
Citation: Gao, J.; Shi, J.; Balla, P.;

Sheshgiri, A.; Zhang, B.; Yu, H.; Yang,

Y. Camera-Based Crime Behavior

Detection and Classification. Smart

Cities 2024, 7, 1169–1198. https://

doi.org/10.3390/smartcities7030050

Academic Editor: Pierluigi Siano

Received: 26 February 2024

Revised: 4 May 2024

Accepted: 6 May 2024

Published: 19 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

smart cities

Article

Camera-Based Crime Behavior Detection and Classification
Jerry Gao 1,2,† , Jingwen Shi 1, Priyanka Balla 1, Akshata Sheshgiri 1, Bocheng Zhang 3, Hailong Yu 3

and Yunyun Yang 3,*,†

1 Department of Computer Engineering, San Jose State University, San Jose, CA 95192, USA;
jerry.gao@sjsu.edu (J.G.); jingwenshi@sjsu.edu (J.S.); priyankaalla@sjsu.edu (P.B.);
akshatasheshgiria@sjsu.edu (A.S.)

2 Department of Applied Data Science, San Jose State University, San Jose, CA 95192, USA
3 College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China;

zhangbocheng1966@link.tyut.edu.cn (B.Z.); yuhailong0361@link.tyut.edu.cn (H.Y.)
* Correspondence: yangyunyun@tyut.edu.cn
† These authors contributed equally to this work.

Abstract: Increasing numbers of public and private locations now have surveillance cameras installed
to make those areas more secure. Even though many organizations still hire someone to monitor the
cameras, the person hired is more likely to miss some unexpected events in the video feeds because
of human error. Several researchers have worked on surveillance data and have presented a number
of approaches for automatically detecting aberrant events. To keep track of all the video data that
accumulate, a supervisor is often required. To analyze the video data automatically, we recommend
using neural networks to identify the crimes happening in the real world. Through our approach,
it will be easier for police agencies to discover and assess criminal activity more quickly using our
method, which will reduce the burden on their staff. In this paper, we aim to provide anomaly
detection using surveillance videos as input specifically for the crimes of arson, burglary, stealing,
and vandalism. It will provide an efficient and adaptable crime-detection system if integrated across
the smart city infrastructure. In our project, we trained multiple accurate deep learning models for
object detection and crime classification for arson, burglary and vandalism. For arson, the videos
were trained using YOLOv5. Similarly for burglary and vandalism, we trained using YOLOv7 and
YOLOv6, respectively. When the models were compared, YOLOv7 performed better with the highest
mAP of 87. In this, we could not compare the model’s performance based on crime type because all
the datasets for each crime type varied. So, for arson YOLOv5 performed well with 80% mAP and for
vandalism, YOLOv6 performed well with 86% mAP. This paper designed an automatic identification
of crime types based on camera or surveillance video in the absence of a monitoring person, and
alerts registered users about crimes such as arson, burglary, and vandalism through an SMS service.
To detect the object of the crime in the video, we trained five different machine learning models:
Improved YOLOv5 for arson, Faster RCNN and YOLOv7 for burglary, and SSD MobileNet and
YOLOv6 for vandalism. Other than improved models,we innovated by building ensemble models of
all three crime types. The main aim of the project is to provide security to the society without human
involvement and make affordable surveillance cameras to detect and classify crimes. In addition, we
implemented the Web system design using the built package in Python, which is Gradio. This helps
the registered user of the Twilio communication tool to receive alert messages when any suspicious
activity happens around their communities.

Keywords: object detection; crime classification; deep learning; arson ; burglary; vandalism; crime;
Twilio; Gradio

1. Introduction

Crime-prone locations have become more challenging because of a recent increase
in the population in urban areas [1]. There has been an upsurge in crime and insecurity

Smart Cities 2024, 7, 1169–1198. https://doi.org/10.3390/smartcities7030050 https://www.mdpi.com/journal/smartcities

https://doi.org/10.3390/smartcities7030050
https://doi.org/10.3390/smartcities7030050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com
https://orcid.org/0000-0002-1051-5839
https://orcid.org/0000-0002-7025-8555
https://doi.org/10.3390/smartcities7030050
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com/article/10.3390/smartcities7030050?type=check_update&version=1


Smart Cities 2024, 7 1170

because of this lack of control. Innovative solutions to these issues are now possible
because of the development of smart city infrastructure [2]. It is possible to identify
illegal activities with the help of an auto regressive model and behavioral recognition
techniques [3]. Traditional crime-solving methods are ineffective in the current climate
because they are too time-consuming and inefficient to keep up with the escalating crime
rate [4]. According to the literature survey, the accuracy evaluation of crime types can be
obtained in different ways, as shown in Figure 1.

Figure 1. Literature survey.

The technology survey shows the advantages, disadvantages, and best use cases. See
Figure 2.

Figure 2. Technology survey.

For the shortcomings of existing technology, it would alleviate the pressure on police
and aid in crime prevention if we could devise methods for predicting crimes, in detail, be-
fore they occurs, or devise a “machine” [5] that can help police officers. We propose the use
of machine learning and computer vision methods [6] and approaches to accomplish this.

This paper presents a thorough evaluation of the field, including topics such as object
recognition, group research, and, finally, action detection in video frames or clips. In this
effort, we are focusing on the detection of four specific types of criminal activity: arson, theft,



Smart Cities 2024, 7 1171

burglary, and vandalism. At the outset, the video inputs were reduced, and the videos were
annotated [7]. Video annotation is the process of manually labeling and classifying video
footage to teach computer vision algorithms how to find and identify objects. Marking
items in a video, as opposed to an image, frame by frame, enables machine learning models
to identify the objects in the video. The spatial and temporal characteristics [8] of video must
both be accounted for in an appropriate video index. To achieve this, video is segmented
into shots, and then the most relevant frames are extracted for use in indexing and retrieval.
This class includes scenes or video clips that have been frozen in time, such as observable
motion and the object’s fixed characteristics. Features are extracted from the video data.
The information was then separated into three groups: the training set, the test set, and the
validation set. To better comprehend the patterns [9] and provide more accurate results
when tested with the test datasets, the deep learning models were trained with the training
datasets of corresponding crimes (arson, stealing, burglary, and vandalism). All the videos
were turned into frames using Roboflow to perform the further preprocessing methods. We
used YOLOv5 for arson objects, YOLOv7 for burglary objects, and YOLOv6 for vandalism
object detection [10]. Furthermore, we implemented OpenCV for classification of the
crimes based on the objects that get detected in the video input. To gauge the efficacy of
the outcomes, we conducted evaluation measures. We implemented a user interface using
Gradio, which is easy to use and verify the surveillance videos to check the crime behavior.
Meanwhile, the aim of the project is to implement a robust automated intelligence platform
that detects and classifies specific crime types (arson, burglary, and vandalism) within
Homeowner Association (HOA) communities (HOA communities are official groups of
residents that preside over a community), parking lots, and apartment buildings from
camera-based videos and surveillance videos [11]. Structure: The rest of this article is
organized as follows. Data collection and data process are described in Section 2, with
details on the training and preparation of test data. Section 3 describes the method for
selecting the model. In Section 4, data analysis and intelligent system design are presented.
Section 5 is the evaluation of the performance of the intelligent system and the display of
the results. Section 6 discusses the results of this study in light of other similar studies.

2. Data Engineering
2.1. Data Process

To collect the data for this paper, we searched through a large number of Google-
accessible websites that provided us with the opportunity to collect crime films and datasets
that include a classification of various types of crime. There was a grand total of six distinct
varieties of footage that needed to be gathered to adequately demonstrate our goal. All the
different categories of crime this paper hoped to collect are detailed in Table 1 below.

Table 1. Different types of crime videos.

Crime Places

Arson Parking lots.
Arson Neighborhoods, houses, streets, etc.

Burglary Parking lots.
Burglary Neighborhoods, houses, vehicles, streets, etc.

Vandalism Parking lots.
Vandalism Neighborhoods, houses, streets, etc.

Figure 3 depicts our project’s complete data process lifetime, beginning with the col-
lection of the raw video information and ending with the final product. Data preprocessing,
data transformation, and data preparation are the major components. As part of the data
preprocessing phase, we manually clipped films for each crime category and then used
those segments to build frames. Since most crime videos we received were only a few min-
utes long, and the crime itself only occurred during a brief window of time, we needed to
trim the videos down to just the relevant parts in order to maximize the effectiveness of our



Smart Cities 2024, 7 1172

training, which also entailed creating frames for every trimmed video. Frame resizing, data
augmentation for greater lighting and perspective of frames, and annotating frames are all
examples of data transformation that are used as input to a model.Separating raw data into
three distinct sets—a training dataset, a validation dataset, and a testing dataset—was the
next step in the data preparation process. Three Google drive folders were created: one for
the training data, one for the validation data, and one for the testing data. A total of 80% of
the training data was utilized to train our deep learning models, with 15% for validation,
and 5% for testing.

Figure 3. Data Preprocessing.

Data augmentation can assist in enhancing the likelihood of accurate detection by
rotating image frames to capture targets from various angles, in addition to adjusting the
brightness of frames to optimize detection capabilities.The main focus of our detection
was the criminal behaviors, but due to the limitation of the videos, some crime behaviors
were not easily observed; our main goal was therefore redirected to the detection of some
common suspicious actions, such as human running or hovering; the critical information
tends to be obtained by focusing on a specific person.

2.2. Data Collection

We collected anomalous and normal videos from two different sources for Burglary,
Arson, and Vandalism. Table 2 lists all the raw video data statistics for each dataset with
crime type, quantities, and whether the raw datasets were annotated or not. Each following
paragraph will detail parameters, sources, and samples from raw datasets. Each video is
defined with specific crime types so that we can identify each crime type with the respective
folder whereas normal videos are available in the normal folder. We select each video that
helps define our crime type and discard the other videos. We trim selected videos specific
to the crime event and normal event and will be maintained in the particular crime and
normal folders. Once we trim the video we generate frames and make them available to
annotate the objects. Some videos will provide a good amount of frames whereas others
might be based on crime events in videos. Once we label the objects for particular crime
types, we split the data into train, test, and validate folders for each crime type. Arson:
80%, 5%, 15%, Burglary: 80%, 5%, 15% and Vandalism: 80%, 5%, 15% . Since we will be
testing on videos rather than test video frames, we are considering only 5% of video frames.
However, we will be testing on different scenarios including day and night times.



Smart Cities 2024, 7 1173

Table 2. Different types of crime videos.

Dataset Crime
Type

Untrimmed
Videos

Total
Videos

Raw Video
Frames

Data
Augmentation

Total
Frames

Manual
Annotation

UCF [8] Arson 60
140

3000 5500
8050 YESYouTube Arson 40 1640 1500

Storyblocks [12] Arson 40 1000 1050
UCF [8] Burglary 110

200
4000 5500

9100 YESYouTube Burglary 50 1200 2100
Storyblocks [12] Burglary 40 1000 1500

UCF [8] Vandalism 50
170

3060 4405
9050 YESYouTube Vandalism 80 1460 2945

Storyblocks [12] Vandalism 40 1000 1700

Source 1: UCF crime dataset [8] is the largest open dataset for real-time surveillance
crime videos and contains 14 different crime types. Based on the project focus, we collected
burglary, arson, vandalism, etc. We have 5500 arson, 4405 vandalism and 5500 burglary
video frames. The purpose of collecting data from UCF [8] varied across different parame-
ters, such as high-resolution videos, captured from different surveillance cameras, night
and day visions camera models, videos from different camera angles, etc.

2.3. Data Preprocessing

Since the data were videos, only minimal data preprocessing was required. The steps
are shown below to preprocess the models for training and achieve good results:

(1) Step 1 involves data cleaning by selecting good resolution videos in each crime type
to get good results.

(2) Step 2 is finding an anomalous event in a video and defining the objective of abnor-
mal activity.

(3) Step 3 is video trimming for suspicious and normal events using inbuilt video trim-
ming software tools from Mac and Windows.

(4) Step 4 is generating frames from each video by developing Python code.
(5) When extracting frames, each frame name will be annotated. We created annotations

for each frame using Roboflow and assigned class names for each target object.
(6) The generated video frame dimensions might be different but we changed the dimen-

sions of the extracted frames to different heights, weights, and widths as input size
for the models in the data transformation section.

(7) To increase our training data, data augmentation was applied: horizontal and vertical
flips, sheer, rotating, and zooming for existing frames that provide different camera
views of crime activities.

2.4. Data Transformation
2.4.1. Data Transformation—Resizing the Frames

The videos that were obtained from the different data sources like UCF, HMDB51,
and YouTube were converted to frames in the data preprocessing step. The frames which
are the output of the data preprocessing step, were of the size 320 × 240. Transforming
data from one pattern to another, often from one source system to another, is known as
data re-formatting or transformation. There are several common data management and
integration jobs that include data transformation. In this project, we used different models
to train the data and, accordingly, we resized the frames to 224 × 224 size. When you
resize an image, you can make it smaller or larger without removing any of the original
content. File size and quality are often impacted by resizing an image because it changes
its proportions. We have done the preprocessing steps and resizing of the frames using
the Python programming language. We imported the libraries like cv2, glob, os, and time
to accomplish the resizing of the frames. We collected the list of videos in a folder and
passed it as an input to the main method and predefined the output folder which helps



Smart Cities 2024, 7 1174

us to store all the frames collectively. The frames were generated for one video at a time
and the numbering started from 1 along with the video name as the labeling of the frame.
Furthermore, for another video, the frames got generated automatically and the numbering
started again from 1 with the respective video name as the labeling, and similarly for all the
videos in the folder. We collected the data with respect to crime types in different folders
which was helpful to train the data. While training, we planned to resize the data according
to the models’ input shape requirements. We did this entire process using a Python script
in Jupyter Notebook.

2.4.2. Data Augmentation

Data augmentation is accomplished by incorporating information from both various
sources into the base data. It is possible to improve data quality and reduce the amount of
manual intervention necessary to produce relevant information and insight from business
data by enhancing the data’s augmentation. In order to increase the model’s performance
and generalizability, image data augmentation was performed. We utilized Jupyter Note-
book as a tool and the Python programming language to perform the operation. This
operation was supported via Roboflow. Different forms like horizontal/vertical shift,
the brightness of images, and random rotation of images were applied. We loaded the
frames one after the other, which needed to be augmented and they were converted to an
array. By creating an image data augmentation generator and preparing the iterator, we
generated samples and then plotted them. We applied different methods to the frames, as
mentioned below.

2.5. Data Preparation

Based on the collected videos and the frames extracted, annotated, and organized in
accordance with the offenses, we divided the final datasets into three groups: training,
validation, and test (arson, burglary, and vandalism). The training tools were modified to
accommodate the models. The prediction error of a candidate model was estimated using
the validation set. After a final model was chosen, generalization errors were measured
with a test set. Roboflow was used to organize the data into distinct directories and file
types, with the annotation files for each frame clearly labeled. Depending on the kind
of models being used, the file extensions was .csv,.xml, or.txt. All of the input files were
mixed up before being divided into train, validation, and test dataset folders,so that each
set of data was truly random. By defining the ratio of 70%-15%-15% training, validation,
and testing, we are able to achieve our aims with the help of the package module, which
distributes the dataset randomly across several output folders. We divided the data, which
includes both crime footage and regular films, in the ways stated below for the various
types of crime.

2.6. Data Statistics

In the data collection section, Table 3 depicts the crime type and umber of videos col-
lected in the raw data: burglary: 200 videos, arson: 140 videos, and vandalism: 170 videos
with the file format (.mp4), annotated or not from different sources that are publicly avail-
able. We have also presented video samples from each source for all the crimes by defining
each sample frame about the anomalous event.

Table 3. Prepared video count for each crime type and normal type.

Crime Type Crime Video Quantity (mp4)

Arson 140
Burglary 200

Vandalism 170
Normal 60



Smart Cities 2024, 7 1175

The following Figure 4a showcases the frame count for each crime type after perform-
ing data augmentation on the above frames.

The following Figure 4b showcases the total raw dataset video count of crime types
and normal events. For normal events, we only chose 60 videos, which were lengthy and
processed frames.

The following Figure 4c showcases the raw frame count for each crime type for the
trimmed videos.

Figure 4. (a) Frame count after data augmentation, (b) total raw datasets video count for crime types
and normal events, and (c) raw frame count for each crime type.

Table 4 lists the number of frames for each crime type with augmentation and split.
Each video generates frames based on the crime event in the video. Since each video is
trimmed to the required crime event, the number of frames for each video is different. In
the data transformation, we presented video frames conversion from the raw dimension
(320, 240) to the required dimension (224, 224). However, the number of frames remains
the same.

Table 4. Summary of raw, preprocessed, transformed, and split data.

Crime Type Source Raw
Frames

After
Augmentation
(Total Frames)

Train (80%) Valid (15%) Test (5%)

Arson UCF, Youtube, Story Blocks 5640 8050 6440 1208 402
Burglary UCF, Youtube, Story Blocks 6200 9100 7280 1365 455

Vandalism UCF, Youtube, Story Blocks 5520 9050 7140 1524 386

Data Analytics Results: Below are the figures for the object count for each of our crime
types. Figure 5a lists the object count for arson, Figure 5b lists the object count for burglary,
and Figure 5c lists the object count for vandalism.

Figure 5. Total raw datasets video count.

The following Figure 6 displays the chart for the data split for each crime type with
the proportion (train 80%, test 5%, and valid 15%).



Smart Cities 2024, 7 1176

Figure 6. (a) Burglary train, valid, test data split, (b) arson train, valid, test data split, and
(c) vandalism train, valid, test data split.

3. Model Development
3.1. Model Proposals

Improved YOLOv5: YOLO, also known as you only look once, is an algorithm of
object detection [13]; it redefines object detection as a regression problem, applies a single
convolutional neural network (CNN) to the entire image, divides the image into grids,
and predicts class probabilities and bounding boxes for each grid. The YOLOv5 model is
improved based on the YOLOv3 model [14]. There are four models: YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. The YOLOv5 model consists of backbone network, neck, and
head. The backbone network is composed of Focus, BottleneckCSP, and SSP networks
including modules such as Focus, Conv convolution block, BottleneckCSP, and SSP, with an
input image sized 640 × 640 × 3; we sliced through the Focus module to reduce the height
and width of the image, output the image size to 320 × 320, and convert the height and
width of the sliced image through Concat Integrate, increasing the number of channels
of the input image to 64, then performing feature extraction on the integrated image to
get a featured mAP (mean average precision), the SSP uses max pooling and aggregates
feature mAPs through Concat. For the neck part, a bottleneck was used in order to improve
network speed while ensuring accuracy. The head of YOLOv5 uses multi-scale feature
mAPs for detection; large images are used to detect small targets, and small images are used
to detect large targets, and finally, we obtained three scales of feature mAPs.There were
only two types of crime detection for arson which were arson and normal, and prediction
based on our self-made dataset, then we output the target as well as bounding box. To
better extract the features from the input, the model was pre-trained by the COCO dataset,
as our customized dataset applied transfer learning to predict and classify arson crime,
replacing the default eighty classes to six classes. The backbone was the layers to extract
input image features, and we froze the first ten layers of the backbone so the weights would
not change during transfer learning, and change to smaller batch sizes in order to decrease
the computation cost with faster training.The arson behavior has been identified using the
Improved YOLOv5 Architecture, as depicted in Figure 7.

Figure 7. Improved YOLOv5 architecture.



Smart Cities 2024, 7 1177

3.1.1. Improved Faster RCNN ResNet101

Faster RCNN [15] is a region-based object detection model that is widely used for
image classification. Since our target is to detect the objects in images or videos, the model
was used to detect the features in different regions of images and utilized to classify them
as burglary and not burglary. Figure 8 shows that Faster RCNN architecture consists
of two main components: region proposal network (RPN), and region of interest (ROI).
Regions identified as objects/target labels within an image belong to the foreground class
and are not identified as belonging to the background. To recognize these areas, RPN
architecture introduces three main anchor boxes: 128 × 128, 256 × 256, and 512 × 512 to
identify the variations, scale, size, and aspect ratios, 1:1, 2:1, and 1:2, of objects at each
location in an image with a total of nine boxes on the RPN that assists in identifying
different shapes of objects. When the anchor boxes intersect over union, if the threshold is
greater than 0.5, those are labeled as foreground class and, otherwise, background class.
This shared computation significantly reduces time cost and helps in detecting objects
faster. In order to do this, RPN uses a CNN to extract those feature mAPs and then sends
them to the ROI layer to flatten all the images to the same size.

To improvise the model features extracted from input videos, Faster RCNN ResNet150,
the pre-trained model on the COCO dataset, was trained on 2.5 million images with 80
classes with freeze convolutional base and without an output layer. We modified the last
output layer with sigmoid activation and set class labels to five classes instead of eighty.
The pre-trained ResNet101 model uses 101 convolutional layers, batch normalization,
and relu activation functions in each block. Even though the model has 101 layers, it
still failed to detect small objects, such as handy tools used to break into houses, cars,
and vehicles. To resolve this issue, Feature Pyramid Extractor was utilized, which takes a
single-scale image of an arbitrary size as input, and outputs proportionally sized feature
mAPs at multiple levels, in a fully convolutional fashion. This process is independent of
the backbone convolutional architectures and helps in learning and detecting tiny objects.

Figure 8. Improved Faster RCNN.



Smart Cities 2024, 7 1178

3.1.2. Improved YOLOv7

Yolo is an object detection model that is widely used for image classification. Since our
target is to detect the objects in images or videos, the model was used to detect the features
in different regions of images and utilized to classify them as burglary and not burglary.
Figure 9 shows that the YOLOv7 architecture consists of four main components: backbone
network, Feature Pyramid, neck, and head. The backbone network, composed of Focus,
BottleneckCSP, and SSP networks including modules such as Focus, Conv convolution
block, BottleneckCSP, and SSP, with an input image size of 640 × 640 × 3, sliced through
the Focus module to reduce the height and width of the image and output the image size
to 320 × 320, and converted the height and width of the sliced image through Concat
Integrate, increased the number of channels of the input image to 64, then performed
feature extraction on the integrated image to get a featured mAP; the SSP used max
pooling and aggregated feature mAPs through Concat. The FPN solved the multi-scale
problem that resolved issues in detecting small objects. For the neck part, a bottleneck was
used in order to improve network speed while ensuring accuracy. The head of YOLOv7
used multi-scale feature mAPs for detection; larger images were employed for detecting
smaller targets, whereas smaller images were utilized for identifying larger objects, and
finally, we obtained three scales of feature mAPs. YOLOv7 also provides several model
weights: YOLOv7, YOLOv7-tiny, YOLOv7-e6, YOLOv7-d6, YOLOv7-e6e, YOLOv7-w6,
and YOLOv7x. To improvise the model features extracted from input videos, YOLOv7,
pre-trained on the COCO dataset, was trained on 2.5 million images with 80 classes with
freeze convolutional base and without an output layer. We modified the last output layer
with sigmoid activation and set class labels to five classes instead of eighty. The pre-
trained darknet used a single convolution layer for entire images that divided an image
into grids, and predicted each class probabilities and bounding boxes for each grid batch
normalization, and relu activation functions in each block. Even though the model applied
convolution layers efficiently, it still failed to detect small objects such as handy tools used
to break in houses, cars, and vehicles. To resolve this issue, Feature Pyramid Extractor
was utilize, which takes a single-scale image of an arbitrary size as input, and outputs
proportionally sized feature mAPs at multiple levels, in a fully convolutional fashion.
This process is independent of the backbone convolutional architectures and helps in
learning and detecting tiny objects. Additionally, batch size was reduced to 16 to avoid
out-of-memory issues, an increase in the number of steps to get higher precision and recall,
and added more training data to avoid overfitting problems. Furthermore, transfer learning
was done by freezing the last three layers to fine-tune the model.

Figure 9. Improved YOLOv7.

3.1.3. Improved SSD Mobilenetv2

Real-time object detection [16] is SSD’s (Single Shot detector) primary purpose. It has
reduced wait time thanks to SSD’s ability to bypass the regional proposal network. SSD
employs some upgrades, such as a number of co-features and default boxes, to recoup the
loss in precision. The enhancements allow SSD to achieve parity with the Faster R-CNN



Smart Cities 2024, 7 1179

in terms of accuracy while making use of images with lower resolution, hence increasing
SSD’s speed [17]. The model’s name, “Single Shot detector”, gives away a lot of its salient
features. Unlike other models that must traverse the input image multiple times to acquire
an output detection, the SSD model identifies the item in a single pass. The SSD model just
needs one pass to detect objects, therefore it is faster. However, simultaneously, the SSD
model appears to have remarkable detection performance. The SSD model clearly divides
predictions by display size and generates predictions at many scales based on the sizes
of the feature mAPs in order to attain high detection accuracy. These methods simplify
end-to-end training and produce great accuracy, even with low-resolution input photos.

The SSD model consists of two components: the backbone model and the SSD head.
To create the feature mAP, the backbone model employs a standard pre-trained image
classification network. Here, only the retrieved feature mAPs remain after the model’s
final picture categorization layers have been omitted. The SSD head, which consists of
many convolutional layers, is an extension of the main model. It produces bounding boxes
over the object as an output. The numerous items in the image are identified by these
convolutional layers. Sigmoid activation was added to the final output layer, and there
are now just five classes instead of eighty. Each block in the Mobilenet model’s inverted
residual structure was trained using 53 convolutional layers, batch normalization, and relu
activation functions. It got rid of the non-linearities in the thin layers. Despite the model’s
53 layers, it was unable to recognize even relatively small things, such as personal tools,
vehicles, and bicycles. To address this problem, Feature Pyramid Extractor, as seen in
Figure 10, was used, which, given an input image of arbitrary scale, generates feature mAPs
of progressively smaller sizes using a fully convolutional neural network . Learning and
detecting small objects was aided by this method, which is decoupled from convolutional
architectures used for the backbone. More training data were added to combat overfitting,
and the batch size was decreased to eight. This allowed for increased precision and recall
without running out of memory.

Figure 10. Improved SSD MobileNet architecture.

3.1.4. Improved YOLOv6

The single-stage object detection framework YOLOv6 is optimized for use in indus-
trial settings thanks to its hardware-friendly, efficient design and top-notch performance.
In terms of detection accuracy and inference speed, it is superior to YOLOv5, making it the
optimal OS version of the YOLO architecture for real-world deployments. Although MT-
YOLOv6 is the official name [18], YOLOv6 has been adopted by developers for the sake of
brevity. The foundation of the model is the YOLO (you only look once) architecture, and the
authors assert that it has various advantages over other models in the YOLO family thanks
to these innovations and additions. PyTorch is the language of choice for this framework.
The YOLOv6 object detector is often regarded as the most precise option available. The fact
that the YOLOv6 Nano model obtained a mAP of 35.6% [19] on the COCO dataset is indica-
tive of this. Additionally, it achieves frame rates of over 1200 FPS on a 32-bit NVIDIA Tesla
T4 GPU. Among many other methods, the authors made significant modifications to the
infrastructure, employed model quantization techniques, and utilized various augmenta-
tions to achieve significant impact on the results. In contrast to earlier YOLO architectures,



Smart Cities 2024, 7 1180

YOLOv6 uses an anchor-free approach to object identification Figure 11. By comparison,
most anchor-based object detectors are 51% slower than YOLOv6. Because it uses three
times fewer specified priors, this is feasible. In order to function, YOLOv6 relies on the Effi-
cientRep framework, which is comprised of CSPStackRep, RepConv, RepBlock, and blocks.
For both classification and box analysis, YOLOv6 uses VFL and DFL as loss functions.
Iterating on the YOLO framework, YOLOv6 reworks the spine and neck to better fit the
available hardware. The model includes a Rep-PAN Neck, as shown in Figure [20], and a
new type of backbone called EfficientRep Backbone.

Figure 11. Rep-pan structure.

To improvise the model, YOLOv6 pre-trained its model using the COCO dataset,
which is trained on 2.5 million images with 80 classes using a frozen convolutional basis
and without an output layer, in order to improve the model features derived from input
videos. Sigmoid activation was added to the final output layer, and there are now just five
classes instead of eighty. The importance of the backbone in feature extraction is crucial in
any object detection network. The network’s neck and brain obtain these features. Since
the backbone performs so much of the network’s processing, it is obviously crucial. Multi-
branch networks, such as ResNets, have superior classification performance but are slower
to infer. Linear networks, such as VGG, are substantially quicker due to their efficient
33 convolutions [19]. They are not as accurate, however, as ResNets and other networks
built on the principle of residual connections. Consequently, the YOLOv6 models employ
reparameterized backbones. Through the process of reparameterization, shown in Figure 12,
the structure of the network is modified while it is learning and making predictions. The
Feature Pyramid Extractor was used, which, given an input image of arbitrary scale,
generates feature mAPs of progressively smaller sizes using a fully convolutional neural
network [21]. Learning and detecting small objects was aided by this method, which is
decoupled from convolutional architectures used for the backbone. More training data
were added to combat overfitting, the batch size was increased to 48. This allowed for
increased precision and recall without running out of memory [22].

Figure 12. Improved YOLOv6 architecture.



Smart Cities 2024, 7 1181

3.1.5. Integrated Model

For the ensemble model we combined all of the crime object detection models, Im-
proved YOLOv5, Improved YOLOv7, and Improved YOLOv6 for arson, burglary, and van-
dalism crime types, respectively. To get parallel results of all models at a single time, when
we loaded an input video, open cv read each frame and sent that frame to all the three
models for object detection. Then, based on detected crime or normal objects, the highest
vote system was considered to eliminate other objects and classify the crime type. Figure 13
depicts the integrated model flow.

Figure 13. Smart crime watch model.

3.2. Model Support

Deep learning [2] platforms and data analytics throughout this project used Python to
run through both Jupyter Notebook and Google Colab. Both of them are IDE web-based;
when it comes to data security [23], Jupyter Notebook is considered safer than Google
Colab; while Google Colab makes it more convenient and easier for us to collaborate
with each other, its cloud-based collaboration is interactive and includes limited free
computation power (GPU or TPU), which is not included in Jupyter Notebook. The Jupyter
Notebook could run on our local computer or laptop and the files can be saved on the hard
disk, but Google Colab runs on the Google server and our files are stored in the relevant
Google Drive account. Google Colab enables faster training speed but, in the meanwhile,
requests to pay for upgrades; we needed to pay attention to costs when training our model.
Furthermore, for Jupyter Notebook, we needed to install all the required libraries based on
what the requirement was, while in Google Colab we did not need to install these libraries,
since almost all of the libraries are already pre-installed in Google Colab.

To execute deep learning models with their support tools for model development, we
primarily used two Python packages: Tensorflow and Keras. Tensorflow is an end-to-end
open-source platform for deep learning; it is a flexible tool that provides workflows with
both high-level APIs and low-level APIs, and it is easy for model training, while Keras
is a high-level neural network library that is built upon Tensorflow and it only provides
high-level APIs, but Keras is simple and consistent, which means it is user-friendly as well
as offer simple and consistent high-level APIs reduce the cognitive load for the users as
much as possible.

3.2.1. Project Workflow

To better develop and implement our models, we decided to use some common
deep learning software and platforms. After we finished collecting the raw datasets, we
stored all the videos in the Google Cloud for preprocessing and transforming the dataset;
Google Colab was utilized since it enables all team members to share and work codes
together. After data preprocessing and data transformation, we split the training, validation,
and testing datasets using Jupyter Notebook, since each person had their own model and
prepared datasets; Jupyter Notebook is more suited for individual tasks.



Smart Cities 2024, 7 1182

Since our video dataset generated thousands of video frames, it required us to have
an effective environment when training our model. We kept using Google Colab to train
our model after we uploaded the prepared dataset, but we considered purchasing extra
hardware acceleration in order to improve the training speed. When we finished the
training and testing process, we develop ed a platform to auto-generate crime types once
we uploaded the videos.

3.2.2. System Architecture

As this project is video-based crime detection, the user who is registered to monitor the
surveillance videos with our models will help to detect any criminal activities happening
around. We initially converted those input videos to frames according to the respective
input size for the models proposed above. We then labeled those frames using different
annotation tools like Roboflow and Lableme. We then perform data preprocessing methods
like resizing, data augmentation, applying transformations, feature scaling, and data
split on those annotated images. To facilitate analysis and utilization, we preprocessed
data. Disposing of redundant or inconsistent information improved the reliability of the
model. We used feature extraction to cut down on the number of necessary components
without sacrificing accuracy. We utilized Google Drive as our database [24] to store all
kinds of data across this process. We developed an integrated system for arson, burglary,
and vandalism detection.

• Preprocess Module: When an input video is passed to the system, it generates video
frames and processes the frames with resizing and data augmentation techniques by
each model.

• Object detection: Each model processes these frames and may or may not provide
detected objects for a specific crime type. This function is supported by three models:
YOLOv5 provides arson objects, YOLOv7 provides burglary objects, and YOLOv6
provides vandalism objects.

• Classifiers: The detected objects are then classified based on the threshold to see
whether a crime exists or not. Based on the threshold scores, the decision system will
decide which crime the objects belong to.

• Display summary: Decision system crime type is displayed to the registered user
along with bounding box, predicted scores, crime type objects, and classified crime.
Additionally, a notification is sent as soon as the decision system classifies crime.

Table 5 lists a summary of all sections including crime types, sources, total dataset,
models, and performances. We can see that YOLOv5 outperforms all other models; how-
ever, in this project, we cannot compare the results because the models were trained on
different datasets for each crime type.

Table 5. Summary Table of All Sections.

Crime Type Sources Total Dataset Models Average
Precision

Average
Recall mAP@50

Arson UCF, Youtube, Storyblocks 8050 YOLOv5 0.95 0.86 0.80
Burglary UCF, Youtube, Storyblocks 9100 YOLOv7 0.89 0.86 0.87

Vandalism UCF, Youtube, Storyblocks 9050 YOLOv6 0.88 0.79 0.86

3.3. Model Comparison and Justification
Model Comparison

For our project, we proposed three modified models, an Improved YOLOv5 model
for arson, improved Faster RCNN, YOLOv7, for burglary, and an improved SSD Mo-
bileNet [25], YOLOv6, for vandalism. Table 6 shows mainly the comparison of ML/DL
models and their corresponding accuracy.



Smart Cities 2024, 7 1183

Table 6. Model comparison.

Crime Type Model Object Detection Existing Model mAP@50

Arson Improved YOLOv5 No 80%

Burglary Improved Faster RCNN No 61%
Improved YOLOv7 No 87%

Vandalism Improved SSD MobileNet No 67%
Improved YOLOv6 No 86%

Since Faster RCNN and SSD MobileNet models [26] provide an mAP of less than 70%,
we considered YOLOv7 for burglary and YOLOv6 for vandalism.

3.4. Model Evaluation Methods

To evaluate the model performance for all the crime detection and classification models,
we used the following metrics.

• Intersection over union (IOU): The metric provides true objects detected correctly and
true objects detected incorrectly with respect to the ground-truth of labeled regions
and detected regions.

• Mean Average Precision (mAP): To evaluate the valid set and test test, we will use
mAP. As shown in Figure 14, it provides the area under precision and recall curve
that helps to understand the burglary, arson, and vandalism objects detected correctly
and incorrectly.

Figure 14. Mean average precision (mAP).

• We evaluated using the training loss and validation loss to see whether the model
trade-off for bias and variance was acceptable.

• mAP accuracy was also utilized in evaluating the training, and validation sets.
• We evaluated the speed at which our object detection model processed a video and

produced the correct output, measured in frames per second (FPS).
• For machine learning classification issues with multi-class output, we evaluated them

using a confusion matrix.

3.5. Model Validation and Evaluation Results
3.5.1. Improved YOLOv5

The input frames were scaled to 224 × 224 × 3 as the input of the improved YOLOv5
model. We split the data into training, validation and test datasets with 80%, 15%, and
5% proportions. To test the trained model, we used 6440 frames, which provided about
80% accuracy. Consequently, we were able to validate 80% of the data. We then ran a test
set of 1208 unseen photos through the model with an epoch of 250 and a batch size of 64,



Smart Cities 2024, 7 1184

and achieved an precision of about 95% with a model summary of 270 layers, 7,027,720
parameters, and 16.0 GFLOPs. If we look at Figure 15, we can see that the validation loss
reduces rapidly during the first 50 epochs of model training, the loss decreases slowly
before reaching a plateau around 100 epochs of training. The precision for the training
dataset was 95%, with a recall of 86%; for the validation dataset, the mean average precision
90% and 95%, respectively.

Figure 15. Evaluation results for Improved YOLOv5).

3.5.2. Improved YOLOv7

For YOLOv7, all the input images were resized to 224 × 224 × 3. However, this
model could be trained on any image size. We divided our dataset into training, testing,
and validation with a proportion of 80%, 5%, and 15% , respectively. To test the trained
model, we used 7280 images that provided 89% precision. To test our dataset, we use
455 images through the model with 250 epochs and a batch size of 16. This gave us around
87% of the mAP. Figure 16 shows that when we train the model for the first 20 epochs,
validation loss is coordinated with training loss. Then, for the next 20 epochs, the training
and validation loss decrease. We can say that the model improved, Although the model has
reduced loss, the precision shows 89% and recall shows 86% for the training set and test
set. The mean average precision shows 87% and increases efficiency and accuracy, as we
have introduced more datasets by collecting more videos or through data augmentation,
changing batch size, learning rate and experimenting with different optimizers, and freezing
the last three layers of the convolution layers.

3.5.3. Improved YOLOv6

All of the input pictures were scaled up to 224 by 224 by 3 for YOLOv6. Despite this,
the model may be trained using images of arbitrary dimensions. We split our dataset up
into three sections: a training set, a test set, and a validation set, with 80%, 5%, and 15%
proportion, correspondingly. A total of 7140 pictures were utilized for testing the trained
model, yielding an accuracy of 88%. We ran a total of 386 photos through our model
with a total of 550 epochs and a batch size of 32 for our dataset validation. In total, this
covered almost 86% of the mAP! During the first 30 epochs of model training, as shown in
Figure 17, validation loss is synchronized with training loss. The train and the validation
loss then go down for the following 50 epochs. Overall, the model does get better. While
the model does demonstrate reduced loss, it nevertheless has low precision (88%) and recall
(79%). As we have presented more datasets by collecting further videos either through data
augmentation, altering batch size, learning rate, experimenting with different optimization
techniques, and freezing the very last three layers of the convolutional layers, the mean



Smart Cities 2024, 7 1185

average precision has increased to 86%, indicating improved efficiency and accuracy.
With more data and more time periods, the model has shown substantial improvement.

Figure 16. Evaluation results for Improved YOLOv7.

Figure 17. Evaluation results for Improved YOLOv6.

3.5.4. Model Comparison

Table 7 compares the accuracy of different models for detecting various crime types. As
shown in the table, for Arson detection, the YOLOv5 model achieved an average precision
of 0.95 and an average recall of 0.86 on a dataset of 8050 samples, with an mAP@50 FPS
of 0.80 and a processing speed of 15 ms. For Burglary, the YOLOv7 model demonstrated
excellent performance, achieving an average precision of 0.89 and an average recall of 0.86
on a dataset of 9100 samples, with a faster processing speed of 12 ms and an mAP@50 FPS
of 0.87. Lastly, for Vandalism, the YOLOv6 model attained an average precision of 0.88 and
an average recall of 0.79 on a dataset of 9050 samples, maintaining a competitive mAP@50
FPS of 0.86 and a processing speed of 15 ms.



Smart Cities 2024, 7 1186

Table 7. Model accuracy comparison.

Crime
Type Model Dataset

Size
Average

Precision
Average
Recall mAP@50 FPS (ms)

Arson YOLOv5 8050 0.95 0.86 0.80 15
Burglary YOLOv7 9100 0.89 0.86 0.87 12

Vandalism YOLOv6 9050 0.88 0.79 0.86 15

4. Data Analytics and Intelligent System
4.1. System Requirements Analysis
System Boundary and Use Cases

Figure 18 shows the potential use cases of this project could be in HOA communities,
apartment buildings, public parking, or street parking. The users of this system would be
home owners, apartment owners/renters, and parking lot owners. As illustrated in the
figure, the possible scenarios are applicable when a surveillance [27] camera installed inside
or outside a house, building, or public parking captures the behaviors happening around
the neighborhood. Arson: If a person is setting fire around a house in an HOA community
or an apartment building to steal things or other suspicious activities [28], the system
detects such activities and classifies them as arson and sends an email to the registered
user. Similarly, if a person sets fire to a vehicle in a public parking space, street parking
space, apartment parking lot, or community parking, the system sends identified objects
and the classified crime to the registered user. Burglary: If a person is breaking into a house
in an HOA community or apartment building to steal things or other suspicious activities,
the system detects such activities and classifies them as a burglary and sends an email to
the registered user. Similarly, if a person breaks into a vehicle in a public parking space,
street parking space, apartment parking lot, or community parking to steal something
inside a car, the system sends identified objects and classified crimes to the registered user.
Vandalism: If a person is breaking/destroying any public property in HOA community
or parking lots or any suspicious activity related to it, the system detects such activities
and classifies them as vandalism and sends an alert message to the registered user, which
includes identified objects and crime type.

Figure 18. System boundary and possible use cases.

The aim of the project is to develop and deliver a robust automated intelligence
platform that detects and classifies specific crime types (vandalism, burglary, and arson)
within HOA communities, public parking spaces, and apartment buildings, from camera-



Smart Cities 2024, 7 1187

based videos and surveillance videos [29]. The system uses diversified video datasets such
as day and night, different camera angles, etc.

Data analytics for the system are prepared in four aspects: elicitation, analysis, speci-
fication, and validation and verification. In the elicitation process, specific crime-related
characteristics are processed and trained by deep learning models. Further, the video
frames captured by surveillance videos are used to generate particular crime activities,
and then, using the decision table, the crime is classified.

The specification requirements involve the data requirements. Training data are
collected and processed in different shapes, sizes, formats, and resolutions. The input data
are passed to the surveillance camera and processed by trained ML models to provide
detected objects for different crime types.

Table 8 outlines the system data requirements for the project, focusing on detecting
and classifying different crime types in both daytime and nighttime scenarios. The key
requirements include high spatial resolution videos for each crime type, including arson,
burglary, and vandalism.

Table 8. System data requirements for project.

Tasks Data
Requirements Labeling Tool Label Export

Format

Detect objects in arson and classify the
crime type (during daytime and

night time)

High spatial
resolution videos Roboflow .txt

Detect objects in burglary and classify the
crime type (during daytime and

nighttime)

High spatial
resolution videos Roboflow .txt

Detect objects in vandalism and classify
the crime type (during daytime and

nighttime)

High spatial
resolution videos Roboflow .txt

To ensure whether the training data match the real data, validation requirements
should be performed often. To maintain the optimal performance of the models, we need
to monitor and analyze the runtime data. Hence, the ML systems should be retrained often
to adjust to the real data.

4.2. System Design
4.2.1. System Architecture and Infrastructure

Figure 19 depicts the front-end and back-end architecture of the system used to
detect and categorize criminal activity. Initially, users are registered in a communication
tool ‘Twilio’, which they use to receive text messages related to crime. Furthermore,
we use the ‘Gradio’ in built applications in Python to design the user interface. In one
possible situation, Google Drive is used to save footage captured during an individual’s
attempt at committing a criminal act, such as arson, theft, or property destruction. All
the work for the preprocessing, detection, and classification models [8] is done in the
drive itself using Google Colab. Data augmentation, such as scaling, flipping, rotations,
etc., and frame generation falls under preprocessing. All the extracted frames are then
uploaded to Roboflow to perform annotations on each frame. We then resize the frames to
their respective dimensions in accordance with the models at the resize stage. Our object
detection system makes use of YOLOv5, YOLOv7, and YOLOv6. With the aid of scores
and bounding boxes, these models can pinpoint the specific items that play a role in illegal
actions. Those predictions [4] are performed on video data to check the detection frame
by frame. Following this, the data are sent to the OpenCV decision model, where a logic
specific to each crime is entered to aid in the classification process (here, arson, burglary, or
vandalism). The logic behind it is that it checks for specific objects in an order, as shown
in Figure 19. If the predicted objects include fire or (person + fire) or (car + person + fire),



Smart Cities 2024, 7 1188

then it displays as arson on the video. If not, it checks for the burglary objects that include
break_in or (person + break_in) or (person + break_in + stealing) and, if present, they
display as a burglary in the video. Otherwise, it checks for the vandalism objects that
include destroying or (person + destroying) or (person + scratching + car + destroying);
then, it is displayed as vandalism in the video itself. In the scenario where none of the
above combination objects are detected in a video, then it displays as normal in the video.
After the classification of the crime type, if there is a presence of a crime in the video, an
alert message is sent to the registered user. In the case of an unregistered user, a warning
message is also triggered within the UI. Users are notified via alert system if any of these
criminal acts have occurred. The alert message includes specifics on the objects and the
sort of crime that have been spotted.

Figure 19. Front-end and back-end system architecture.

4.2.2. System Data Management Solution

First of all, all the users need to register for the system, and upload the relevant video
from a local server or cloud server on the user interface website using the Gradio package.
When the user finishes uploading the video, it is transmitted to the crime object detection
system, which captures the user’s videos. Each input video is sent to the integrated model
with all the information trained by the object detection system and the saved output, such
as classes and positions; all the data are saved and updated in real time. Next, the video
detection outputs are be sent to classification; after finishing the whole process, all the
outputs are displayed on the website to make predictions with the matched videos. When it
comes to crime videos, the system generates alerts and sends alert messages to the current
registered users; if there is no crime involved in the video, only the output to the user
interface with no alert generation is displayed.

4.3. System Development
4.3.1. AI and Machine Learning Model Development

In order to detect and classify the recognition problems [30], we used a development
learning system with the support of various deep learning models. Then, we looked for
approximated functions as the learning problem. To avoid errors in the learning process,
several factors were considered:

• The framing and observations used to teach the model.
• Preparation of the training, validation, and test data.
• Teaching the algorithm to fit the model on the training data.
• Evaluating the models’ performance using different metrics.



Smart Cities 2024, 7 1189

The system was designed to detect crime objects and also provide crime classification.
Hence, we chose to frame the learning based on several crime activities and then classify
them in the end. The observations used to train the models are crime and non-crime videos
with different camera angles. We collected data from several websites for each of our crimes.
We proposed three different improved deep learning models as the predictive models and
their performance was measured with mAP accuracy, misclassification rate,precision, recall
curves, predicted scores, validation, and test results. To do the classification, initially,
the proposed deep learning models were YOLOv5, Faster RCNN, and SSD MobileNet.
All models were combined into our system after being trained and tested independently to
provide the crime classification.

Improved YOLOv5 was used to train on the arson dataset in order to detect crime
behaviors relevant to arson and target objects related to it. YOLOv5 is mainly composed
of four parts: input, backbone, neck and head. The backbone is the convolutional neural
network [31] that aggregates and forms image features on fine-grained scales of different
images, the neck is a series of network layers that mix and combine image features and
pass image features to the prediction layer, and the head is used to predict image features,
generate bounding boxes, and predict target object categories. In the Improved YOLOv5
model, we froze the conv-layers from the backbone part to accelerate training and not
change the weight for transfer learning, we also changed the batch size to reduce the
computation cost, and added dropouts to avoid the overfitting problem.

Improved Faster RCNN ResNet101 was trained on the burglary dataset to detect
crime activities and objects related to burglary. ResNet101 has 7 × 7 × sixty-four convo-
lution layers, 33 building blocks, and three layers that make it 99 layers and add up to
1 + 99 + 1 = 101 layers. Furthermore, ResNet101 uses an FPN network to extract features
that solve multi-scale problems. The Faster RCNN has RPN and ROI networks; RPN fails
to recognize smaller objects with different angles. In the improved Faster RCNN model,
for better detection, images are cropped and enlarged to learn the features. Additionally,
after pre-training the model, we froze the layers of ResNet101 to reduce the significant
training time and computation cost. We also modified the batch size to eight to avoid out-of-
memory issues, increased the number of steps for better detection performance, and added
more training data to avoid overfitting issues. Then, for the output layer, the softmax
function is set to the five defined burglary classes to detect burglary crime-related objects
and activities.

YOLOv7 was trained on the burglary dataset to detect crime-related behaviors and
activities. The model was enhanced on YOLOv4, Scaled YOLOv4, and YoloR. It has five
main components: inputs, backbone, Feature Pyramid Network, neck, and head. Once
the input is given, the backbone aggregates the convolution layers and passes information
to the FPN to recognize small objects. The extracted features are then sent to the neck to
predict the features, whereas the head predicts the objects and also provides confidence
based on regression of these predicted features. To improve the performance of the model,
we froze the last three layers to avoid overfitting, changed the batch size to 16 to avoid
out-of-memory issues, set the output layer and the softmax function to the five defined
burglary classes to detect the burglary crime-related objects and activities, and increased
number of epochs for better average precision, and mAP.

SSD MobileNet is a one-shot solution capable of recognizing several objects in a single
photograph. If you split depth-wise and point-wise convolutions apart, MobileNet has
28 layers of neural networks. Classification and detection tasks benefit greatly from the
base network’s elevated properties. An additional completely linked layer is useful for
classification in these networks, followed by a softmax layer. The SSD detection networks
approach uses a feed-forward convolutional network to provide a collection of bounding
boxes of a predetermined size, together with scores indicating the likelihood that instances
of a given object class lie within the boxes. We refined the model by freezing all layers
except the output layer in light of the training data’s intended purpose, the desired output,
and the classification challenge for the mask position. The model was trained with a



Smart Cities 2024, 7 1190

learning rate of 0.15. In order to prevent overfitting, the improved SSD mobilenetv2 adds a
dropout layer after the classifier’s softmax layer, which converts the final layer’s output to
probabilities. For the model to be able to recognize and classify images in a wide range of
lighting situations and resolutions, it must be combined with additional data preparation
methods [32].

YOLOv6 was trained on the vandalism dataset to detect the crime and its related
objects. This model was introduced to address the flaws present in YOLOv5. YOLOv6
provides a range of models for a wide range of industrial use cases, from N to T to S to M
to L, with varying architectures depending on model size to achieve an optimal balance
between speed and accuracy. Additional performance enhancements are introduced in
the form of self-distillation and additional training epochs, both of which are part of the
bag-of-freebies methodology. Our goal in adopting QAT for widespread use in industry is
to achieve maximum performance through the use of channel-wise distillation and graph
optimization. On the COCO dataset, YOLOv6-N achieved 35.9% AP at 1234 FPS on T4.
On T4, YOLOv6-S hit 43.5% AP at 495 FPS, and the quantized version hit 43.3% AP at
869 FPS. In addition to its superior performance, YOLOv6-T/M/L also demonstrated
superior accuracy compared to other detectors while maintaining a comparable inference
speed. There have been some structural changes made in YOLOv6 compared to earlier
versions. An mAP representation of the input is provided by the structure’s backbone.

Moreover, it has a neck that separates off intricate details from the input. The final
result is calculated by the brain. The EFFICIENTrep backbone is used in YOLOv6, and it
can take advantage of specialized computer [33] capabilities like a GPU. The Rep-PAN
Neck used in this edition is both quicker and more precise. Decoupling the head adds a
layer between the network and the terminal node, which boosts the network’s efficiency.
These changes to the underlying structure are what make YOLOv6 so much faster than its
predecessors and give it other benefits.

Integrated model: To build the integrated model, we used the OpenCV library. Initially,
we saved the trained individual models (arson, burglary, and vandalism) as .pt file weights
that detect the target objects for each crime type (YOLOv5, YOLOv7, and YOLOv6). When
we pass a video, each frame goes through all three model predictions and detects crime-
related objects; in parallel, the crime is classified based on the time for the detected objects.
To classify the crime, one frame per second is used with a set threshold > 0.5 and a count
is considered to detect objects. If crime-related objects are detected repeatedly for about
5–7 s, then, for a specific crime, it is classified and displayed on the video. Below are the
scenarios that were tested using the integrated model.

Scenario 1 (burglary): A video is passed and each frame goes through each crime
model; one of the models predicts either (break_in) or (person and break_in) or (person
and break_in and stealing) repeatedly, with high thresholds for about 7 s, and the other
two models do not detect anything; then, the crime will be classified as a burglary. These
detected and classified crime frames are converted into a video that showcases bounding
boxes, scores, labels, and classified crime type. This is stored in the specified path for
further application development.

Scenario 2 (arson): A video is passed and each frame goes through each crime model;
one of the models predicts either (fire) or (person and fire) or (person and fire and car)
repeatedly, with high thresholds for about 3 s, and the other two models do not detect
anything; then, the crime is classified as arson. These detected and classified crime frames
are converted into a video that showcases bounding boxes, scores, labels, and classified
crime type. This is stored in the specified path for further application development.

Scenario 3 (vandalism): A video is passed and each frame goes through each crime
model; one of the models predicts either (destroying) or (person and destroying) or (person
and destroying and scratching) or (person and car and scratching) repeatedly, with high
thresholds for about 5 s and the other two models do not detect anything; then, the crime
is classified as vandalism. These detected and classified crime frames are converted into



Smart Cities 2024, 7 1191

a video that showcases bounding boxes, scores, labels, and classified crime type. This is
stored in the specified path for further application development.

Scenario 4 (normal): A video is passed and each frame goes through each crime
model; the models predict non-crime objects such as person, car, bike, etc., repeatedly
with high thresholds for about 7 s; then, the crime is classified as normal. These detected
and classified crime frames are converted into a video that showcases bounding boxes,
scores, labels, and classified crime type. This is stored in the specified path for further
application development.

4.3.2. Implement Designed System

In this paper, the designed system includes suspicious target object detection, crime,
or normal video classification and crime type classification. Input videos are recorded by
surveillance camera and saved into the cloud, then fed into the detection process. All the
detection is performed by the corresponding improved model and each model classifies and
generates a binary output of crime type or normal video, based [34] on the corresponding
detected object.

In terms of the functional component of the designed system, one is the object detec-
tion by improved deep learning models; another functional component is the integrated
algorithm [35], which could apply to improved models in a hybrid method, as well as com-
bined in a sequential way which concatenate to all models. If the video contains suspicious
target object, first, we consider if the video belongs to arson and if its classification will be
performed by Improved YOLOv5; if yes, then we generate the output as well as an alert;
otherwise, we keep classifying; if the video belongs to burglary and its classification will
performed by Improved YOLOv7, then we generate the output; if not, classification will
continue to vandalism, performed by Improved YOLOv6; after we process classification
through all the crime types, but if we cannot define the crime, then the output as a normal
video will be generated without an alert.

4.3.3. Input and Output Requirements, Supporting Systems, and Solution APIs

• Input datasets: The input dataset could be recorded from a surveillance camera and
could be any videos that are available to detect. Once the videos are uploaded to the
system which is the open platform, it will process the input information and will be
saved into the system as the user enters. Both crime videos and normal videos are
accepted with different scenarios, such as nighttime and daytime videos, and also it
is better to upload high resolution input videos, which lead to better detection as well
as getting a clear output.

• Expected output: As we mentioned in the previous section, the designed interactive
system shows the output containing the input video along with their target objects
with corresponding bounding boxes, labels, scores, and classified crime based on time.
Furthermore, a message tells our user whether the input dataset is a crime video or a
normal video; an alert will pop out if it belongs to a crime video and is also classified
crime type.

Arson crime expected output: output contains target objects such as fire, person,
car, and more within the video.
Burglary crime expected output: output contains target objects such as break in,
stealing, person, and more within the video.
Vandalism crime expected output: output contains target objects such as breaking
the door, scratching, destroying, and more within the video.

• Supporting system contexts: Surveillance camera or required videos in good resolution
which could capture the crime behaviors within the videos.

• Solution APIs: For the better development of this project, we planned to use the
Gradio’s API built specifically for ML and Data Science projects; it is as close to the
recognition as we could get, and it pre-configured most of the common recognition
tasks. On the other hand, Gradio’s API could build websites in dozens of lines for



Smart Cities 2024, 7 1192

Python and create an API simply, and also provide comprehensive deep learning
packages and libraries, which are the most common uses of it. The following lists
some features and functionalities of Gradio.

API [12]: Powerful Features: Free and open sources, no callbacks, build applications
with simple API, no hidden state, works with multi-packages like Tensorflow, Keras,
Pytorch and more common functionalities, sketch recognition,question answering, image
segmentation, time series forecasting,and XGBoost with explainability [36].

Gradio enables users to use the integrated systems within applications and its powerful
functionality makes detection easy; however, there are some downsides to it; since the API
right now is not comprehensive, we are more likely to get stuck into the speed issue due to
the application flow.

Twilio’s API will also be used in our project to further generate alert messages to
registered users. It enables voice, message, as well as video contact in the website and
mobile apps. The following lists the example use cases of Twilio’s API [15]:

• Track and contact real estate agents as well as house buyers.
• Users can communicate with each other without revealing their private information.
• Staff can help customers via their web interface.
• Staff receives auto-alerts at the time when vending machines need maintenance.

4.4. System Supporting Environment

Based on current open source tools, we want to create a crime detection and classi-
fication system and its accompanying frameworks with integrated solution tools for this
project. We use the Twilio communication tool to register the users. Twilio using application
programming interfaces (APIs), previously exclusive channels such as audio, text, chat,
video, and email, are now accessible to any business, facilitating the development of mean-
ingful connections with users via their preferred channels. To represent a Twilio-built app,
we can use the application instance resource. Within Twilio, an application is a collection of
URLs and some other configuration files that instruct Twilio on how to handle a call or SMS
message received by one of our Twilio numbers. These numbers will be required at the
time of sending alert messages related to crime behavior. Model creation is handled on the
back-end with the help of Keras, Tensorflow, Pytorch, and OpenCV. Google Colab is where
we manage the combination of three models and the image processing of our training data.
Object recognition, localization, and tracking [37] in TensorFlow are all computer vision
techniques [38]. This technique not only helps us understand the image or video better
by detecting items, but it also sheds light on the inner workings of the models used to do
so. The primary benefit of using Pytorch for object detection is that it defines the class
of objects and their positions based on the supplied data. Assigning anything to a class
indicates that it belongs to a specific group of things, such as people, systems, tables, etc.
All the data used for training are stored locally as well as in Google Cloud. Large datasets
can be obtained and trained for complicated upgraded deep learning models with the help
of Colab and Google Cloud.

5. System Evaluation and Visualization
5.1. Analysis of Model Execution and Evaluation Results

In comparison to previous mean Average Precision, we fine-tuned and improved
our models’ mAP. Each model was evaluated using different metrics such as mAP, av-
erage precision, average recall, fps, train and validation loss curves, and confusion met-
rics. The YOLOv5 model showed high improvement from 50% to 80% after training for
250 epochs. YOLOv7 [39] also had significant improvement from 61% to 87%, whereas
YOLOv6 after training for 550 epochs had high improvement of 86% when compared to the
mAP produced by SSD, which was 67%, as shown in Table 9. All of the models performed
better when high resolution annotations were added. In Figure 20, for burglary, we can
see break_in, stealing, person, and car are classified with high thresholds, however, bikes



Smart Cities 2024, 7 1193

and break_in are misclassified with high thresholds. For arson, even though the model had
excellent performance, it detected fire with a high threshold for light. For vandalism, cars
were misclassified. In order to improve these results, the last 10 layers were frozen in the
YOLOv5 model, performing better compared to original models. YOLOv7 and YOLOv6
improved after changing the learning rate, batch size, number of steps, and additional data
for frozen convolution base.

Table 9. Model improvement comparison.

Crime Type Model Previous mAP@50 Current mAP@50

Arson YOLOv5 0.50 0.80
Burglary YOLOv7 0.61 0.87

Vandalism YOLOv6 0.67 0.86

Figure 20. Sample output from our integrated system.

5.2. Achievements and Constraints

Our goal for this project was to build a multi-crime type detection recognition website
and, in order to achieve our goal, we need to complete the following tasks:

• Implement model for each crime type and integrate in one hybrid model.
• Present all crime type results for the user interface.
• Improve crime recognition system using OpenCV.



Smart Cities 2024, 7 1194

• Create an interactive user interface platform by using Gradio API.

Regarding the deployment of the model we split it into two parts: first we used
our self-collected dataset to train the model for each crime type in order to complete the
object detection using Tensorflow/PyTorch; the input image was fed into the deep learning
model and generated outputs with bounding boxes as well as their class name and their
coordinates. The second part was the classification: we fed the output of the first step
using OpenCV to classify crime type by concatenating each time step. The advantage
is that the display output easily showed what crime type the input video belongs to;
however, there are some drawbacks which cannot be ignored. With the large amount of
computation cost and due to the limitation of our computer power, generating output by
using combined architecture becomes much more time consuming. On the other hand, we
could not guarantee the quality for every single video, so there might be some detections
which were not correct, and it is obvious that there should be some improvements in the
video resolutions.

After we trained, fine-tuned, and saved the individual model to the best.pt file, we
used OpenCV packages to further deploy our crime system. We integrated our model
in a hybrid way with burglary crime detection, arson crime detection, vandalism crime
detection, and normal detection; detection was deployed in parallel and the integrated
model was combined with the crime detection recognition system. The combined model
was fed with different image sizes as input, 224 × 224 for the Improved YOLOv5 model for
arson detection, 640 × 640 for the Improved YOLOv7 model for burglary detection [40],
and 640 × 640 for the Improved YOLOv6 model for vandalism detection. The integrated
model will generate a combined output displayed with crime type results (arson, burglary,
vandalism, and normal), the result will be based on time, whether the video contains the
potential criminal, along with their crime behaviors for certain seconds.

The system could also detect the target objects, which are related to the crime type and
will be able to shows the crime result on the left top corner, as shown in Figure 20; if the
video is a crime video, then the crime type is going to be represented using the color yellow
and also show the bounding boxes for the target objects; if the video is a normal video and
contains no crime behavior, then the output will display the word normal on the left top
corner, in yellow as well.

To better visualize the integrated system, we are going to connect Gradio API to our
detection system in order to create an interactive website, in such a way that our users could
use the system by accessing the URL link online and look for the results by themselves.
Additionally, to improve the performance of our crime detection system, Gradio API is
going to be implemented, since we can easily upload and display video in it. However,
there are some constraints that make the deployment of our integrated system difficult. We
do not have a full toolset for Gradio, due to the fewer tools, so we may need to build more
on our own or search out more extensions/libraries from external sources.

When we are not able to detect any crime behaviors within the video we just simply
define the video as normal video. The following Figure 20c,d show the outputs of both
daytime and nighttime normal video, the result is correctly displayed on the top left corner
using the color yellow and no crime behavior involved within the video.

In this detection and classification, we are considering both daytime and nighttime
video datasets. For crime type detection, we used decision flow by OpenCV to get pre-
dictions in the video along with the crime type. The following Figure 20e–g show the
output of daytime video; the crime type is displayed on the left top corner as well as the
located target objects, represented by the bounding boxes with their class names; the model
successfully detects for crime video and displays the crime type results.

We not only detect the crimes happening during the daytime but also nighttime .
The following Figure 20i,j show the output of a nighttime video; the crime type is displayed
on the left top corner as well as the located target objects, represented by the bounding
boxes with their class names; the model successfully detects for crime video and displays
the crime type results.



Smart Cities 2024, 7 1195

5.3. System Quality Evaluation of Model Functions and Performance

Machine learning, at its core, is the meeting of statistical methods with computational
analysis. Machine learning relies on algorithms and models, which are essentially boosted
statistical estimations. Evaluating models on test data is called model evaluation. The test
data is made up of information the model has never seen before. Assigning a probability to
each classification, the model’s accuracy can be assessed. Every model and category has a
unique probability [41]. Every model’s performance is measured in terms of its runtime
in seconds. The runtime duration varies widely between the devices and GPU. For our
models we have used Google Colab PRO. In Table 10; the average run time and device
specifications are compared.

Table 10. Run time performance comparison.

Features Device Specifications Average Run
Time (s) Google Collab Pro Average Run

Time (s)

Arson object
detection

Macbook Pro Processor:
2.6 GHz 6-Core Intel Core i8
Memory: 16 GB 2667 MHz

1.93
Google Cloud Pro Platform Deep
learning VM with GPU (NVDIA
Tesla K80, P100, T4) 32 GB RAM

1.23

Burglary object
detection

Macbook Pro Processor:
2.6 GHz 6-Core Intel Core i7
Memory: 16 GB 2667 MHz

2.14
Google Cloud Pro Platform Deep
learning VM with GPU (NVDIA
Tesla K80, P100, T4) 32 GB RAM

1.12

Vandalism object
detection

HP Windows 10 (64bit OS)
Processor: Intel® Core™

i7-10510U Memory: 16 GB
2300 MHz

2.31
Google Cloud Pro Platform Deep
learning VM with GPU (NVDIA
Tesla K80, P100, T4) 32 GB RAM

1.26

Integrated Model
Macbook Pro Processor:

2.6 GHz 6-Core Intel Core i7
Memory: 16 GB 2667 MHz

2.45
Google Cloud Pro Platform Deep
learning VM with GPU (NVDIA
Tesla K80, P100, T4) 32 GB RAM

2.0

6. Conclusions
6.1. Summary

This paper designed an automatic identification [42] of crime types based on camera
or surveillance video in the absence of an unattended person, and alerts registered users
about crimes such as arson, burglary, and vandalism through SMS service. To detect
the object of the crime in the video, we trained five different machine learning models:
Improved YOLOv5 for arson, Faster RCNN and YOLOv7 for burglary, and SSD MobileNet
and YOLOv6 for vandalism. Other than improved models,we have innovated by building
ensemble models of all three crime types. We have utilized the OpenCV library to read,
process, detect objects [43], classify crime, and write frames to display video. This article
completes the detection and classification [44] of AI-based smart crime cameras that help
in many crime (arson, burglary, and vandalism) situations: HOA neighborhoods, parking
lots, public parking lots, street parking, construction, and apartments, and generate alerts
for homeowners via SMS services [45].

6.2. Prospect and Future Work

Benefits of the solution: The main aim of the project is to provide security to society
without human involvement and make affordable surveillance cameras to detect and
classify crimes. The advantages of this project are listed below:

• Provide more security [46] for arson, burglary, and vandalism crimes in the public
and private space such as HOA communities, apartment buildings, street or public
parkings, and for individual homeowners.

• Easy to use website where a user can do simple free registration by creating a Twilio
account to get an SMS alert as soon as the video classifies any crime.



Smart Cities 2024, 7 1196

• Since we are using YOLO models, it is easy to use the OpenCV library to detect our
customized objects in videos.

• Different object detection models [47] helped us to understand how other models
performed, which benefited us to navigate for new YOLO models compared to Faster
RCNN and SSD MobileNet and assisted in saving training time and computation cost
as the other two models had huge parameters.

• To get the detections and classification on any given video, we have assembled all
three models rather than using a single model for each crime type.
Shortcoming of the solution:

• To get alerts for crime types, users have to register through Twilio accounts. However,
users can use a free trial for up to 30 days. In order to have an active account, users
have to pay monthly or annually.

• As of now, we have trained models for arson, burglary, and vandalism crime types.
Hence, our models will not be used to detect other types of crimes.

• Our class annotations are restricted due to the limited data accessibility, high resolution
videos, and the given time constraint of the semester. We can annotate more classes of
all categories and increase the datasets in future for further distinctions of classes.

Future improvements to the proposed project can be made by incorporating additional
types of crime records and using more sophisticated models with good resolution videos.
For practical purposes, the crime dataset might be enlarged. In addition, sending frames
alongside the alert messages will be more effective and useful for the people in authority to
take action right away. To make the monitoring of surveillance systems more complete,
further elements like person tracking can be implemented. Currently we use OpenCV for
the classification of crimes. Instead, as an extension to the project, we can try using the
DarkNet framework, LSTM [48], for further analysis.

Author Contributions: Methodology, J.S. and P.B.; Software, A.S. and B.Z.; Validation, B.Z. and H.Y.;
Investigation, B.Z.; Data curation, J.S. and B.Z.; Writing—original draft, J.G.; Writing—review and
editing, Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62006169 and supported by the Shanxi Province Research Foundation for Base Research,
China (Grant No.202303021221002).

Data Availability Statement: The datasets generated and/or analyzed during the current study
are not publicly available because the data were obtained from private communities with a privacy
agreement but are available from the corresponding author.

Conflicts of Interest: The authors declared that they have no conflicts of interest to this work. We
declare that we do not have any commercial or associative interest that represents a conflict of interest
in connection with the work submitted.

References
1. Norkobil Saydirasulovich, S.; Abdusalomov, A.; Jamil, M.K.; Nasimov, R.; Kozhamzharova, D.; Cho, Y.I. A YOLOv6-Based

Improved Fire Detection Approach for Smart City Environments. Sensors 2023, 23, 3161.
2. Navalgund, U.V.; Priyadharshini, K. Crime intention detection system using deep learning. In Proceedings of the 2018

International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), Kottayam, India, 21–22 December
2018; pp. 1–6.

3. Ali, L.; Alnajjar, F.; Jassmi, H.A.; Gocho, M.; Khan, W.; Serhani, M.A. Performance evaluation of deep CNN-based crack detection
and localization techniques for concrete structures. Sensors 2021, 21, 1688.

4. Shah, N.; Bhagat, N.; Shah, M. Crime forecasting: A machine learning and computer vision approach to crime prediction and
prevention. Vis. Comput. Ind. Biomed. Art 2021, 4, 9.

5. Chackravarthy, S.; Schmitt, S.; Yang, L. Intelligent crime anomaly detection in smart cities using deep learning. In Proceedings
of the 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC), Philadelphia, PA, USA, 18–20
October 2018; pp. 399–404.

6. Jonathan, H. mAP (Mean Average Precision) for Object Detection. Available online: https://jonathan-hui.medium.com/map-
mean-average-precision-for-object-detection-45c121a31173 (accessed on 25 February 2024).

https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173


Smart Cities 2024, 7 1197

7. Padilla, R.; Netto, S.L.; Da Silva, E.A. A survey on performance metrics for object-detection algorithms. In Proceedings of the
2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niterói, Brazil, 1–3 July 2020; pp. 237–242.

8. Maqsood, R.; Bajwa, U.I.; Saleem, G.; Raza, R.H.; Anwar, M.W. Anomaly recognition from surveillance videos using 3D
convolution neural network. Multimed. Tools Appl. 2021, 80, 18693–18716.

9. Yuan, C.; Zhang, J. Violation detection of live video based on deep learning. Sci. Program. 2020, 2020, 1895341.
10. Zamri, N.; Tahir, N.; Ali, M.; Ashar, N.; Al-misreb, A. Mini-review of street crime prediction and classification methods. J.

Kejuruter 2021, 33, 391.
11. Mohandas, R.; Bhattacharya, M.; Penica, M.; Van Camp, K.; Hayes, M.J. TensorFlow Enabled Deep Learning Model Optimization

for enhanced Realtime Person Detection using Raspberry Pi operating at the Edge. In Proceedings of the AICS, Dublin, Ireland,
7–8 December 2020; pp. 157–168.

12. Yang, F.; Zhang, X.; Liu, B. Video object tracking based on yolov7 and deepsort. arXiv 2022, arXiv:2207.12202.
13. Sultani, W.; Chen, C.; Shah, M. Real-world anomaly detection in surveillance videos. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6479–6488.
14. Abraham, M.; Suryawanshi, N.; Joseph, N.; Hadsul, D. Future Predicting Intelligent Camera Security System. In Proceedings of

the 2021 International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India, 11–12 February
2021; pp. 1–6.

15. What Can You Do with Twilio?—Twilio 101. Twilio. (n.d.). Available online: https://www.twilio.com/learn/twilio-101/what-
can-you-do-with-twilio (accessed on 31 October 2022).

16. Nyajowi, T.; Oyie, N.; Ahuna, M. CNN Real-Time Detection of Vandalism Using a Hybrid-LSTM Deep Learning Neural Networks.
In Proceedings of the 2021 IEEE AFRICON, Arusha, Tanzania, 13–15 September 2021; pp. 1–6.

17. Lee, J.; Shin, S.J. A Study of Video-Based Abnormal Behavior Recognition Model Using Deep Learning. Int. J. Adv. Smart Converg.
2020, 9, 115–119.

18. Tulbure, A.A.; Tulbure, A.A.; Dulf, E.H. A review on modern defect detection models using DCNNs–Deep convolutional neural
networks. J. Adv. Res. 2022, 35, 33–48.

19. Abid, A.; Abdalla, A.; Abid, A.; Khan, D.; Alfozan, A.; Zou, J. Gradio: Hassle-free sharing and testing of ml models in the wild.
arXiv 2019, arXiv:1906.02569.

20. Sylvester, R.; Greenidge, W.l. Digital storytelling: Extending the potential for struggling writers. Read. Teach. 2009, 63, 284–295.
21. Li, Y.; Zhu, D.; Fan, H. An Improved Faster RCNN Marine Fish Classification Identification Algorithm. In Proceedings of the 2021

2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE), Hangzhou, China, 5–7 November
2021; pp. 126–129.

22. Khandhar, H.M.; Bhatt, C.; Le, D.N.; Sharaf, H.; Mansoor, W. Plant Disease Identification Based on Leaf Images Using Deep
Learning. In Evolution in Signal Processing and Telecommunication Networks, Proceedings of the Sixth International Conference
on Microelectronics, Electromagnetics and Telecommunications (ICMEET 2021), Bhubaneswar, India, 27–28 August 2021; Springer:
Berlin/Heidelberg, Germany, 2022; Volume 2, pp. 215–224.

23. Cheng, M.; Cai, K.; Li, M. RWF-2000: An open large scale video database for violence detection. In Proceedings of the 2020 25th
International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 4183–4190.

24. Amrutha, C.; Jyotsna, C.; Amudha, J. Deep learning approach for suspicious activity detection from surveillance video. In
Proceedings of the 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bangalore,
India, 5–7 March 2020; pp. 335–339.

25. Vandaele, R.; Nervo, G.A.; Gevaert, O. Topological image modification for object detection and topological image processing of
skin lesions. Sci. Rep. 2020, 10, 21061.

26. Annisaa’F, N.; Soekirno, S.; Aminah, S. Implementation of Single Shot Detector (SSD) MobileNet V2 on Disabled Patient’s Hand
Gesture Recognition as a Notification System. In Proceedings of the 2021 International Conference on Advanced Computer
Science and Information Systems (ICACSIS), Virtual, 23–26 October 2021; pp. 1–6.

27. Iee, J.-Y.; Cho, C.-J.; Han, D.K.; Ko, H. Hierarchical spatial object detection for atm vandalism surveillance. In Proceedings of the
2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand,
27–30 November 2018; pp. 1–5.

28. Quon, J.; Bala, W.; Chen, L.; Wright, J.; Kim, L.; Han, M.; Shpanskaya, K.; Lee, E.; Tong, E.; Iv, M.; et al. Deep learning for pediatric
posterior fossa tumor detection and classification: A multi-institutional study. Am. J. Neuroradiol. 2020, 41, 1718–1725.

29. Lin, C.; Li, L.; Luo, W.; Wang, K.C.; Guo, J. Transfer learning based traffic sign recognition using inception-v3 model. Period.
Polytech. Transp. Eng. 2019, 47, 242–250.

30. Guo, G.; Zhang, Z. Road damage detection algorithm for improved YOLOv5. Sci. Rep. 2022, 12, 15523.
31. Available online: https://www.ijraset.com/research-paper/crime-activity-detection-using-ml (accessed on 25 February 2024).
32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
33. Liu, Y. An improved faster R-CNN for object detection. In Proceedings of the 2018 11th International Symposium on Computa-

tional Intelligence and Design (ISCID), Hangzhou, China, 8–9 December 2018; pp. 119–123.
34. Zhang, M.; Li, L.; Wang, H.; Liu, Y.; Qin, H.; Zhao, W. Optimized compression for implementing convolutional neural networks

on FPGA. Electronics 2019, 8, 295.

https://www.twilio.com/learn/twilio-101/what-can-you-do-with-twilio
https://www.twilio.com/learn/twilio-101/what-can-you-do-with-twilio
https://www.ijraset.com/research-paper/crime-activity-detection-using-ml


Smart Cities 2024, 7 1198

35. Cao, C.; Wang, B.; Zhang, W.; Zeng, X.; Yan, X.; Feng, Z.; Liu, Y.; Wu, Z. An improved faster R-CNN for small object detection.
IEEE Access 2019, 7, 106838–106846.

36. Al-Haija, Q.A.; Smadi, M.A.; Zein-Sabatto, S. Multi-class weather classification using ResNet-18 CNN for autonomous IoT and
CPS applications. In Proceedings of the 2020 International Conference on Computational Science and Computational Intelligence
(CSCI), Las Vegas, NV, USA, 16–18 December 2020; pp. 1586–1591.

37. VGG16—Convolutional Network for Classification and Detection. Available online: https://neurohive.io/en/popular-networks/
vgg16/ (accessed on 25 February 2024).

38. Rajapakshe, C.; Balasooriya, S.; Dayarathna, H.; Ranaweera, N.; Walgampaya, N.; Pemadasa, N. Using cnns rnns and machine
learning algorithms for real-time crime prediction. In Proceedings of the 2019 International Conference on Advancements in
Computing (ICAC), Malabe, Sri Lanka, 5–6 December 2019; pp. 310–316.

39. Alderliesten, K. Yolov3—Real-Time Object Detection. Available online: https://medium.com/analytics-vidhya/yolov3-real-
time-object-detection-54e69037b6d0 (accessed on 25 February 2024).

40. Chong, Y.S.; Tay, Y.H. Abnormal event detection in videos using spatiotemporal autoencoder. In Advances in Neural Networks-ISNN
2017, Proceedings of the 14th International Symposium, ISNN 2017, Sapporo, Hakodate, and Muroran, Hokkaido, Japan, 21–26 June 2017;
Springer: Cham, Switzerland, 2017.

41. Atrey, J.; Regunathan, R.; Rajasekaran, R. Real-world application of face mask detection system using YOLOv6. Int. J. Critical
Infrastructures 2023. https://doi.org/10.1504/IJCIS.2024.10052165.

42. Sung, C.S.; Park, J.Y. Design of an intelligent video surveillance system for crime prevention: Applying deep learning technology.
Multimed. Tools Appl. 2021, 80, 34297–34309.

43. Jiang, B.; He, J.; Yang, S.; Fu, H.; Li, T.; Song, H.; He, D. Fusion of machine vision technology and AlexNet-CNNs deep learning
network for the detection of postharvest apple pesticide residues. Artif. Intell. Agric. 2019, 1, 1–8.

44. Forson, E. Understanding SSD Multibox—Real-Time Object Detection in Deep Learning. Available online: https:
//towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab (accessed
on 25 February 2024).

45. Inception V3 Model Architecture. Available online: https://iq.opengenus.org/inception-v3-model-architecture/ (accessed on 25
February 2024).

46. Sivakumar, P.; Jayabalaguru, V.; Ramsugumar, R.; Kalaisriram, S. Real Time Crime Detection Using Deep Learning Algorithm. In
Proceedings of the 2021 International Conference on System, Computation, Automation and Networking (ICSCAN), Puducherry,
India, 30–31 July 2021; pp. 1–5.

47. Phadtare, M.; Choudhari, V.; Pedram, R.; Vartak, S. Comparison between YOLO and SSD mobile net for object detection in a
surveillance drone. Int. J. Sci. Res. Eng. Manag 2021, 5, 1–5.

48. Liu, K.; Zhu, M.; Fu, H.; Ma, H.; Chua, T.S. Enhancing anomaly detection in surveillance videos with transfer learning from
action recognition. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October
2020; pp. 4664–4668.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://neurohive.io/en/popular-networks/vgg16/
https://neurohive.io/en/popular-networks/vgg16/
https://medium.com/analytics-vidhya/yolov3-real-time-object-detection-54e69037b6d0
https://medium.com/analytics-vidhya/yolov3-real-time-object-detection-54e69037b6d0
https://doi.org/10.1504/IJCIS.2024.10052165
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-le arning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-le arning-495ef744fab
https://iq.opengenus.org/inception-v3-model-architecture/

	Introduction
	Data Engineering
	Data Process
	Data Collection
	Data Preprocessing
	Data Transformation
	Data Transformation—Resizing the Frames
	Data Augmentation

	Data Preparation
	Data Statistics

	Model Development
	Model Proposals
	Improved Faster RCNN ResNet101
	Improved YOLOv7
	Improved SSD Mobilenetv2
	Improved YOLOv6
	Integrated Model

	Model Support
	Project Workflow
	System Architecture

	Model Comparison and Justification
	Model Evaluation Methods
	Model Validation and Evaluation Results
	Improved YOLOv5
	Improved YOLOv7
	Improved YOLOv6
	Model Comparison


	Data Analytics and Intelligent System 
	System Requirements Analysis
	System Design
	System Architecture and Infrastructure
	System Data Management Solution

	System Development
	AI and Machine Learning Model Development
	Implement Designed System
	Input and Output Requirements, Supporting Systems, and Solution APIs

	System Supporting Environment

	System Evaluation and Visualization
	Analysis of Model Execution and Evaluation Results
	Achievements and Constraints
	System Quality Evaluation of Model Functions and Performance

	Conclusions
	Summary
	Prospect and Future Work

	References

