggregation of electricity players [38], giving special attention to production
issues, with works about Virtual Power Plants [39,40], Virtual Power Producers [41], and
Virtual Renewable Power Plants [42,43]. Concerning consumers, the literature has some
references about aggregating and managing consumers [44–46] and their effects [47,48]
with special emphasis to prosumers [49–51], the aggregator agent [52], to the VPP con-
cept [30,53], as well as to CECs [12], consumer coalitions and alliances [22–24,54–60].

The aggregator is the operator that manages the aggregated consumers in order
to gather flexibility and generate bids to the electricity market. It has the objective of
maximizing its revenue. Compared to the aggregator, the coalition and CEC agents aim
to minimize its members’ tariffs as opposed to the aggregator whose interest is normally
only about its own benefit. Prosumers are consumers with production and/or storage
capacity, depending on their net load, i.e., load minus local production. VPPs are entities
that aggregate different types of technologies. A VPP with several miscellaneous clients
with different technologies, manages its portfolio of clients to maximize its revenue, which
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has a completely different purpose when compared to a CEC. In Hamalainen et al. [44]
the authors developed a model where a coalition of cooperative consumers responds to
real-time pricing with heating control, to maximize their benefit. In Hatami et al. [45],
the authors demonstrate how cooperative networked consumers considering a single
electricity bill and dynamic electricity pricing could minimize their bill by reducing the
consumption in peak hours. This approach focuses on demand-side management of
cooperative consumers that respond to dynamic electricity pricing to minimize their
electricity costs. In [12], is presented the benefits of CECs where local consumers and
prosumers can form alliances, being members of the CEC, investing in local RES and storage,
and establishing bilateral agreements with local big producers, retailers, aggregators, and
system operators. By forming alliances and negotiating with other market players, the CEC
has the potential to substantially reduce its members’ cost for electricity, supporting the
investments in DG, and incentivizing carbon-neutrality and energy sustainability. VRES
and demand-side players have uncertain power profiles, which increase the uncertainty
of the net load. The real-time difference between demand and supply has to be balanced
in the ancillary services, which usually have high costs. These costs are passed to the
imbalance players, originating penalties. The aggregation of these local players and storage
solutions in a CEC may bring the flexibility that future power systems with near 100% RES
may need to be economically efficient [46]. This flexibility is also important for CECs to
manage the imbalances of their members, reducing their payment with penalties.

Concerning alliances in general, there are important pieces of work on alliance forma-
tion [38,43,45], team strategies [54], team decision, and team negotiation models [56–59].
Klusch et al. [38] studied the impact of dynamic coalition formation (DCF) of autonomous
agents, taking into account environment and information. They designed a DCF scheme
based on simulation (DCF-S) that tries to obtain the best solution (alliance) for every agent.
Pinto et al. [43] presented a new model for creating and managing virtual power producers,
including a facilitator to manage communications between agents and a mechanism to
rank possible agents to join coalitions. Baeyens et al. [54] presented a model for alliances of
wind power producers (WPPs) to submit bids to pool and forward markets. They found
that alliances of WPPs improve their expected profit. Sanchez-Anguix et al. [55] studied
the impact of the negotiation situation over various intra-team strategies: representative
(RE), similarity simple voting (SSV), similarity boarda voting (SBV), and full unanimity
mediated (FUM). In RE, team members delegate team decision making to a representative
mediator. SSV relies on voting procedures and majority rules in each round of negotiations
to determine if an opponent's offer should be accepted or not, and which offer is submitted
to the opponent. SBV is based on rank proposals. This voting procedure has the advantage
of choosing largely accepted proposals rather than majority proposals. In FUM, all mem-
bers have to agree with all team decisions. They concluded that RE is the faster strategy,
but FUM is the strategy that brings higher utilities. Team deadline is critical because when
it is shorter than the deadlines of opponents, the team’s utilities are negatively affected.
Otherwise, if it is longer, negotiations may fail (in case of selecting tough strategies, as
FUM). One interesting result is that an increase in the number of team members negatively
affects utilities, therefore, the goals, context, and formation of coalitions are very important.
The selection of key members is a critical issue to increase utilities. Ephrati and Rosen-
schein [56] used the Clarke tax mechanism [60] as an economic decision process for having
a consensus in MAS. This mechanism has some advantages, such as non-manipulability,
individual rationality, and maximization of agent global utility, but it is difficult to imple-
ment. Sanchez-Anguix et al. [57] presented a negotiated model for coalitions of consumers
negotiating with their opponents and reaching unanimous agreements by using a trusted
mediator. They concluded that by achieving unanimous decisions the model can increase
the utility of each member concerning its goals. Sanchez-Anguix et al. [58] presented a
negotiation model to obtain efficient agreements with low computational costs, concluding
that their model can beat similar heuristics with partial information and obtain similar
results in the case of full information. Sanchez-Anguix et al. [59] presented a study about
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the use of bottom-up approaches to achieve Pareto optimal deals when team groups are
negotiating, confirming their theory with the achievement of Pareto optimal deals.

Compared with the literature, power system alliances can consider a slightly different
interaction process between the mediator and the alliance members. A representative
mediator with individual decision making (RM-IDM). Whenever the mediator receives an
offer from the opponent’s agent, at a specific period, it prepares a new offer and starts a
voting process among all members, where both offers are made public. The votes can be
positive (acceptance of the opponent’s proposal, and consequent rejection of the alliance’s
proposal) or negative in the case where the alliance’s proposal is better than the opponent’s
proposal. The decision depends on the utilities that each proposal gives to each member
of the alliance. Thus, each member receives both proposals, rates them using its utility
function, and votes accordingly. The votes are sent to the mediator, who sums up the
number of positive votes and makes a decision based on the selected decision rule. Thus,
in the case of a majority decision rule, if the number of positive votes is higher than the
number of negative votes, then the opponent’s offer is accepted and negotiation ends
successfully in an agreement. Otherwise, if the mediator and the alliance members decide
to continue negotiating, the mediator submits a new offer to the opponent’s agent.

Considering coalitions of consumers, in [22], a strategy for retailers to deal with
different consumers and coalitions was introduced. A case study was presented, where
the strategy was used together with the adaptation of existing intra-team strategies, such
as representative and SSV strategies. The case study illustrated that by making alliances
and forming coalitions, consumers can increase their bargaining power and achieve more
beneficial agreements, obtaining more competitive tariffs. In [23], a slight modification of
the interaction process between a trusted coordinator agent and the coalition members was
introduced together with a case study. A RM-IDM strategy was considered. Using this
particular strategy, all members can vote on their preferred proposal. The mediator presents
to all members the proposal sent by the seller and its proposal. The members will vote
for the acceptance of the sellers’ proposals or for sending a new proposal (the mediator's
proposal). The decision can be made over a majority (where more than fifty percent of the
coalition members must agree), a consensus (75% must agree) or an unanimity (100% must
agree) rule. The strategy was used in a real-world case study, where real consumers and
data were used. The results showed that when all coalition members agree (unanimity rule),
it is possible to achieve better agreements for all coalition members. In [24], the authors
extended the previous two pieces of work by considering a new study with coalitions
formed by real schools in the United Kingdom with different sizes, which allows verifying
that schools with lower consumption of electricity can benefit by making alliances with
schools with higher consumptions, obtaining more competitive tariffs. This paper also
tested the selection of a mediator and its consequences. It was verified that independent of
the size of each member, and since the mediator negotiates on behalf of the entire coalition,
it should be carefully chosen to increase the coalition benefit.

The literature has several approaches concerning supply-side alliances, some works
about consumer alliances, and a few works concerning emerging local alliances. CECs
can be very important for future carbon-neutral societies, by: (i) using self-consumption,
(ii) supporting sector coupling and electrification, and (iii) having enough flexibility to
participate in ancillary services and avoid grid congestions.

3. A Negotiation Model for Power System Alliances

Figure 1 shows the common structure of an alliance in general. The agents start
forming alliances when they have a common goal, then they start interacting with each
other, negotiating, and could achieve an agreement [61,62]. In all phases before signing a
contract any member can withdraw from the alliance and also new members could join
the alliance [63,64]. The main issue to start a promising alliance is that all members must
have a common goal and similar objectives. Then, depending on the alliance type, if all
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members or their companies do not have any legal relation (belong to the same owner), the
formation phase could be started by a founder or a group of founders’ members [65].
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Figure 1. A model for the formation of alliances.

3.1. Formation

The easiest way to form alliances is the aggregation of several desegregated units
(buildings, storage, DG, etc.) that have only one management owner [64,65]. In this case,
each desegregated unit can be considered a dependent member of the alliance, as a single
software agent or be part of an aggregated agent, that manages all units. In case of being
dependent agents, they cannot compute their own proposals, accept proposals, or even
leave the alliance if their owner does not do it. Their owner or the aggregated agent, can
vote for the acceptance of the proposal, propose its own proposal, and leave the alliance.
This is the case of a company, country, state or municipal government, other owners of
several desegregated buildings or DG (each could be individually considered as a customer
or negotiation agent). In those cases, the buildings have different tariffs negotiated by
the local or central management of the building or building owner (company, state, etc.).
Verifying that the buildings have different tariffs (some better than others) the building
owner (an alliance agent) could decide for the aggregation of all building consumption
and start negotiating with retailers a tariff that minimizes its electricity costs. If the alliance
has enough weight, instead of negotiating with a retailer, it can directly negotiate with
producers or participate in electricity markets.

Another way of alliance formation is the sectored aggregation (i.e., the aggregation of
the same type of member). This is commonly used by differentiated cooperatives (bankers,
loggers, local village, metallurgy, etc.), condos, citizen councils that fights for the citizens’
rights, among others. In this type of alliance although the members are independent,
normally, not all have the negotiation capacity, and because of that, the negotiation is made
by representability, by one of the members or a negotiation expert (for example a company
specialized on it), and the members can only accept or not the proposed tariff.

One more complex type of alliance is when the members are different, considering that
consumers have the objective of reducing the tariff and producers want to increase profit.
Even consumers are different, and to minimize costs, for differentiated tariffs they could
prioritize the different items of the tariff (period of the day for example) differently. In a
three periods tariff (e.g., 12 p.m.–8 a.m., 8 a.m.–4 p.m. and 4 p.m.–12 p.m.) a commercial
agent could give a higher priority to the second period of the day (e.g., 8 a.m.–4 p.m.)
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while a domestic consumer will prefer the third period. In this type of alliance, the
negotiation between members is more complex, and to maximize the utility for all members
and consequently, the alliance’s utility, it is beneficial that most members have active
participation in the negotiation process, instead of having a representative negotiating for
them, such as in the other simpler types of alliances presented earlier [64–69].

3.2. Interaction

A contract net protocol is used to allow communication between the alliance and
its members [9]. Since not all members of the alliance can simultaneously communicate
with the opponent, it is assumed that a trusted mediator (or an alliance agent) broadcasts
opponent decisions to all members and transmits the alliance decisions to the opponent. It
can also be possible to have team negotiation, where some or all members of an alliance
negotiate against an opponent, a multi-party negotiation, with an appropriate team strategy.
A mediator will represent the alliance while negotiating with an opponent. To allow
communication between the opponent and the alliance mediator, an alternating offer
bilateral protocol is followed [66]. This trusted mediator may have extra tasks according
to the alliance strategy employed. Nevertheless, the complete preferences of the agents
are not revealed to this mediator. Every member has its single negotiated model and
the mediator adopts the chosen alliance strategy procedure, making decisions by taking
into account the concept of that strategy. The interaction protocol used in this model is
restricted to communication related to the protocol initiation, the negotiation, and the
decision on proposals [70]. There is no interaction between members apart from this, so,
they cannot be influenced or influence the others in this model (i.e., there is no persuasion
between members).

There are different types of interactions inside an alliance, in the case of a dependent
aggregation, the communication will be very limited because the negotiation agent (medi-
ator) will perform the whole negotiation with the opponent(s) and just after signing the
contract will inform all the other members about the deal. In the case of an independent
aggregation, the communication is responsive, i.e., the members can only respond to the
mediator requests but they can inform the mediator in the case of leaving the alliance [71].
A limited negotiation occurs when the members can only interact with the mediator; there
is no interaction between them, which is the case for the sector, locally and complex types
of alliance formation.

The communication between members is not fully studied in this article because that
would suppose that the agents can persuade each other to have their proposals accepted,
and this type of complexity is not the focus of this article. However, this complexity can
be studied in political sciences, considering the interaction between members of different
political parties inside a government alliance. Such as, for example, the application of the
Shapley-Shubik index in the decision-making process of team negotiation strategies [72,73].
This index evaluates the strength of agents to persuade or influence others to accept
their proposals, inside the decision-making process of an alliance. Other methods for
determining the power of an agent inside an alliance have been proposed by [74,75]. Some
of the members (dependent customer agents) only receive the information of acceptance or
rejection of a proposal. Others, as independent customer agents, cannot send any proposal,
but can vote for the acceptance of a proposal that the trusted mediator proposes. The
negotiation agents could interact in the whole process if the alliance strategy chosen by
them, requests them to do so.

All members, except the dependent customer agents, can leave the alliance before
signing a contract with the opponent agent. Dependent agents belong to other members
of the alliance, so, they only can leave the alliance if their owners also do so. The next
two phases of the process of signing a new bilateral contract are inter-related; the type
of negotiation and also the decision process depends essentially on the type of alliance
formation, and on the coalition strategy chosen by its members.
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3.3. Negotiation and Agreement

In the actual negotiation process, there is an exchange of offers and counter-offers be-
tween the alliance and an opponent. If the alliance mediator requests a proposal suggested
by its members, they will calculate the proposal taking into account their concession tactics.
During the negotiation process, the decision process also takes place, when the mediator
receives a proposal from the opponent. All or some of the members can be requested to
vote for the acceptance or rejection of the proposal. Also, the proposals sent to the opponent
could be proposed and/or voted by all or some of the members depending on the alliance
strategy [69–71].

Considering the negotiation between an opponent and the alliance, respectively, when
the alliance mediator receives or sends a proposal it can request a voting process to decide
the acceptance of a received proposal or its rejection, sending it to its members, it selects the
alliance’s most voted proposal. In this stage the decision making of the requested agents
is equal to the one defined in the “Least-acceptable Agreement, Acceptable Agreements”
definition described in [61], they vote yes (1) or no (0) taking into account the comparison
between their computed utilities.

The behaviour of the negotiation and decision processes is heavily dependent on
the alliance strategy. An alliance strategy defines which decisions have to be taken by a
negotiation team, how those decisions are taken, and when those decisions are taken. In a
bilateral negotiation process between an alliance and an opponent, the decisions must be
taken between the alliance members, which offers are sent to the opponent, and whether
opponent offers are accepted or not. Given the fact that a negotiation alliance is formed by
more than a single agent, decisions should take into account the interests of the alliance
members [67–70].

How decisions are taken will determine the satisfaction level of the alliance with the
final decision [70,71,76–78]. Decisions can be taken using a representative, majority rules,
unanimity rules, or distinction power. Since all alliance members seek a common goal, and
this should not be their first interaction, a certain degree of cooperation and truthfulness
among members is assumed [79,80]. Even though a scenario where most of the members
lie and play strategically is possible, this possibility has been considered unlikely in this
type of practical situation, since they are cooperative in nature, and modelling this type
of scenario is complex [81,82]. Typical alliances can be selected to cover the spectrum
of participation in alliance decisions such as: the less participative in decision making
(representative); strategies that involve a majority of members (similarity simple voting);
strategies that carry out unanimous decisions (similarity-based unanimity board voting);
and strategies that take into account every member’s weight in the alliance (similarity
distinction voting) [55,57].

3.4. The Adaptation of the Negotiation Model to CECs

CECs that only have consumers and prosumers as agents should select one of their
members as the representative mediator to negotiate with opponents on behalf of the entire
alliance. All members have information about their own tariff and net load, computing the
score of each proposal based on their utility function. Every member should indicate to
the mediator the energy they need to buy or sell per every market period. Some members
can also have negotiation strategies, computing their prices and proposing them to the
mediator. The mediator should send a request to vote on all opponent proposals, its
proposal, and all member proposals. All members should vote for the best proposal that
is selected according to the defined team strategy. If one of the opponent proposals is the
most voted proposal, the negotiation ends with an agreement, otherwise, the mediator
sends to opponents a counter-proposal with the most voted proposal. The negotiation
continues until one proposal is accepted or all parties withdraw from the negotiation. If the
CEC is also composed of producers, aggregators, and other players, the mediator should be
carefully selected according to the main goal of the CEC. These players also have their own
goals and utility functions that may differ between them. Accordingly, the achievement of
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agreements in an alliance composed of players with different goals may be more difficult
and lead to outputs that could not be satisfactory to all evolved parties. Generally, CECs
are composed of local small players that do not have enough expertize to negotiate in EMs.
So, the most experienced between them or even an external negotiator should be selected
as the trusted mediator. CECs can have an enormous number of members from different
types, so, while managing their resources can be done with some effort using a contract net
protocol, the number of messages exchanged while negotiating a tariff can be very high to
manage [9].

The RM-IDM strategy reserves to the trusted mediator the computation of tariffs, but
allows that all members vote on the acceptation of a tariff, between the mediator’s tariff
and the tariffs proposed by opponents. Using this strategy, it is possible to vote for the best
tariff between a limited number of proposals. The RE strategy lets the mediator selects the
tariff, which can result in very diverse utilities and withdrawal members. The SSV strategy
is a bad choice in case of alliances with a relatively high number of members. Using this
strategy, all members can propose a tariff and vote on the acceptance of the best tariff.
The most voted tariff is accepted between a (potential) enormous number of tariffs, which
means that a tariff with few votes can be accepted, if the majority of the members vote for
the acceptance of their own tariff, which can decrease the members’ utility. To deal with this
limitation, a SBV strategy can be used, where all agents score proposals from the best to the
worst, giving them a different number of votes, accordingly. Each member gives to its best
proposal a number of votes equal to the number of proposals, and to the worst proposal
only one vote. The proposal with more votes is selected. The literature indicates that this
strategy is the one that can lead to higher utilities for the members of the alliance, but it
is computationally very heavy [55]. Per each negotiation step, each member will send to
the trusted mediator their own proposal, and will receive all proposals, rank all proposals
and receive the final result. So, the number of messages per proposal is proportional to
the number of members raised to the 4th power. In the FUM strategy, all members have
to accept the same proposal. All members can suggest a tariff, and until they vote for the
acceptance of the same tariff, there is an extensive exchange of messages, which increases
the computational complexity of the negotiation. In alliances with a substantial number of
negotiating agents, when using a FUM strategy is very hard to achieve an agreement [55].

Against this background, as CECs are composed of a relevant number of unexpe-
rienced market participants, the most reasonable team strategy that they can use is the
RM-IDM [23]. The SSV will (potentially) result in a bad agreement to the majority of
members, and the other strategies are computationally heavy. The next section presents a
case study considering the negotiation of a PPA between CECs, using the RM-IDM strategy,
and RES.

4. Case Study on the Negotiation of a PPA between CECs and RES

This study concerns the negotiation of a power purchase agreement (PPA) between a
CEC and an aggregator, that manages all wind farms in Portugal, for the period 2012–2013.
This study considers real data of 312 consumers and 227 wind farms from Portugal during
2011–2013 (see the Data Availability Statement). By signing a PPA with the wind aggregator,
the CEC is responsible for all deviations from the wind farms and the wind aggregator
receives a liquid value from the agreement, the negotiated price.

4.1. Data

Real data from 2011 is used to forecast prices and consumption during the period
2012–2013. The consumers represent around 5% of the Portuguese demand, while the
wind farms with an installed capacity of 4730 MW, represent all Portuguese wind farms.
This study will evaluate the benefit of consumers by forming an alliance as a CEC, and
negotiating PPAs with RES.

In Portugal, during 2013 the regulated tariff of consumers considered a value of
140.50 €/MWh for electricity, the energy part being 70.60 €/MWh, the grid-access
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65.90 €/MWh and the commercialization tax equal to 2.5 €/MWh [15]. Currently, by
forming an alliance as a CEC with self-consumption, consumers have a discount of 50% in
the grid access cost. Furthermore, if the CEC participates directly in the market without an
intermediary, as a retailer, it also has a discount on the commercialization tax.

The CEC has an average consumption of 212 MWh and the wind farms capacity
factors in Portugal stand around 25%. So, to be carbon-neutral, the CEC should negotiate a
PPA of around 848 MW with wind farms. All environmental, operational, and economical
metrics used in this case study can be found in [12].

In 2011 the wind farm remuneration from EMs was 36.05 €/MWh and was expected to
decrease by 2012 and 2013 to 35.87 €/MWh and 32.90 €/MWh, respectively. The aggregator
considered 36.00 €/MWh as the minimum price for accepting a deal but had the goal of
achieving a value until 60 €/MWh, its initial proposal.

4.2. Negotiation and Results

Consumers that did not form an alliance into a CEC were restricted to a regulated or
retail tariff. The regulated tariff was indicated by the regulator, while retail tariffs were
proposed by competitive retailers. If consumers formed an alliance into a coalition they
may have had enough weight to participate in EMs, paying the wholesale market price of
electricity plus taxes.

The CEC used a representative mediator with individual decision making (RM-IDM)
strategy, which means that the representative mediator was the only one that computed and
suggested proposals to the alliance, but all members had to vote for their acceptance [24].
The CEC considered a maximum value for this PPA of 65 €/MWh, but had the goal of
obtaining a value until 40 €/MWh, its initial proposal.

At the start, both agents used a reasonable strategy, conceding moderately, considering
a concession factor of 10% (see [21] for a review about negotiation strategies and tactics).
All members of the CEC scored proposals according to a cost function. So, they voted
positively for the proposal that minimized their cost. The aggregator scored proposals
according to their expected remuneration function, accepting the proposal that maximized
their remuneration.

The negotiation started with the RM indicating the CEC needs for a PPA of 848 MW
and requesting the electricity price of the energy-part of the variable-term. The aggregator
started by indicating that for that amount of power the energy price was 60 €/MWh. The
RM computed a price equal to 40 €/MWh and sent both proposals to all members that
were to vote on the acceptance of the RM’s proposal. The negotiation continued until the
CEC accepted the sixth proposal of the aggregator for 50.17 €/MWh, the PPA price.

Table 1 presents the main results of the case study from the point of view of the
consumers and the wind aggregator. It presents the total costs of the consumers with the
variable term of the electricity, considering that they: (i) have a retail tariff, (ii) form a CEC
and negotiate in EMs, and (iii) form a CEC, negotiate in EMs and sign a PPA with wind
farms. Furthermore, it also presents the remuneration of the wind aggregator, considering
its participation in EMs, or the signature of the PPA with the CEC.

Table 1. Average consumer costs before taxes (VAT) considering the variable tariff, and the wind aggregator remuneration
from an individual and community (CEC) perspective.

Player Details Energy-Part
(€/MWh)

Other-Part
(€/MWh)

Total Cost
(€/MWh)

Technology
Remuneration

(€/MWh)

Consumer Regulated tariff 70.60 69.90 140.50 -
CEC (Consumers) Market-based 48.11 67.40 125.51 -
CEC (Consumers) PPA 55.56 38.45 95.01 -
Wind Aggregator Market-based - - - 43.28
Wind Aggregator PPA - - - 50.17
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Analysing Table 1, it is possible to verify that consumers are paying more 47% for the
energy-part of the regulated tariff (70.60 €/MWh) when compared to the wholesale price
of energy (48.11 €/MWh), even considering penalties with real-time deviations. Retail
tariffs have final prices similar to regulated tariffs, which means that retailers have a
markup of around 12% if considering the whole variable term of the tariff. If the CEC
signs a PPA with the wind aggregator for 50.17 €/MWh, it may increase its costs with
the energy part of the variable term of the electricity by 15%, when compared to only
bidding at EMs, mainly because the CEC is responsible for the deviations of the wind
aggregator. However, by using wind power production for self-consumption, the CEC has
a discount of 50% in the grid access tax. So, the total costs of its members for electricity
were reduced by 33% compared with regulated tariffs, and by 24% compared with EMs
bidding. Furthermore, by signing a PPA with a wind aggregator, the CEC is carbon-neutral
to electricity consumption, i.e., consumes less electricity than the acquired value in the
PPA. Also, it has an energy sustainability index of 0.65, which means it consumes exactly
65% of wind power production. The remaining energy, the CEC buys or sells in EMs in
case of real-time energy scarcity or excess, respectively. This happens because wind power
production is not completely correlated with the CEC demand.

After the end of the government incentives, the wind farm remuneration is not
guaranteed. So, they have to participate in the market, facing price volatility and leading
with their production uncertainty, paying substantial penalties because of their real-time
imbalances to market commitments. The same is true for new wind farm projects that could
have difficulties in being financed because of the uncertainty related to their remuneration.
Against this background, the negotiation of long-term PPAs may give the stability that new
wind farms projects need to be financed, and at the same time increase their remuneration.
The alliance of wind farms with flexible consumer and/or storage solutions can mitigate
their unbalance quantities [83].

Analysing Table 1, it is possible to verify that by signing a PPA, the wind aggregator
increases its remuneration by 16%, receiving a fixed price such as in feed-in-tariffs, and pass-
ing its responsibility with imbalances to the buyer. Against this background, the negotiation
of PPAs between demand-side players and VRES can lead to mutual benefit agreements.
Demand-side players can become carbon-neutral and obtain green certificates from VRES
production, and at the same time complement VRES deviation with their own, mitigating
part of it. VRES can receive stable remuneration that enables their financing. Furthermore,
by not being responsible for deviations, VRES may obtain a higher remuneration.

5. Conclusions

The new European Union (EU) legislation, with ambitious decarbonisation goals of
future power systems towards near 100% renewable penetration, activated significant
governmental incentives for new investments in renewable energy sources (RES), such
as wind, solar PV, and biomass. These incentives consist of feed-in tariffs with values
significantly higher than wholesale market prices of electricity, which contribute to the
tariff deficit, paid by consumers. The increase in the production of PV panels leads to a
substantial reduction in their production costs (scale economy), and has resulted in several
investments in this technology without the need of government incentives. However, this
technology has a stochastic profile, which means that it has an uncertain production that
reduces its uncertainty the closer to real-time operation.

Day-ahead markets of electricity are the most liquid physical markets, but they close
on the day-ahead of real-time operation, several hours before unit commitment. Against
this background, both variable RES and demand-side players have to rely on power
forecasts while bidding at day-ahead markets. These players can try to update their power
bids to more trustable values, closer to real-time operation, on intraday and real-time
markets of electricity, based on more reliable power forecasts. Unfortunately, these power
forecasts also have errors which, during real-time operation, lead to imbalances between
demand and supply of electricity. These imbalances have to be fixed in the ancillary
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services, paid by the imbalance parties, resulting in penalties to these players. The increase
in the VRES production normally increases the need to balance the system, increasing the
costs of ancillary services. High shares of VRES in power systems will lead to the need for
flexibility in order to avoid curtailments of VRES in case of energy excesses, and extremely
high peak prices or even the loss load expectation in case of energy scarcity. The alliance
of distributed generation, consumption, and storage solutions (potentially) can be very
important to provide the flexibility required for future power systems with near 100% RES
penetration, which should be subject to security experiments.

This article focused on the alliance agent and its functions in liberalized electricity
markets. It presented a model for single agents that has been adapted to an alliance agent
model. This article adapted this model to Citizen Energy Communities (CECs), describing
the main phases of the model. This model consists of several intra-team strategies, some of
them used in several cases and sectors in the world, and of the negotiation and decision
structure of the alliance model in electricity markets. Furthermore, this article presents
how the model of alliance agents can be adapted to CECs, considering their formation, and
how their members interact and decide between them and negotiate mutually beneficial
agreements with opponents. It also presents a case study that tests the model by considering
the negotiation of a power purchase agreement (PPA) between the CEC and a wind
aggregator. This bilateral agreement leads to a mutual benefit for both parties. The CEC
reduces its member costs for electricity by 33%, and becomes carbon-neutral in relation
to electricity consumption. The wind aggregator increases its remuneration by 16%, and
passes the responsibility for imbalances to the CEC.

Decarbonisation of all sectors of activity leads to a need for energy flexibility and
electrification, on which demand-side agents will have an important role. For future carbon-
neutral societies, active participation of the demand-side in energy markets is crucial to
economically efficient societies, which can be done through CECs. CECs may comply
with the goal of economically efficient carbon-neutral societies. Studying and testing the
formation, interaction, and negotiation among alliances of the electricity sector seems
appropriate to increase the participation and flexibility of small players of the distribution
grid in the power system. Furthermore, the active participation of demand-side players in
flexibility markets or demand response programs may accommodate higher quantities of
distributed generation and incentivise new VRES capacity.

How different team strategies can improve CEC outputs and how demand response
can enable their participation in the ancillary services will be studied in future work.
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Abbreviations

AMES Agent-based Modelling of Electricity Systems
BESS Battery energy storage system
CEC Citizen energy community
DCF Dynamic coalition formation
DCF-S DCF based on simulation
DG Distributed generation
EM Electricity market
EMCAS Electricity Market Complex Adaptive System
EV Electric vehicle
EU European Union
FUM Full unanimity mediated
GAPEX Genoa Artificial Power Exchange
GenCo Generation Company
ISO Independent System Operator
MAS Multi-agent System
MASCEM Multi-Agent Simulator of Competitive Electricity Markets
MATREM for Multi-Agent Trading in Electricity Markets
PPA Power purchase agreement
PV Photovoltaic
RE Representative
RES Renewable energy sources
RM Representative Mediator
RM-IDM Representative Mediator with Individual Decision Making
SEPIA Simulator for Electric Power Industry Agents
SREMS Short Medium run Electricity Market Simulator
SBV Similarity Borda Voting
SSV Similarity Simple Voting
VAT Value Added Tax
VPP Virtual power player
VRES Variable renewable energy sources
WPP Wind power producer
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