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Highlights:

What are the main findings?

• Implementation of blockchain enhances the security and scalability of smart city frameworks.
• Federated Learning enables efficient and privacy-preserving data sharing among IoT devices.

What are the implications of the main finding?

• The proposed framework significantly reduces the risk of data breaches in smart city infrastruc-
tures.

• Improved data privacy and security can foster greater adoption of IoT technologies in urban
environments.

Abstract: Smart cities increasingly rely on the Internet of Things (IoT) to enhance infrastructure and
public services. However, many existing IoT frameworks face challenges related to security, privacy,
scalability, efficiency, and low latency. This paper introduces the Blockchain and Federated Learning
for IoT (BFLIoT) framework as a solution to these issues. In the proposed method, the framework first
collects real-time data, such as traffic flow and environmental conditions, then normalizes, encrypts,
and securely stores it on a blockchain to ensure tamper-proof data management. In the second phase,
the Data Authorization Center (DAC) uses advanced cryptographic techniques to manage secure
data access and control through key generation. Additionally, edge computing devices process data
locally, reducing the load on central servers, while federated learning enables distributed model
training, ensuring data privacy. This approach provides a scalable, secure, efficient, and low-latency
solution for IoT applications in smart cities. A comprehensive security proof demonstrates BFLIoT’s
resilience against advanced cyber threats, while performance simulations validate its effectiveness,
showing significant improvements in throughput, reliability, energy efficiency, and reduced delay for
smart city applications.

Keywords: blockchain; federated learning; IoT security; smart cities; data privacy

1. Introduction

Urban development projects around the world are increasingly focusing on creating
smart cities [1], aiming to modernize infrastructure and improve public services with the
help of the Internet of Things (IoT) [2]. IoT represents a network of technologies critical
for developing smart city environments. It involves a broad network of sensors and de-
vices that are interconnected and automated to enhance urban infrastructure efficiency

Smart Cities 2024, 7, 2802–2841. https://doi.org/10.3390/smartcities7050109 https://www.mdpi.com/journal/smartcities

https://doi.org/10.3390/smartcities7050109
https://doi.org/10.3390/smartcities7050109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com
https://orcid.org/0000-0002-7208-3576
https://orcid.org/0000-0003-0060-3306
https://orcid.org/0000-0001-7028-3921
https://orcid.org/0000-0001-5679-9307
https://doi.org/10.3390/smartcities7050109
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com/article/10.3390/smartcities7050109?type=check_update&version=1


Smart Cities 2024, 7 2803

and maximize the use of resources [3]. Smart cities utilize data from connected devices
to improve sustainability and energy management, ultimately enhancing the quality of
life for city residents [4]. Furthermore, IoT has a crucial role beyond city limits as well,
enhancing connectivity in healthcare with smart devices and in agriculture through in-
novative farming technologies [5]. Unlike traditional networks that are mainly used for
personal communication, IoT networks allow devices to share information with each other
automatically, without human involvement [6]. This creates opportunities for advanced
control systems, smart identification, accurate location tracking, and detailed monitoring,
bringing in a new era of automated connectivity in both cities and rural areas [7].

The rapid development of smart cities has driven a growing reliance on IoT technolo-
gies to improve urban infrastructure, services, and overall quality of life [8]. However,
significant challenges remain in addressing critical issues such as security, privacy, scala-
bility, and efficiency in these systems [9]. While blockchain and federated learning (FL)
have shown potential, most existing frameworks tend to focus on either security or privacy,
without offering a comprehensive solution capable of handling the demanding require-
ments of large-scale, real-time IoT applications [10]. Additionally, the complexity of urban
environments, where millions of interconnected devices generate vast amounts of diverse
data, amplifies the need for innovative approaches that ensure secure data management,
real-time processing, and privacy preservation [11]. Current IoT frameworks often suffer
from problems like high energy consumption [12], limited scalability [13], and susceptibility
to cyberattacks, particularly in smart city applications [14]. Moreover, the evolving nature
of blockchain and FL technologies, coupled with the absence of standardized regulatory
frameworks, adds to the complexity of their deployment in IoT systems [15]. The lack of
solutions capable of addressing security, scalability, and privacy concerns simultaneously
highlights a significant gap in the existing research [16]. Thus, there is a crucial need
for novel frameworks that integrate these technologies, providing secure, scalable, and
efficient solutions for smart city IoT systems [17]. Despite ongoing advancements, current
frameworks still fail to effectively balance real-time data processing, decentralized security,
and privacy mechanisms in handling the vast and heterogeneous datasets generated in
urban environments.

Existing IoT frameworks often rely on either blockchain for secure data management
or FL for privacy-preserving analytics [18], but they typically struggle to meet the scalability
and efficiency demands of large-scale [19], real-time smart city applications [20]. In this
paper, the Blockchain and Federated Learning IoT (BFLIoT) framework addresses this gap
by integrating both technologies into a unified solution. In the first step, the system begins
by collecting real-time data—such as traffic flow, environmental conditions, and public
safety information—from various IoT devices. The data is normalized for consistency
across different sources, encrypted to ensure privacy, and securely stored on the blockchain.
To manage data access and security, the Data Authorization Center (DAC) employs a
cryptographic framework, utilizing bilinear pairings and secure hash functions to generate
secret and public keys. This ensures that only authorized users can decrypt and access
the data. Furthermore, Edge Computing (EC) devices are deployed to handle local data
processing, reducing the computational burden on central servers and enabling efficient
management of the large data volumes typical in smart cities. FL is then applied to the
encrypted data, allowing distributed IoT devices to collaboratively train machine learning
(ML) [21] models while preserving local data privacy. The primary contributions of this
paper are as follows:

• Framework Design: The BFLIoT framework represents the first comprehensive in-
tegration of blockchain and federated learning, addressing the unique security and
scalability challenges of smart city IoT systems. The framework’s security is under-
pinned by a foundational proof based on the intractability of the Discrete Logarithm
(DL) problem, which demonstrates its robustness against sophisticated cyber threats.

• Comprehensive Performance Analysis: Extensive simulations are conducted to eval-
uate the framework’s performance across various smart city applications, focusing
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on key metrics of Quality of Service (QoS) such as throughput, reliability, and energy
consumption. This analysis provides valuable insights into the practical viability of
the BFLIoT framework in real-world scenarios.

• Scalable and Efficient Data Processing: The method optimizes the placement and
operation of EC devices, enabling efficient local data processing and reducing the
reliance on central servers. This scalability is crucial for handling the large data
volumes typical of smart city environments, ensuring that the system maintains real-
time processing capabilities.

• Advanced Anomaly Detection Framework: The framework includes a dynamic
anomaly detection system that adapts to evolving data patterns. The globally refined
model from FL enhances the accuracy of detecting irregularities and potential security
threats, improving the overall security and reliability of smart city operations.

• Formal Security Verification: The BFLIoT protocol’s security is thoroughly verified
using ProVerif, a tool for the formal verification of cryptographic protocols. This
formal analysis confirms the framework’s resilience against a wide range of cyber
threats, establishing a high level of confidence in its security architecture.

The paper is organized as follows: Section 2 reviews significant recent literature on
IoT security challenges and the integration of blockchain with AI. Section 3 identifies
the main challenges and strategic gaps from these studies and discusses the proposed
classification model and segmentation. Section 4 presents the proposed method. Section 5
presents security proof with an enhanced encryption scheme, along with a formal analysis
using ProVerif (version 2.05). Section 6 focuses on the performance analysis, detailing
the simulation setup and its findings. Finally, Section 7 concludes the paper and suggests
directions for future research.

2. Literature Review

This section critically reviews the existing literature on enhancing IoT security through
blockchain-based FL. It highlights key advancements, identifies current challenges, and
explores emerging trends that contribute to the framework of this study.

2.1. Evolution of IoT Security Challenges

The rapid expansion of the IoT has revolutionized various sectors, such as healthcare,
agriculture, and urban development, by enabling enhanced connectivity and automa-
tion [22]. Despite these advancements, IoT networks face several significant security
challenges due to the diverse and resource-constrained nature of IoT devices. Many IoT
devices have limited computational power, memory, and energy resources, making them
vulnerable to a wide range of security threats, including unauthorized data access, de-
vice tampering, and service interruptions [23]. Traditional security methods, which were
originally designed for conventional computing systems, often struggle to protect these
networks from sophisticated cyberattacks that exploit these vulnerabilities [24]. One of the
primary challenges in IoT security stems from the dynamic nature of IoT networks. IoT
environments are characterized by frequent changes in device connectivity, where devices
can join or leave the network at any time [25]. This constant flux complicates efforts to
maintain a secure, stable, and scalable system as new devices introduce additional attack
vectors and complicate the overall security architecture. Moreover, the heterogeneity of
IoT devices—ranging from simple sensors to complex actuators—further exacerbates secu-
rity issues. Ensuring seamless interoperability and secure communication between these
diverse devices is a persistent challenge for existing IoT frameworks. In addition to these
device-level issues, the massive amounts of data generated in IoT networks, particularly
in smart city applications, present significant challenges for data integrity, privacy, and
real-time processing [1]. IoT networks are prone to data breaches and cyberattacks that
target sensitive information, such as personal data, healthcare records, or city infrastructure
information [12]. The lack of robust security mechanisms in traditional IoT frameworks
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makes it difficult to ensure secure data transmission and storage, especially in large-scale
networks.

2.2. Blockchain and AI in IoT Security: A Review of Recent Studies

Merlec et al. [26] introduced a Smart Contract-enabled Context-Aware Access Control
(SC-CAAC) scheme specifically designed for Blockchain-enabled IoT systems. This ap-
proach uses context-aware access control models together with smart contracts to manage
access permissions in real time. Taking advantage of blockchain’s features like immutabil-
ity (data cannot be changed), transparency, and decentralization strengthens security and
privacy without the need for a central authority. This helps build trust because all access
control policies and decisions are permanently recorded on the blockchain. However, there
are some challenges, such as the complexity of setting up and managing blockchain and
smart contracts. Additionally, as the number of IoT devices and access control policies
increases, scalability might become an issue, potentially slowing down transactions and
increasing costs.

CheSuh et al. [27] proposed to employ Blockchain and ML to enhance QoS in IoT
applications and to optimize parameters like delay and throughput. This comprehensive
approach significantly boosts security, data integrity, and QoS accuracy. However, its com-
plexity may pose scalability challenges in large IoT networks, and the high computational
demands of ML and Blockchain could limit its feasibility in resource-constrained settings.

Kiran Ray et al. [28] propose an Ownership Transfer Protocol (OTP) for IoT devices
that utilize Physically Unclonable Functions (PUF) and blockchain technology to ensure
secure ownership transfer. This protocol allows tracking and tracing of the smart objects
within the supply chain without requiring a Trusted Third Party (TTP) and supports
Partial Ownership Transfer (POT) for temporary ownership changes. It leverages the
immutable nature of blockchain for distributed environment support and authenticates
devices and parties involved in the transfer process. The OTP was evaluated using the
Ethereum blockchain and the Scyther tool for security verification, showing resistance
against common attacks and optimal gas consumption. The OTP provides a decentralized
solution for IoT ownership transfer, enhancing security and authentication without a TTP.
The implementation of Ethereum has proved to be practical and energy efficient. However,
PUF technology might introduce complexity in implementation and scalability challenges
for large-scale IoT ecosystems.

Moreover, Li et al. [29] proposed a privacy-preserving bidirectional (PB) option for
blockchain-enhanced logistics IoT. This scheme supports smart contracts for data access
control, ciphertext-policy attribute-based encryption for privacy protection, and hash func-
tions for data integrity detection. It introduces a logistics routing selection algorithm that
takes into consideration time efficiency, transportation cost, and workload and features
a bidirectional choice strategy to offer more human-like services to both customers and
express delivery sites. The security and performance analysis shows that PB-IoT provides
strong data privacy and supports bidirectional choices, making it a comprehensive ap-
proach for addressing the issues of logistics privacy and chaotic access control mechanisms
in IoT. However, the complexity and scalability of integrating blockchain, encryption, and
smart contracts might pose challenges, especially in larger logistics networks.

Vishwakarma and Das [30] presented a Blockchain-Based Integrated Security System
(BLISS), a comprehensive security solution designed for IoT applications. This work fo-
cuses on enhancing cybersecurity by providing efficient mechanisms for the identification,
authentication, confidentiality, and integrity of IoT devices and data exchanges. BLISS
employs smart contracts on blockchain technology to create trustful clusters of IoT devices,
facilitating secure data exchange without the need for a Trusted Third Party (TTP). The
system is implemented on a combination of Raspberry Pi 4 and desktop PCs, demon-
strating significant improvements in computation and energy consumption, with reduced
storage and communication overhead compared to existing schemes. The security analysis
confirms BLISS’s resilience against various IoT-specific cyber threats. While BLISS provides
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a robust security framework for IoT applications, the reliance on blockchain technology
might introduce challenges related to scalability and latency, particularly in large-scale IoT
networks.

Also, Singh and Dwivedi [31] introduced a novel Blockchain-Based Secure Autonomous
Vehicular IoT (SAVIoT) Architecture with Efficient Smart Contracts, aiming to enhance the
cybersecurity of Autonomous Vehicles (AVs) by using blockchain technology for secure
data sharing across AV networks. The implementation utilizes Solidity for smart contracts
and the Ethereum platform, with Ganache and Truffle for blockchain deployment and
MATLAB for analysis. This architecture ensures AV information and network integrity
by enforcing predefined rules for data exchange through smart contracts, thus improving
safety and reliability. It also enhances AV cybersecurity through decentralized, rule-based
data sharing, reducing vulnerability to cyberattacks. However, the complexity of blockchain
and smart contracts might present scalability challenges in extensive AV networks.

Khan, Bourouis [32] proposed a Blockchain Hyperledger-enabled Healthcare Indus-
trial Internet of Things (BHIIoT) to boost data security in e-healthcare systems by addressing
the limitations of centralized server-based architectures, such as node connectivity failures
and issues with parallel data sharing. It introduces a secure, distributed structure that
employs blockchain-distributed ledger technology and NuCypher threshold re-encryption,
significantly enhancing data management, network resources, and overall trust within
a peer-to-peer environment. This system automates key processes like authentication,
logging, and transactions through chain codes and offers a scalable solution for optimizing
the lifecycle of medical Wireless Sensor Networks (WSNs). However, the integration’s com-
plexity, the need for extensive evaluation in large-scale applications to confirm its benefits
over traditional methods, and the requirement for continuous updates to combat emerging
security threats present challenges, particularly in terms of scalability, interoperability, and
maintaining cutting-edge security measures.

Hu Xiong et al. [33] introduced an advanced privacy-preserving authentication proto-
col for heterogeneous IIoT systems, leveraging a proxy resignature mechanism to facilitate
secure communication between ID-based and certificateless-based cryptosystems. This
protocol addresses critical security requirements, such as mutual authentication, user
anonymity, resistance to modification, replay, and impersonation attacks, while ensuring
perfect forward secrecy, nonrepudiation, and compatibility across heterogeneous environ-
ments. The protocol’s security is rigorously validated under the extended Computational
Diffie-Hellman (eCDH) assumption in the random oracle model. Notably, it demonstrates
a low computational cost and reduced communication overhead compared to existing
methods. However, the added complexity of achieving cross-domain communication intro-
duces additional computational overhead, marking the primary limitation of the proposed
approach.

Zhong et al. [34]. proposed an identity-based broadcast encryption (IBBE) scheme
for VANETs to address redundancies in one-to-many communication between the Trust
Authority (TA) and multiple vehicles. The scheme introduces IBBE technology to enable
the TA to generate a single fixed-length ciphertext for a group of vehicles, thus reducing
encryption overhead and improving efficiency. Additionally, a proxy server is incorporated
to convert IBBE ciphertext into identity-based encryption (IBE) ciphertext, further reducing
decryption costs for new vehicles joining the communication. The proposed method is
evaluated through comprehensive security analysis and experimental results, demonstrat-
ing enhanced communication efficiency and reduced encryption redundancy. However,
the use of a proxy server adds a layer of complexity, potentially introducing additional
computational overhead.

2.3. Common Challenges and Strategic Gaps Identified across Studies

The analysis of blockchain’s use in IoT security, as discussed in Section 2.2, reveals
several recurring challenges and strategic gaps that hinder the effective integration of
blockchain into IoT environments. Despite the promise of blockchain technologies, these
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limitations underscore the critical need for innovative solutions that can address scala-
bility, efficiency, complexity, resource constraints, and interoperability in large-scale IoT
applications, such as smart cities.

Scalability and Efficiency: The exponential growth of IoT networks—comprising
billions of interconnected devices—has led to significant increases in data generation
and transaction volumes. Traditional blockchain frameworks, particularly those relying
on proof-of-work (PoW) mechanisms [30], struggle to handle this scale. Solutions like
the SC-CAAC scheme [26] and the BHIIoT approach [32], while innovative, suffer from
scalability bottlenecks, which result in delayed transactions and increased operational costs.
These delays compromise the real-time functionality required by smart city applications,
ultimately negating some of blockchain’s core advantages, such as decentralization and
transparency. The inability of current frameworks to efficiently scale for large, real-time
IoT environments exposes a critical knowledge gap—the need for new architectures or
consensus mechanisms that can handle large-scale IoT systems without compromising
performance.

Complexity and Implementation Hurdles: Integrating blockchain into IoT networks
introduces a high degree of complexity, particularly when combined with advanced tech-
nologies like ML and encryption. Solutions that aim to integrate these technologies often
demand a robust technical infrastructure and require expertise in multiple domains. This
creates a substantial barrier to entry, particularly in settings with limited resources. For
instance, the BHIIoT framework [32], while addressing scalability, suffers from complexity
in terms of deployment and ongoing management. This complexity makes it harder to use
these solutions in real-world situations and slows down their wider adoption. The lack of
simple and efficient frameworks shows the need for solutions that make it easier to set up
and manage blockchain and IoT technologies.

Resource Constraints: IoT devices typically have limited processing power, mem-
ory, and energy resources, which make it challenging to directly implement blockchain
solutions. For instance, systems like privacy-preserving logistics IoT [29] demonstrate
how blockchain’s cryptographic processes and ledger maintenance tasks can overwhelm
IoT devices, leading to high energy consumption and computational demands. Although
alternatives such as off-chain processing or lighter protocols have been proposed, they
often come at the cost of reduced security or loss of blockchain’s core benefits, such as
immutability and transparency. This gap between the theoretical advantages of blockchain
and its practical limitations in resource-constrained environments reveals the need for new
solutions that can maintain security and efficiency while minimizing resource demands.

Interoperability and Standardization: The lack of interoperability between vari-
ous blockchain platforms and IoT protocols presents another significant challenge. The
heterogeneity of IoT devices and protocols, combined with the fragmented landscape
of blockchain technologies, makes it difficult to achieve seamless communication across
different systems. Existing frameworks, such as the BLISS security system [30], fail to fully
address the need for standardized protocols and interfaces that would enable efficient cross-
platform integration. This issue becomes particularly acute in large-scale IoT environments
where diverse devices need to securely and efficiently share data. The absence of a unified
framework that supports diverse IoT and blockchain technologies highlights a pressing
need for solutions that promote interoperability and standardization.

Table 1 demonstrates the blockchain-enabled IoT innovations: strengths and limitations.



Smart Cities 2024, 7 2808

Table 1. Comparative analysis of blockchain-enabled IoT innovations: strengths and limitations.

Reference Prior Studies Advantages of Prior
Studies

Disadvantages of Prior
Studies BFLIoT Contribution

[26] SC-CAAC for
Blockchain-IoT

Enhances security
and privacy

Promotes trust

Complex deployment
Scalability and cost issues.

BFLIoT integrates federated learning for
scalability and edge computing to

reduce complexity.

[27] Blockchain and ML
for IoT QoS

Improves security
and QoS

Utilizes ML analytics.

Scalability issues.
High computational

demands.

BFLIoT optimizes energy efficiency and
scalability through distributed edge

computing and lightweight ML models.

[28] OTP with PUF and
blockchain

Secure flexible
ownership transfer

PUF complexity.
Scalability evolving m.

BFLIoT avoids hardware-based complexity
by using cryptographic methods for secure

and scalable data management.

[29] PB-IoT for logistics Enhances privacy;
Supports humane services.

Integration complexity.
High computational

needs.

BFLIoT simplifies integration with a
unified blockchain and federated learning

model, reducing computational load.

[30] BLISS for IoT Improves cybersecurity;
efficient mechanisms.

Scalability and latency in
large network

optimization are needed.

BFLIoT addresses latency by distributing
processing across edge devices, ensuring

real-time performance.

[31] Secure AV IoT
Architecture SAVIoT

Decentralized data
sharing; improves safety.

Low scalability in AV
networks.

High resource demands.

BFLIoT’s decentralized architecture
handles larger networks efficiently,

improving scalability and reducing latency.

[32] BHIIoT for e-healthcare Enhances data security
and scalable.

Integration complexity;
needs extensive

evaluation.

BFLIoT’s lightweight and scalable design
simplifies deployment and supports

real-time healthcare applications.

[33] Computational
Diffie-Hellman (eCDH)

Ensures secure
communication between

heterogeneous
cryptosystems, low
computation cost,

and reduced
communication overhead.

Extra computation cost
due to cross-domain

communication.
BFLIoT’s recommend a low cost algorithm

[34]
Identity-Based Broadcast
Encryption (IBBE) with

Proxy Server for VANETs

Reduces encryption
redundancy, improves

communication efficiency,
lowers decryption cost for

new vehicles.

Complexity added by
using a proxy server,

introducing extra
computational overhead

BFLIoT’s reduces encryption redundancy
in one-to-many communication

3. Problem Statement

As smart cities rapidly expand, they face complex challenges in managing traffic,
monitoring the environment, and ensuring public safety. Traditional IoT systems that
support these tasks are increasingly struggling with critical issues such as data privacy,
security, scalability, and real-time efficiency [35]. With the rising number of IoT devices, the
volume of data generated is becoming harder to process and analyze efficiently [36]. Current
systems often lack the capability to provide secure, reliable connections and collaboration
among the numerous IoT devices distributed across urban environments, resulting in
inefficiencies and missed opportunities for optimized city management. Moreover, these
conventional systems face difficulties in ensuring secure data transmission and privacy
protection, especially as data travels through multiple points from sensors to end-users.
This situation necessitates an advanced solution that can handle large-scale data in a
secure, privacy-preserving manner while also being adaptable to the dynamic needs of
urban infrastructures. To address these concerns, our proposed BFLIoT system integrates
blockchain and federated learning to provide an enhanced, secure, and scalable solution. As
illustrated in Figure 1, the system ensures end-to-end encryption, maintaining data integrity
and security from the IoT sensors to the end-users while allowing efficient collaboration and
data processing. This approach aims to overcome the limitations of traditional IoT systems,
enabling smart cities to handle their data requirements more effectively and securely.
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3.1. BFLIoT Framework and Segmentation

In the proposed BFLIoT framework, FL is a core component that enables decentralized
model training across IoT devices. Rather than centralizing data from various sensors,
FL allows each IoT device to train a local model on its own data, ensuring privacy. The
local model updates are then shared with a central aggregator, where a global model is
created and distributed back to the devices. This process enhances the system’s predictive
capabilities for tasks such as anomaly detection, traffic flow optimization, and public safety
analysis, all without exposing sensitive data.

FL is learning patterns and trends within the data generated by the IoT devices.
Each local model captures the unique environmental and operational characteristics of
the IoT devices, such as traffic patterns in specific city regions or variations in air quality.
The aggregation of these local models into a global model provides a holistic view of
the city, improving the accuracy of predictions and decisions across the entire smart city
infrastructure.

Necessity of FL in the BFLIoT Framework:

• Privacy Preservation: By keeping data local to the IoT devices, FL significantly en-
hances privacy. Sensitive data, such as personal or public movement patterns, is never
transmitted to a central server, reducing the risk of data breaches and enhancing trust
in the system.

• Scalability: With thousands of IoT devices continuously generating data, centralized
systems would face significant challenges in handling this volume of information. FL
decentralizes computation, minimizing the need for extensive server resources and
allowing the system to scale effectively in large smart city environments.

• Real-Time Anomaly Detection: The BFLIoT framework is designed to adapt to
changing conditions within the city. FL facilitates real-time updates to anomaly
detection models, allowing the system to continuously improve its ability to detect
cyber threats or system failures without compromising security.

Blockchain is a foundational component that ensures security, data integrity, and
decentralization across the IoT ecosystem in smart cities. Blockchain plays a crucial role
by providing a distributed ledger that stores encrypted data and model updates from IoT
devices, enhancing trust, transparency, and resilience against cyber threats.

Necessity of Blockchain in the BFLIoT Framework:

• Decentralized Data Storage and Integrity: Blockchain stores encrypted data and FL
model updates in an immutable, distributed ledger. Each IoT device contributes to
the ledger by adding blocks containing encrypted data or model parameters. The dis-
tributed nature of Blockchain ensures that no single point of failure exists, enhancing
the system’s fault tolerance and security.

• Tamper-Resistant and Transparent Transactions: By using Blockchain, the BFLIoT
framework guarantees that once data or model updates are recorded, they cannot be
altered or tampered with. This immutability is critical for securing sensitive data and
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ensuring that any malicious attempt to manipulate the system would be detectable by
the decentralized network of nodes.

• Secure Data Sharing through Smart Contracts: Blockchain’s smart contracts are lever-
aged to manage access control and automate data sharing across IoT devices. Smart
contracts allow for automated execution of predefined rules, such as determining
which entities can access certain data or model updates without relying on intermedi-
aries. This automation not only ensures security but also improves system efficiency
by reducing the need for manual intervention.

• Validation of FL Updates: Blockchain serves as the validation mechanism for FL
model updates. Before updates are aggregated into the global model, they are verified
and added to the Blockchain ledger, ensuring that only valid, secure contributions
from authenticated devices are incorporated. This guarantees the trustworthiness of
the learning process, preventing malicious data injections or model poisoning attacks.

This combination of FL and blockchain technology provides a robust, secure, and
scalable solution for managing IoT systems in smart cities. This integration is detailed
through a mathematical framework, demonstrating how data from IoT devices is processed,
classified, and segmented to identify and mitigate security threats efficiently. Table A1 in
the Appendix A shows the notation used further on for the mathematical description of
classification and segmentation processes.

Given a dataset from IoT devices, let it be represented as Equations (1) and (2):

X = (x1, x2, . . . , xn) (1)

Y = (y1, y2, . . . , ym) (2)

Here, X represents a vector containing data from all IoT devices. These vectors compile
information such as device behavior, network traffic patterns, and resource usage. Y is a
set of predefined categories used to classify the security status or threats to devices. These
categories range from normal operation to various forms of compromised behavior, such
as data exfiltration, unauthorized access, or malware infection. The classification model
in Equations (3) and (4) f , which maps data points to their corresponding categories, is
defined as follows:

f : X → Y (3)

yi = f (xi; θ) (4)

In our model, each data point xi from the IoT in the dataset is mapped to a corre-
sponding security status yi using the classification function f. This mapping allows the
model to classify different security statuses or threats for the devices, ranging from normal
operation to various compromised behaviors such as data exfiltration, unauthorized access,
or malware infection. Here, θ symbolizes the parameters of the ML model, which are tuned
to optimize threat detection accuracy.

Equation (5) optimizes a loss function L is minimized, quantifying the difference be-
tween the predicted categories and the actual categories. The cross-entropy loss, commonly
used for classification tasks, is defined as follows:

L(θ) = −∑n
i=1 ∑m

j=1 zijlog(Ŵij) (5)

Equation (6) indicate where zij is a binary indicator denoting if category j is the
correct classification for observation i, and Ŵij is the model’s predicted probability of xi
belonging to category j. Segmentation is the process of dividing the dataset X into subsets
S1, S2, . . . , Sp based on specific criteria, such as characteristics of the data or the categories
predicted by the classification model.

gseg : X → S (6)
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This process aims to increase the homogeneity within segments and the heterogeneity
between them. The segmentation function g assigns each data point xi to a segment Sj,
where j ranges from 1 to p (total number of segments). Thus, each segment is defined by
Equation (7):

Sj = (xi|g(xi) = j , j = 1, 2, . . . , p) (7)

Optimization of the segmentation process involves minimizing the variance within
each segment and maximizing the variance between segments, defined as follows for a
segment Sj:

Var(Sj) =
1
|Sj|∑xi∈Sj

(xi − µj)
2 (8)

The total inter-segment variance, denoted as Σ², is given by the following:

Σ2 = ∑p
j=1 |Sj|(µj − µ)2 (9)

Here, µj is the mean of the data points in the segment Sj, and µ represents the overall
mean of the dataset. The classification model is optimized by adjusting θ to minimize the
loss function L(θ), typically through gradient descent or its variants, to efficiently handle
the large datasets and complex architectures common in IoT applications. The update rule
for the parameters is given by Equation (10):

θ(t+1) = θt − α∇L(θt) (10)

where α is the learning rate, and ∇L(θt) is the gradient of the loss function concerning the
parameters at iteration t.

3.2. Why Blockchain over Traditional Encryption (e.g., HTTPS)?

In the proposed BFLIoT framework, Blockchain plays a fundamental role in securing
data and ensuring transparency and trust, going beyond what traditional encryption
methods like HTTPS provide. While HTTPS offers encryption for data in transit and at
rest, it does not address key challenges related to data integrity, decentralization, trust, and
tamper resistance, all of which are critical in a smart city IoT environment. This section
explains why Blockchain is a superior choice over traditional encryption methods for this
framework.

Immutability and Data Integrity: Traditional encryption methods like HTTPS se-
cure data by encrypting it during transmission and storage, ensuring it is inaccessible to
unauthorized parties. However, once the data reaches its destination, there is no built-in
mechanism to prevent it from being altered or tampered with. Blockchain, on the other
hand, provides an immutable ledger, meaning once data is recorded in a block, it cannot be
altered or deleted without being detected. This ensures data integrity over time, making
it especially valuable in environments where the authenticity and accuracy of data are
paramount.

Blockchain Advantage: Blockchain guarantees immutability, ensuring that all transac-
tions and data entries are tamper-proof and verifiable. This provides a level of trust and
security that traditional encryption methods do not inherently offer.

Decentralization and Trust lessness: HTTPS relies on centralized servers to manage
encryption keys and validate data exchanges. This creates single points of failure and
requires trust in the central authority managing the server. In contrast, Blockchain is
a decentralized system where multiple nodes in the network participate in validating
transactions. This trustless environment ensures that no single entity has control over the
data, and the system can continue to operate even if some nodes fail or are compromised.

Blockchain Advantage: The decentralized nature of Blockchain removes reliance
on any single trusted party, providing greater resilience against failures and attacks and
making the system more robust and reliable in a large-scale IoT environment.
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Tamper-Resistant and Transparent Data: Encryption alone does not provide mecha-
nisms for auditing or ensuring transparency. HTTPS can secure data during transmission,
but it does not offer a method to track or verify the history of data once it has been ex-
changed. Blockchain’s distributed ledger records every transaction in a transparent and
traceable manner. Each transaction is linked to the previous one, creating a chronological
chain of records that can be audited at any time, ensuring accountability.

Blockchain Advantage: Blockchain provides real-time transparency and traceability,
allowing any participant to audit the history of data and ensure that no unauthorized
changes have been made. This is particularly important in smart city IoT systems, where
regulatory compliance and data accountability are critical.

Consensus-Based Validation: With HTTPS, while data is encrypted during transmis-
sion, it is up to the central server or authority to verify the validity of the data. This can
lead to vulnerabilities if the central server is compromised. Blockchain uses a consensus
mechanism (such as Proof-of-Stake) to validate transactions before they are recorded. This
ensures that only valid, authenticated data is added to the Blockchain, providing a much
stronger validation process than simple encryption.

Blockchain Advantage: The consensus mechanisms in Blockchain ensure that all data
added to the ledger is verified and trusted, preventing malicious actors from injecting false
or harmful data into the system.

Smart Contracts for Automated Access Control: Traditional encryption methods like
HTTPS do not offer automated mechanisms for controlling how and when data is accessed.
Blockchain enables the use of smart contracts, which are self-executing pieces of code that
can enforce rules and policies. These smart contracts can automatically grant or deny access
to data based on predefined conditions, ensuring secure, automated data management
without the need for manual intervention.

Blockchain Advantage: Smart contracts provide a higher level of automation and
security in managing data access, reducing human errors, and increasing the overall
efficiency of the system. They also help in enforcing security policies dynamically.

3.3. Mathematical Formulation for QoS in BFLIoT Systems

A structured and professional mathematical formulation has been developed to estab-
lish a connection between IoT data characteristics and QoS parameters within the BFLIoT
system context. This involves defining a series of mathematical expressions and optimiza-
tion problems aimed at capturing the operational efficiency, security, and scalability of
the system. Through this approach, a rigorous analysis and optimization of the system’s
performance can be achieved, ensuring a comprehensive understanding and enhancement
of its capabilities.

Data throughput: In the context of the IoT, throughput refers to the efficiency and
speed at which transactions and data exchanges are processed within the network, which
is crucial for maintaining real-time learning and decision-making capabilities across a vast
array of connected devices. Equation (11) defines the throughput:

τ =
∑n

i=1 |di|
T

(11)

• τ: Represents the throughput of the system, typically measured as the amount of data
processed per unit of time.

• ∑n
i=1 |di|: represents the summation of the absolute values of data (di) processed, from

i = 1 to n, where i indexes each data transaction or piece of data processed, and n is
the total number of transactions or data pieces processed in the given period.

• T: Represents the total period over which the throughput is measured. This could be
in seconds, minutes, hours, etc., depending on the context of the measurement.

Energy efficiency: In a blockchain-integrated FL framework for the IoT, managing en-
ergy consumption involves optimizing computational processes, communication protocols,
and data handling to ensure the system’s sustainability, efficiency, and cost-effectiveness
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despite the inherent challenges posed by the diversity and energy limitations of IoT devices.
We define energy efficiency as the ratio between the consumed energy (Ec) and the total
quantity of data processed, as expressed by Equation (12):

E =
Ec

∑n
i=1 |di|

(12)

Reliability: In the context of the IoT, it represents the system’s ability to operate
correctly and consistently over time without failures. This metric is crucial in distributed
networks where consistent operation is vital for data integrity, user trust, and overall
system performance. Equation (13) defines the reliability:

R = e−λt (13)

• R stands for the system’s reliability over time, indicating the probability of failure-free
operation throughout a specific period t.

• λ represents the failure rate of the system, which quantifies the frequency of failures
per unit of time. A lower failure rate corresponds to higher reliability.

Latency: Latency, in the context of networked systems, typically shows the time
necessary for a data packet to travel from its source to its destination. In the framework of
a secure and scalable blockchain-integrated framework for FL across the Internet of Things
(IoT), latency is a critical metric that can significantly impact the overall performance and
responsiveness of the system. The equation for latency can be represented as follows:

LT =
D
S
+ P (14)

• LT denotes the latency, measured as the total time taken for a data transaction.
• D represents the distance traveled by the data packet, which can be the physical

distance between devices in an IoT environment.
• S is the speed of the data transmission, which can be influenced by the medium of

transmission (e.g., fiber optics, wireless) and the bandwidth of the network.
• P accounts for the processing time required at each node the data packet encounters,

including delays introduced by routing decisions, data processing, and any queuing
that may occur within the network infrastructure or the blockchain system itself.

4. Proposed Method

In this smart city framework, blockchain plays a crucial role in ensuring security,
transparency, and data integrity. It acts as a decentralized, unchangeable ledger that
securely stores encrypted IoT data and FL model updates, preventing unauthorized access
or tampering. By removing the need for a central authority, blockchain reduces the risk
of cyberattacks and creates a trustless system where all interactions are verifiable and
transparent. The integration of blockchain with FL means that encrypted model updates
from IoT devices are validated and securely stored, making them immutable. Additionally,
smart contracts automate data access permissions and enforce rules, improving efficiency.

The innovation here comes from combining Blockchain and Federated Learning. While
FL keeps raw data private by processing it locally, Blockchain adds an extra layer of security
by ensuring all updates are verified and protected from manipulation. This hybrid approach
offers a more scalable and secure solution for smart city infrastructures, tackling key issues
like data security, privacy, and scalability more effectively than traditional centralized
systems. By leveraging both technologies, the framework delivers a secure, transparent,
and efficient way to manage the vast amount of data generated in smart cities.

In a smart city environment, a sophisticated BFLIoT system is designed to optimize
traffic flow, monitor environmental health, and ensure public safety, all while safeguarding
data privacy and integrity. The system incorporates a plethora of IoT devices that collect
data continuously. This data is then securely integrated into a blockchain, analyzed through
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ML models on edge devices, and refined via FL to improve city-wide operational efficiency
and security. The notations used in the mathematical description are summarized in
Table A2 in the Appendix A. In this section, we will describe the proposed method step by
step.

Step 1: Data Collection and Processing
IoT devices collect varied data, including traffic patterns, air quality indexes, and

public space occupancy rates. This data is initially processed to normalize and encrypt
before it’s recorded on the blockchain. Normalization ensures that data from different
sources is on a uniform scale, facilitating accurate analysis. Encryption protects the data’s
privacy and integrity before it is securely recorded on the blockchain. The normalization
process can be represented mathematically as Equation (15):

Xnorm =
X− µX

σX
(15)

Step 2: Cryptographic Foundations
The DAC sets up a cryptographic framework to ensure the security of IoT data through

encryption and controlled access mechanisms. This framework is crucial for protecting
data from unauthorized access and cyber threats, employing advanced encryption tech-
niques and secure hash functions. It enables the safe transmission and storage of sensitive
information across the IoT ecosystem, ensuring data integrity and confidentiality.

• The choice of a bilinear map e a pairing function over cryptographic groups G and
GT , along with the choice of a prime number q, underpins the robustness of our
encryption scheme, enabling secure interactions within the framework. Additionally,
specifying four secure hash functions for distinct aspects of the encryption process
further tailors our cryptographic measures to address diverse security requirements,
ensuring comprehensive data protection across the IoT infrastructure.

• The allocation of hash functions within our cryptographic framework plays an im-
portant role in enhancing data security and integrity. Four secure hash functions are
defined for their specific roles in the encryption process:

# H1 : (0, 1)∗ → Z∗q maps binary strings to integers within Z∗q , facilitating secure
numerical operations.

# H2 : (0, 1)∗ → G transforms binary strings into elements of the cryptographic
group G, ensuring that data can be securely embedded within this group.

# H3 : GT → (0, 1)∗ performs the inverse operation, converting group elements
back into binary strings, which is essential for data retrieval and processing.

# H4 : (0, 1)∗ → (0, 1)∗ is designed to maintain data integrity, providing a re-
liable mechanism for verifying the unaltered state of data throughout the
encryption and decryption processes.

The DAC generates a secret key s from Z∗q and computes the public key Ppub = gs,
essential for the encryption of IoT data. This public key plays a critical role in the encryption
of IoT data, ensuring that only those with proper authorization can decrypt and access the
information.

The normalized IoT data (Xnorm) is hashed using H4, to produce a hash value for in-
tegrity verification. The encrypted data (Dataencrypt) includes both the original normalized
data and its hash value, ensuring that any tampering can be detected. Thus, the encrypted
376 data is expressed as Equation (16):

Dataencrypt = Encrypt
(

Xnorm||H4(Xnorm), Ppub

)
(16)

This allows for both the original normalized data and its hash value to be encrypted
together using the public key Ppub. The encrypted data C is securely uploaded to the
blockchain, ensuring the integrity and confidentiality of the IoT information.
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Step 3: Integration and Secure Operation of EC
In our system, the key challenge lies in securely integrating and managing a network

of sensors and EC devices. In our simulations, we used 200 sensors, and 10 EC devices are
addressed. The strategic placement of EC devices ensures efficient data processing from
approximately 20 sensors each, optimizing load distribution and enhancing real-time data
processing capabilities. The foundation of our security model is established based on a
rigorous registration and authentication process for each EC device. Initiated through the
secure transmission of a unique identifier by each EC device to the DAC, this process is
formally represented as Equation (17):

EC → DAC : EIDD (17)

where the notation EC→ DAC denotes that the EC device is securely sending data to the
DAC, and EIDD represents the unique identifier of the EC device. The secure transmission
of EIDD involves the EC device sending its unique identifier through an encrypted commu-
nication channel to the DAC. This identifier is used to authenticate the device and ensure
that only authorized EC devices can access sensitive data. Once the DAC receives and
verifies EIDD, it can register the EC device within the cryptographic framework, enabling
subsequent secure communication. This authentication mechanism is crucial for ensuring
that only verified EC devices are allowed to participate in the network, thus protecting
the system against unauthorized access and potential security vulnerabilities. The EIDD
facilitates identification and plays a crucial role in the subsequent stages of secure data en-
cryption, transmission, and processing. Upon successful authentication, the DAC generates
a unique, long secret key for each EC device via a secure procedure, establishing a key pair
for secure data exchanges, as shown in Equation (18):

lskesb ← Random( f ), LPKesb = glskesb (18)

Here, lskesb represents the long secret key for the EC device, and LPKesb denotes the
public key component of the key pair, generated through a cryptographic function g. Using
their unique secret keys, EC devices encrypt data before integration into the blockchain,
subsequently enabling the secure and verifiable addition of new data blocks:

Dataencrypt = Encrypt(data, lskesb) (19)

Store C in blockchain:

Bnew = Hash(Bold || Hash(Dataencrypt)) (20)

where C represents the encrypted data given in Equation (20), Bold denotes the previous
block in the blockchain, and Bnew signifies the newly added block. EC devices retrieve
the encrypted dataset from the blockchain using access credentials, decrypt the data, and
process it to derive actionable insights, as shown in Equations (21) and (22):

Cretrieve(EC) = Blockchain(Access_CredentialsEC) (21)

Dprocessed = ProcessEC(Decrypt(Dataencrypt, lskEC)) (22)

where Cretrieve(EC) is the process of retrieving encrypted data by the EC device using
its access credentials, and Dprocessed represents the data processed by the EC device after
decryption with its private key lskEC. The rate of change of data flow from sensors to EC
devices denoted as ∆D f low, is analyzed using Equation (23) to identify sudden spikes:

∆D f low =
dD
dt

(23)



Smart Cities 2024, 7 2816

Moreover, the integrity of data transmission paths is verified through contour integrals,
ensuring that the data’s path through the network maintains its integrity from the source
to the destination. This is mathematically represented as Equation (24):∮

C
F · ds = 0 (24)

Furthermore, the concept of proportional perpendicularity is used to optimize the
placement of EC devices relative to the sensors they manage, ensuring that data trans-
mission paths are as direct as possible, minimizing latency and maximizing efficiency.
Mathematically, this relationship can be defined as Equation (25):

→
r EC ∝

→
r sensor⊥

→
d optimal (25)

where
→
r EC and

→
r sensor are the position vectors of the EC device and sensor, respectively,

and
→
d optimal represents the direction vector that is perpendicular to the most efficient data

transmission path.
Step 4: Federated Learning on Encrypted Data
The FL process in our system ensures the secure handling and updating of models

using encrypted data. This approach allows multiple EC devices to collaboratively learn a
shared prediction model while keeping all the training data local, thereby enhancing privacy
and security. Encrypted datasets are processed locally on each device, and only model
updates are shared across the network, ensuring sensitive information remains protected.
Through this method, our system leverages the collective intelligence of distributed devices
without compromising the confidentiality of the underlying data.

The formulas describe the encryption and key generation process within federated
learning, ensuring security and privacy by using cryptography hash functions and random
selections within a defined group, as well as generating session keys based on public
and private keys. The security and privacy of the FL process are established through the
following Equations (26) and (27):

EIDD,b = H2(EIDb), ω ←R Z∗q (26)

RSKa,b = LPKlskesb
esb , Sa,b, yb = gra,b , ra,b = H1(RSKa,b, tseq) (27)

In the context of IoT, ω represents a randomly chosen value that strengthens the
security of the encryption and key generation process for federated learning. The notation
ω ←R Z∗q indicates that ω is randomly selected from the multiplicative group of integers
modulo q, ensuring unique and unpredictable session keys that protect the privacy of
IoT device data. Equation (27) describes the generation of shared key and secure values
using public–private key pairs, cryptographic hash functions, and sequence identifiers to
establish secure communication channels and authenticate data exchange. Encrypted data
batches for model updates are represented as follows:

Dataencrypt = Encrypt(Xbatch, key1) hed = H4(Dataencrypt) (28)

C0 = H1(Index, k, tseq, hed) (29)

Equation (28) encrypts a data batch and then computes a hash value for the encrypted
data, verifying its integrity through a secure hash function. Equation (29) generates a secure
value using various identifiers, a key, and the hash of the encrypted data, which together
help authenticate the data and ensure its secure association with an index and sequence
number.

In our FL framework, gradient descent plays a crucial role in optimizing the shared
model directly on encrypted data. This process allows each participating EC device to
compute gradients based on its local dataset, without exposing the raw data to the network.
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These local gradients are then securely aggregated to update the global model. This
approach ensures that model updates are informed by the collective data of all devices,
enhancing learning efficacy while preserving data privacy. The use of encrypted data for
gradient computation and model updates represents a significant advancement in secure,
distributed ML.

θ(t+1) = θt − η∇L(θt, Decrypt(Dataencrypt(lskcsb)) (30)

Θ(t+1) = Aggregate
(
(∆θi

(t+1))i∈ESA

)
(31)

ED0 = Encrypt
(

Θ(t+1), k
)

, Blockchain write(ED0) (32)

Equations (30)–(32) describe updating model parameters using gradient descent with
decrypted data, aggregating these updates across multiple devices, and securely encrypting
the global parameters for storage on the blockchain. The FL paradigm is fundamentally
designed to leverage data from multiple devices without compromising the privacy of the
individual data sources. This approach needs a mathematical framework that can both
symbolize the aggregation of data from diverse sources and facilitate a global optimization
process that respects the privacy-preserving constraints of the system.

The aggregation of data from multiple devices, while preserving the privacy of indi-
vidual datasets, presents a unique challenge. Traditional data aggregation methods that
combine data into a single dataset are not suitable, as they may compromise data privacy.
To address this, we utilize the mathematical concept of the disjoint union of datasets:

⋃N

i=1
Di (33)

This representation allows us to conceptualize the collective contribution of data from
each device as part of a unified learning process without physically pooling the data to-
gether. The disjoint union symbolizes the coexistence of datasets in the FL model, ensuring
that each dataset remains distinct and secure. Furthermore, the global optimization goal
in FL necessitates a method that can seamlessly integrate the contributions of all devices
toward improving the shared model. This integration must be continuous and respect the
privacy of the data. To achieve this, we formulate the 481 optimization goal as shown in
Equation (34):

θ∗ = argmin
∫
⋃

Di

L(θ, x) dx (34)

This equation represents the continuous optimization of the model parameters, θ,
by minimizing the integrated loss function, L, across the disjoint union of datasets,

⋃
Di

.
The integral here symbolizes a holistic evaluation of the model’s performance over the
aggregated data while maintaining the privacy and integrity of each dataset.

Step 5: Secure Handling of Gradients
In the FL process, the focus shifts to the secure handling of gradients to ensure that data

privacy is preserved during the model aggregation phase. Gradients, which are derived
from the local data on each EC device, contain sensitive information about the data itself.
To safeguard this information, gradients are encrypted before their aggregation across
the network. This encryption step is crucial for maintaining the confidentiality of each
participant’s data while still allowing the collective learning process to benefit from the
insights contained within these gradients. By securely handling gradients in this manner,
the system ensures that data privacy is maintained, while the integrity of the FL process is
upheld.

Glocal,i = ∇L(θt, Di) (35)

Dataencrypt = Encrypt(Glocal; PKFL) (36)

Gaggregated =
1
N ∑N

i=1 Dataencrypt (37)
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Equations (35)–(37) outline the steps in a FL process where local gradients derived
from individual EC devices are first calculated, then encrypted using a public key to
ensure data privacy, and finally aggregated across the network to update the global model.
This sequence ensures that sensitive data remains confidential while allowing for the
collaborative refinement of the model through securely shared insights.

Step 6: Global Model Update and Deployment
After the secure aggregation of encrypted gradients from all participating EC devices,

these aggregated gradients are used to update the global model. This step ensures that the
global model learns from the entire network’s data without directly accessing or exposing
any individual dataset. The updated global model then undergoes a secure deployment
process back to each EC device. This deployment is carried out in such a manner that
the integrity and confidentiality of the global model are preserved, ensuring that only
authorized devices can access and utilize the updated model for further data processing
and insights generation. This cyclical process of updating and deploying the global model
allows for continuous learning and adaptation across the network, enhancing the system’s
overall intelligence and responsiveness to new data patterns and insights.

θnew
global = θglobal + ∆θ (38)

∆θ = −η · Gdecrypted (39)

Dataencrypt = Encrypt(θnew
global; PKEDi) (40)

θnew
global = Decrypt(Dataencrypt; SKEDi) (41)

Equations (38)–(41) describe the cycle of updating and securely managing the global
model within a FL system. First, the global model parameters are updated by adding
the decrypted gradient changes Equations (38) and (39), then these updated parameters
are encrypted Equation (40) and sent back to each EC device, where they are decrypted
Equation (41) to ensure that only authorized devices can access the updated model for
ongoing learning and data processing.

Step 7: Anomaly Detection Framework
This framework facilitates the collective learning achieved through the FL process,

enabling each EC device to utilize the updated global model for identifying anomalies
in their local data streams. The model’s ability to detect anomalies is a direct result of
the diverse data it has been trained on, allowing for a robust and nuanced understanding
of what constitutes normal behavior and what may be considered an anomaly. This
anomaly detection framework is crucial for proactive monitoring and maintenance within
IoT ecosystems, where the early detection of irregular patterns can prevent potential
system failures or security breaches. By employing the global model in this capacity, the
system enhances its operational efficiency and security posture, ensuring that anomalies
are identified and addressed promptly. The real-time aspect of this anomaly detection
underscores the dynamic and responsive nature of the system, which is continuously
updated to reflect the latest data insights and threat intelligence.

Dataencrypt = Encrypt(H4(Xnorm), Ppub) (42)

Equation (42) illustrates the encryption process used to secure the normalized data
Xnorm within the anomaly detection framework.

Specifically, Dataencrypt = Encrypt
(

H4(Xnorm), Ppub

)
shows that the hash of the nor-

malized data, H4(Xnorm), is encrypted using the public key Ppub. This step ensures that
the data remains confidential and tamper-proof as it is used by each EC device to de-
tect anomalies, thereby enhancing the security and integrity of the FL process in the IoT
ecosystem.

In our anomaly detection framework, the dynamic threshold T plays a critical role in
accurately identifying normal and anomalous data points, leveraging the global model’s
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probability outputs. By dynamically adjusting the threshold based on the mean µanomalies
and standard deviation σanomalies of detected anomalies, the system ensures heightened
sensitivity to evolving data patterns. This adaptability is crucial for maintaining detection
accuracy in diverse and evolving operational environments, as it significantly reduces false
positives and false negatives. Thus, the implementation of a dynamic threshold enhances
the system’s reliability and responsiveness, enabling prompt and effective responses to
potential threats or operational anomalies. Classification of data points based on model
probability output relative to threshold T:

A(x) =

{
1 if p

(
x; θglobal

)
≤ T

0 otherwise
(43)

Dynamic threshold determination:

Tnew = µanomalies + λ× σanomalies (44)

Step 8: Enhancing Federated Learning
This phase is essential for ensuring that the collaborative learning process across the

network of EC devices remains efficient and upholds the highest standards of privacy and
security. By encrypting model updates, before they are shared, we safeguard sensitive
information from potential intercepts and unauthorized access. The aggregation process
combines these updates to improve the global model, while ensuring that individual data
contributions remain confidential. This step is critical in fostering a secure, collaborative
environment where EC devices can contribute to collective intelligence without compromis-
ing their data or the integrity of the learning process. This enhancement of the FL process
is instrumental in advancing the system’s capabilities, facilitating a more robust, secure,
and effective deployment of ML models across distributed networks.

θlocal,i = Encrypt(∇L(θlocal,i, Di); PKFL) (45)

θnew
global = θglobal +

1
k ∑K

k=1 Decrypt
(

Gk
encrypted, SKFL

)
(46)

Equations (45) and (46) in the FL process involve securely encrypting local gradients
at each EC device before transmission and subsequently decrypting and aggregating these
encrypted gradients to update the global model. This ensures that individual data remains
confidential while collectively enhancing the model, promoting a secure environment for
collaborative machine learning across distributed networks.

Step 9: Consensus Mechanism and Model Integration
This consensus mechanism is employed to achieve agreement among the participating

EC devices on the validity of the aggregated model updates before they are committed to
the blockchain. This step is important for maintaining a tamper-proof record of model evo-
lution, ensuring that only verified and collectively agreed-upon updates enhance the global
model. Integrating these updates into the blockchain secures the learning process against
malicious attempts to alter the model and promotes transparency among participants.

Θaggregated =
1
k ∑K

k=1 Decrypt(Gk()
encrypted, SKFL) (47)

Bvalidated = Consensus(Bcurrent, Θaggregated) (48)

Bnew = Bvalidated ⊕Θaggregated (49)

Θnew
global = Broadcast(Bnew) (50)

Equations (47)–(50) outline the process for securely updating a global model in a
blockchain-based FL system. First, encrypted gradients from each EC device are decrypted
and aggregated to form an updated global model, ensuring that all updates are secure and
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derived from authenticated sources. A consensus mechanism then confirms the validity of
the aggregated updates before they are permanently recorded in a new blockchain block,
which is subsequently broadcast to all network participants to synchronize the updated
model across the system.

Step 10: Advanced Model Deployment and Data Decryption
This final step ensures that all participating EC devices receive the latest version of

the global model, enabling them to leverage improved algorithms for data processing and
anomaly detection. The deployment is conducted in a manner that secures the model
against unauthorized access, maintaining the confidentiality of the collective intelligence
developed through the FL process. Additionally, a complex data decryption process is
introduced at this stage, allowing EC devices to securely decrypt and utilize the processed
data. This decryption process is crucial for maintaining the privacy and security of the data
as it is transmitted back to the devices for actionable insights. By incorporating advanced
cryptographic techniques, the system ensures that only authorized devices can access the
decrypted information, safeguarding against potential security breaches. Through this
sophisticated deployment and decryption framework, the system enhances its capability
to provide secure, accurate, and actionable insights across the network, driving informed
decision-making and efficient operations.

Θnew
global

Deploy→ ECi, ∀i ∈ Network (51)

Data decryption process by EC devices, as shown in Equations (52)–(54):

Verify : H3(Cenc ∥ (kindexed ∥ tesa) ∥ C0 ∥ H1(SKbi ∥ Serv ∥ tesb)) = Cdec (52)

Decrypt : Cdec = H3

(
e(C0, TKbi

) ∥ e(g, C0)
H1(SKbi∥Serv∥tesb)

)
(53)

OriginalData = Decrypt(Cdec, SKbi) (54)

In the proposed method, the updated global model, Θ global_new, is securely de-
ployed to all EC devices within the network, ensuring each device is equipped with the
latest algorithms for enhanced data processing and anomaly detection. This deployment
process is fortified with advanced cryptographic measures to prevent unauthorized access
and maintain the confidentiality of the collective intelligence developed through federated
learning. Following deployment, the data decryption process begins, where a verification
step using cryptographic hashes confirms the integrity of the encrypted data before any
decryption occurs. Subsequently, the data is decrypted using complex cryptographic func-
tions involving bilinear pairings and additional hash operations, tailored to ensure that
only authorized devices can access the original data. This sophisticated deployment and
decryption framework enhances the system’s capability to provide secure, accurate, and
actionable insights, thereby supporting informed decision-making and efficient operations
across the network. Algorithm 1 presents the proposed method.

Algorithm 1: Proposed Method for a single node

Input: Collection of IoT Devices D, Set of Edge Computing Devices EC, Data Authorization Center (DAC)
Output: Securely processed data with high Quality of Service (QoS)
01: > Cryptographic Setup for DAC
02: if DAC. Setup Complete () == False then
03: DAC. Initialize Cryptographic Parameters()
04: for each hash Function in (H1, H2, H3, H4) do
05: DAC. Configure (hash Function)
06: end for
07: DAC. Generate Public Key ()
08: end if
09:
10: > Data Processing for Each IoT Device (Single Node)
11: for each device in D do
12: if device. HasData () then
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13: Raw Data = device. Collect Data ()
14: Normalized Data = Normalize Data (Raw Data)
15: Encrypted Data = Encrypt Data(Normalized Data, DAC. PublicKey)
16: Blockchain. Store(Encrypted Data)
17: else
18: Continue
19: end if
20: end for
21:
22: > Integration and Secure Operation of Edge Computing Devices (EC)
23: for each EC_device in EC do
24: if EC_device. Is Registered With(DAC) == False then
25: ECID = EC_device. Generate Unique Identifier()
26: EC_device.Register(ECID, DAC)
27: end if
28: Key Pair = DAC. Generate Secure Key For (EC_device)
29: EC.Store Key Pair(Key Pair)
30: end for
31:
32: > Federated Learning on Encrypted Data
33: GM = Initialize Global Model()
34: for Round = 1 to Number Of Rounds do
35: Local Models = []
36: for each EC_device in EC do
37: Encrypted Data = EC_device. Fetch Encrypted Data From Blockchain()
38: if EncryptedData != None then
39: Local Model = EC_device. TrainModel On Encrypted Data()
40: Local Models. Append (Local Model)
41: end if
42: end for
43: GM = Aggregate Models (Local Models)
44: end for
45:
46: > Secure Handling of Gradients
47: for each EC_device in EC do
48: Gradients = EC_device. Compute Encrypted Gradients()
49: if Gradients. Is Valid() then
50: Secure Gradients = Encrypt(Gradients, PublicKey_FL)
51: Blockchain. Store (Secure Gradients)
52: end if
53: end for
54: Aggregated Gradients = Aggregate Encrypted Gradients From Blockchain()
55: GM = Update Global Model (GM, Aggregated Gradients)
56:
57: > Anomaly Detection Framework
58: for each EC_device in EC do
59: Encrypted Data = EC_device. Fetch Encrypted Data From Blockchain()
60: Decrypted Data = Decrypt(Encrypted Data, EC_device. Private Key)
61: Anomalies = Detect Anomalies (Decrypted Data, GM)
62: EC_device. Report Anomalies(Anomalies)
63: end for
64:
65: > Consensus on Model Updates and Blockchain Integration
66: if Reach Consensus On (GM) then
67: Blockchain. Update Global Model(GM)
68: else
69: Log Error(“Consensus not reached”)
70: end if
71:
72: > Advanced Model Deployment and Data Decryption
73: for each EC_device in EC do
74: Deploy (GlobalModel_new, EC_device)
75: Encrypted Data = EC_device. Retrieve Encrypted Data()
76: if Verify Integrity (Encrypted Data) then
77: Decrypted Data = Decrypt (Encrypted Data, EC_device. Private Key)
78: EC_device. Process Data (Decrypted Data)
79: end if
80: end for
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5. Security Proof with Enhanced Mathematical Rigor

Security proofs serve as the backbone of cryptographic protocols [37], providing
rigorous validation of a system’s resilience against sophisticated cyber threats. This is
particularly crucial in protecting the confidentiality, integrity, and availability of data
within the ever-expanding digital landscape. The following sections delve into an advanced
security proof for the BFLIoT system, emphasizing the intractability of the DL problem and
its implications for cryptographic robustness. We assume the existence of a cyclic group G
of prime order q, where the DL problem is presumed to be hard. Let g be a generator of G.
The difficulty of finding loggh for any h ∈ G underpins the security of our cryptographic
constructs. Under the assumption that the DL problem is intractable within group G, the
BFLIoT system exhibits robust security against adaptive chosen-message attacks in the
random oracle model, covering aspects of data encryption, blockchain integration, and FL
processes. The proof employs the game-based approach [38], detailing interactions between
an adversary A and a challenger C within a polynomially bounded environment. We
leverage cryptographic primitives and constructs, ensuring they collectively resist potential
adversarial strategies aimed at compromising the system’s integrity, confidentiality, and
availability

Table A3 in the Appendix A shows the notations of the security proof and mathematical
rigor.

5.1. Encryption Scheme and Security

The BFLIoT encryption mechanism is constructed as follows:
Key Generation
C selects s ∈ Zq uniformly at random and sets the public key as Ppub = gs. The secrecy

of s is crucial for the scheme’s security. Consider the encryption process for a message
m ∈ Zq given by Equation (55).

C = gr||(m⊕ H(grs)) (55)

where r ∈ Zq is selected randomly and uniformly for each encryption, and H is a cryp-
tographic hash function acting as a random oracle. This H is the same as H3 from the
previous section, which serves as the specific hash function for encryption. The security of
this encryption scheme can be analyzed through the following steps:

Semantic Security Indistinguishability under chosen-plaintext attack (IND-CPA)
The scheme aims to achieve indistinguishability under chosen plaintext attacks. This

property ensures that an adversary cannot distinguish between the encryptions of two
messages of their choice, even if they are allowed to choose the messages themselves [39].

Reduction to DL Problem
We claim that, if an adversary A can break the IND-CPA security of our scheme,

then we can construct an algorithm B that solves the DL problem, thus contradicting
our hardness assumption. Assume A is an adversary that can distinguish between the
encryptions of two messages m0 and m1 with a non-negligible advantage. A chooses
m0, m1 ∈ Zq and sends them to the challenger. The challenger, simulating the role of B, is
given a DL challenge (g, gx), where x is unknown. B must use A to solve this challenge.
B simulates the encryption oracle for A using gx as the public key. When A requests the
encryption of a message, B generates a random r, computes gr, and uses the random oracle
model to simulate H(grs), even without knowing s. This simulation leverages the random
oracle property of H.

1. Eventually, A outputs a guess for the encryption of m0 or m1. Since B can simulate
the encryption oracle without knowing s (only using gx), any advantage A has in
distinguishing the encryptions directly translates into B’s ability to compute gx.

2. If A succeeds with a non-negligible advantage, B uses this advantage to solve the DL
problem, contradicting our assumption that the DL problem is hard.
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Random Oracle Model
The security of the scheme also critically relies on the hash function H being modeled

as a random oracle. This idealization means that H behaves as a truly random function,
where the output for each new input is indistinguishable from a random value from
its output domain. The use of H in the encryption scheme ensures that the ciphertext
component (m ⊕ H(grs)) is secure against chosen plaintext attacks, as the output of H
cannot be predicted or manipulated by an adversary.

Security Argument
We claim that the scheme is IND-CCA secure under the DL assumption. Specifically,

given a DL challenge (g, gx), an adversary A’s ability to distinguish between encryptions
of two chosen plaintexts implies the ability to solve for x, contradicting the DL assumption.

Federated Learning and Differential Privacy
Incorporating FL within the BFLIoT framework introduces unique challenges, par-

ticularly in ensuring the privacy and security of distributed model training. We use a
differentially private mechanism, where each participating device adds noise to its model
update before aggregation. Formally, for a local gradient Gi, the noise-adjusted gradient is
as follows: ∼

Gi = Gi +N (0, σ2 I) (56)

where N (0, σ2 I) denotes Gaussian noise. This ensures that the aggregated model adheres
to (ϵ, δ)-differential privacy, significantly mitigating the risk of data leakage through model
updates. By adding this Gaussian noise, the aggregated model adheres to differential
privacy, significantly mitigating the risk of data leakage through model updates. This
technique ensures that even if an adversary gains access to the aggregated model, they
cannot infer sensitive information about the individual data points that contributed to the
model.

Blockchain Integration and PoW
The integrity and non-repudiation of transactions within the BFLIoT system are

maintained through blockchain technology. A critical component of this integration is
the Proof-of-Stake (PoS) consensus mechanism, replacing the previously mentioned PoW
due to its energy efficiency and scalability. The PoS mechanism is formalized as follows:
Validators are chosen to create new blocks and validate transactions based on the number
of coins they hold and are willing to “stake” as collateral. This mechanism significantly
reduces the computational work required compared to PoW, making it more suitable for
IoT environments with limited resources. The security of PoS hinges on the economic
incentives and penalties designed to ensure honest behavior among validators. A critical
component of this integration is the PoW consensus mechanism, which we formalize as
follows: Let HF be a cryptographic hash function. A valid PoW is N such that

HF (N||block) < target (57)

where block represents the data content and target defines the difficulty. The security of
PoW hinges on the preimage resistance of HF, ensuring that finding a valid nonce requires
computational work proportional to the difficulty.

5.2. Security Analysis

Confidentiality of Data Transmission and Storage
In modern IoT systems, particularly in complex environments such as smart cities,

ensuring the security of data transmission, storage, and device communication is crucial.
The BFLIoT framework integrates blockchain and FL to address key security challenges,
safeguarding data from unauthorized access, tampering, and various forms of cyberattacks.
This section provides a detailed analysis of the security mechanisms implemented in
the BFLIoT system, covering aspects such as confidentiality, access control, anonymity,
and resistance to common threats like replay, modification, and impersonation attacks.
By comparing these features with other IoT security frameworks, we demonstrate the
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robustness of the BFLIoT system in maintaining secure and reliable operations in dynamic
IoT environments.

The BFLIoT system ensures the confidentiality of data through encryption, both during
storage and transmission, utilizing the equation:

C = Encryp(H4(Xnorm), Ppub) (58)

In this equation, the encryption applies to the hash of the normalized data Xnorm. This
ensures that both the data and the hash are secured, preventing unauthorized access during
storage and transmission.

Robust Access Control Mechanism
The system’s access control is enforced through a two-tiered approach, ensuring secure

data access as indicated by the function:

RSKa,b = LPKlskesb
esb (59)

Anonymity Through Pseudonyms
The scheme introduces anonymity by assigning dynamically updated pseudonyms:

PIDi = LPKi + (LPKesb)
lski (60)

Unlinkability of Device Requests
Each request incorporates a unique, anonymous secret key (aski) and pseudonym

(PIDi), making it unlinkable: PIDi for subsequent messages remains unlinkable.
Replay Attack Resistance
The inclusion of a timestamp (ti) in messages sent by devices enables the EC to

determine the message’s freshness:
If (ti) falls within an acceptable range, the system can reject replayed messages.
Modification Attack Resistance
If a message fails cryptographic verification, it is discarded, thereby thwarting modifi-

cation attacks. If message verification fails, the message is discarded.
Impersonation Attack Resistance
Unauthorized entities cannot impersonate legitimate devices or users, safeguarding

against impersonation attacks. Unauthorized entities cannot generate a legitimate signature.
Table 2 provides a comparison of security analysis across different IoT systems, including
the proposed BFLIoT method and other systems such as SAVIoT [31], eCDH [33], IBBE [34],
Federated Average (FedAvg) algorithm and DeepChain.

Table 2. Comparison-based security analysis.

Criteria Proposed
Method SAVIoT eCDH IBBE FedAvg DeepChain

Confidentiality of Data Transmission
and Storage ✓ × ✓ ✓ ✓ ✓

Robust Access Control Mechanism ✓ ✓ × ✓ ✓ ✓

Anonymity Through Pseudonyms ✓ × × × × ×
Unlinkability of Device Requests ✓ × × × × ×

Replay Attack Resistance ✓ × ✓ × ✓ ✓

Modification Attack Resistance ✓ ✓ × ✓ × ✓

Impersonation Attack Resistance ✓ × ✓ ✓ ✓ ✓

5.3. Formal Analysis Using ProVerif

In the development of our smart city BFLIoT system, where the robustness and
reliability of communication channels and data integrity are critical, we employed ProVerif
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to conduct a rigorous formal analysis [40]. ProVerif is an advanced automated tool designed
specifically for the cryptographic verification of protocols, enabling us to model and validate
the security attributes of our system comprehensively.

We constructed a detailed model of the BFLIoT system within ProVerif, encapsulating
the intricate interactions between honest entities and potential adversaries. The model
is comprehensive, incorporating the definitions of cryptographic primitives such as hash
functions, symmetric and asymmetric encryption/decryption algorithms, and bilinear
pairings. These elements are fundamental in securing communications between IoT devices
within our blockchain-enabled framework. The model extends to delineate the full sequence
of protocol operations, from the initial registration of devices through to the intricate
processes of data transmission and subsequent blockchain integration. This extensive
modeling ensures a holistic analysis that covers all potential security facets.

The verification process initiates with the definition of a threat model, outlining
potential adversaries and their capabilities. Subsequently, we specify a series of security-
related queries to assess properties such as confidentiality, authentication, integrity, and
non-repudiation. ProVerif evaluates these properties by either proving each query or
identifying counterexamples that reveal potential vulnerabilities. The results from ProVerif
are summarized as follows, demonstrating the resilience of our BFLIoT system against the
modeled threats:

Verification summary:

(1) Query not attacker(s) is true.
(2) Query not attacker(lsk(i)) is true.
(3) Query not attacker(lpk(i)) is true.
(4) Query not attacker(ask(i)) is true.
(5) Query not attacker(lsesb(i)) is true.
(6) Query not attacker(lskb(i)) is true.
(7) Query not attacker(m(i)) is true.
(8) Non-interference RIDi is true.
(9) Query inj-event(endES_Veri) ==> ==> inj-event(endSDi_Sig) is true.

These results demonstrate that our BFLIoT system’s security properties, as modeled in
ProVerif, withstand the assumed adversary model. For instance, the verification that “not
attacker(s)” is true indicates that the adversary cannot deduce the secret key ’s’ from any
observable communications or computations. Furthermore, the result “Non-interference
RIDi is true” confirms that the system maintains non-interference regarding the RIDi
variable, implying that operations involving RIDi do not interfere with other parts of the
system, thereby upholding privacy and security guarantees.

Lastly, the injective agreement, denoted by the following inj-event(endES_Veri) ==> inj-
event(endSDi_Sig), verifies that if the end of an event related to the Edge Server verification
is observed, then the corresponding start event for the Sensor Device signature must have
occurred. This establishes a causal link between the events, ensuring that a verification
event on the server side corresponds to an actual signature event on the device side, thus
validating the integrity and authenticity of the communication process. Figure 2 illustrates
the ProVerif verification process used to analyze the security properties of the BFLIoT
system. The process begins with defining the protocol in Pi calculus and specifying the
security properties to be verified. The Horn Clause Generator converts these definitions
into logical formulas, which are then analyzed by the Trace Solver. Depending on whether
attack traces are found, the outcomes indicate if the security properties are true, false, or
unproven. This thorough analysis ensures that the BFLIoT system can withstand various
modeled adversarial threats, confirming the robustness and integrity of the communication
protocols and data security mechanisms within the system.
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6. Performance Analysis

To conduct a pragmatic assessment of our method’s accessibility, we introduce a se-
curity infrastructure using constrained embedded apparatus, referred to here as SMART,
for sensor acquisition. This framework, featuring a modest 4 kB of data storage and
128 kB of program storage, efficiently establishes a mutable foundation of trust for dis-
tant embedded systems while maintaining security. It is designed to create a secure code
execution environment that is completely segregated from pre-installed software, includ-
ing the operating system, safeguarding against unauthorized alterations to critical code
segments. Our simulation was conducted on a workstation with an Intel Core i3-4170
CPU (3.7 GHz), 8 GB of RAM, running Ubuntu 16.04 LTS, using the OMNet++ version
5.2 simulation toolkit. OMNet++ is a modular, component-based, open-source discrete
event simulation software principally used for simulating various network types and their
associated protocols. Cryptographic operation durations were obtained through experi-
mental runs on a system using VC++ 6.0, coupled with the Pairing-Based Cryptography
(PBC) library. For a fair comparison of all examined security mechanisms at an equivalent
level of security—represented by the 1024-bit RSA encryption standard—we employ a
bilinear map e : G1 × G1 → G2 , with G1 being a group of order q generated by a base point
P on a supersingular elliptic curve y2 = x3 + x, characterized by an embedding degree of
2 over a 64-bit field, |G1| = 128 bytes and |Z∗q | = 20 bytes. The symbols Costhash, Costpair,
Costexp1, Costexp2, and Costs are designated to represent the computational costs. Table 3
shows the simulation parameters. Table 4 shows the symbol of computational cost for each
function.

Table 3. Simulation parameters.

Parameters Description

Deployment area 1000 m× 400 m

Number of users 2

Number of the cloud server 1

Number of sensors 40, 80, 120, 160, 200

Communication range of cloud server 2000 m

Communication range of sensors 20 m

Simulation time 2400 s

Cryptographic Library VC++ 6.0 with Pairing-Based Cryptography
(PBC) library

Security Standard 1024-bit RSA encryption
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Table 4. Computational cost for each function.

Parameters Description

Costhash
Computational cost for hash functions, essential for data integrity,
digital signatures, random number generation, and hash tables.

Costpair

The computational cost for bilinear pairing operations is used in
advanced cryptographic systems like identity-based encryption and
zero-knowledge proofs.

Costexp1

Computational cost of exponentiation in G1, a group on a
supersingular elliptic curve, crucial for frequent
cryptographic operations.

Costexp2
Computational cost of exponentiation in G2, another group used for
various cryptographic operations in different settings.

Costs
The computational cost for symmetric encryption/decryption, where
the same key encrypts and decrypts data, is noted for its efficiency.

Performance Evaluation

In evaluating the BFLIoT system, emphasis was placed on its ability to handle transac-
tions under different operational loads, a crucial aspect for smart city applications where
data traffic can vary significantly. To assess this, the system was tested at two distinct
rates: a moderate transaction rate of 328.4 Transactions Per Second (TPS) and a significantly
higher rate of 3208.3 TPS. These rates were chosen to reflect typical scenarios in smart city
environments, where systems must maintain efficiency under both regular and peak loads.

The performance results indicate that at a moderate rate of 328.4 TPS, the BFLIoT
system achieved a throughput of 326.2 TPS, corresponding to a completion rate of approxi-
mately 99.33%. Under the higher load of 3208.3 TPS, the system maintained near-perfect
performance, achieving 3208.2 TPS with a completion rate of 99.997%. The completion rate
is calculated as follows:

Completion Rate328.4 TPS=
326.2
328.4

≈ 99.33%,

Completion Rate3208.3 TPS=
3208.2
3208.3

≈ 99.997%,

These results demonstrate that the BFLIoT system is highly efficient, maintaining
performance levels well above 95% across both moderate and high transaction rates. This
indicates that the system is capable of scaling effectively, meeting the demands of smart city
infrastructures without significant performance degradation. The superior performance
at the higher transaction rate can be attributed to the system’s decentralized architecture,
which leverages blockchain and federated learning. As transaction loads increase, the
BFLIoT framework optimizes resource allocation and processing efficiency, resulting in
better resource utilization and throughput. This scalability is particularly important for
smart city applications, where large volumes of data need to be processed in real-time to
ensure the smooth operation of urban services.

In the evaluation of the proposed SAVIoT architecture [31], focus was given to its
performance in securing autonomous vehicular networks under different operational
scenarios. The SAVIoT system’s capability to handle secure transactions and data exchanges
was examined at two distinct operational rates: A moderate rate of 210.5 TPS and a
significantly higher rate of 2015.7 TPS. The performance results demonstrated that the
actual throughput achieved at these rates was 208.3 TPS and 2015.4 TPS, respectively. The
throughput completion rates are calculated as follows:

Completion Rate328.4 TPS=
208.3
210.5

≈ 99.045%,
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Completion Rate3208.3 TPS=
2015.4
2015.7

≈ 99.985%,

In the evaluation of the eCDH [33] protocol within the IIoT environment, the focus
was primarily on the protocol’s ability to facilitate secure and private communication across
heterogeneous systems. The eCDH method was assessed for its capability to authenticate
transactions and data exchanges, considering operational scenarios that are critical for IIoT
applications. The operational rates tested were a moderate rate of 150.4 TPS and a higher
rate of 1584.6 TPS. The outcomes demonstrated that the actual throughput achieved at
these rates was 148.7 TPS and 1583.9 TPS, respectively. The throughput completion rates
are calculated as follows:

Completion Rate150.4 TPS=
148.7
150.4

≈ 98.867%,

Completion Rate3208.3 TPS=
1583.9
1584.6

≈ 99.956%,

In the analysis of the proposed IBBE [34] scheme within VANETs, attention was de-
voted to its innovative approach to minimizing redundancy in communications between a
TA and multiple vehicles. The IBBE method’s efficiency in handling broadcast encryption
was scrutinized, particularly its capacity to manage secure, one-to-many message dissemi-
nation. Operational tests focused on two scenarios: a moderate operational scenario with a
rate of 100.2 TPS and a more demanding scenario at 1024.5 TPS. The results indicated that
the actual throughputs were 98.9 TPS and 1024.1 TPS, respectively. Also, Table 5 provides a
summary of the metrics of the schemes.

Completion Rate100.2 TPS=
98.9
100.2

≈ 98.7%,

Completion Rate3208.3 TPS=
1024.1
1024.5

≈ 99.961%,

Table 5. Summary of the metrics of the schemes.

Metric BFLIoT SAVIoT DeepChain FedAvg eCDH IBBE

Moderate Rate Throughput 326.2 208.3 180.2 170.1 148.7 98.9

High-Rate Throughput 3208.2 2015.4 1700.3 1600.5 1583.9 1024.1

Throughput Completion Rate (Moderate, %) 99.330 99.045 98.972 98.914 98.867 98.700

Throughput Completion Rate (High, %) 99.997 99.985 99.962 99.960 99.956 99.961

Latency for Main Operation (Seconds) 0.069 0.082 0.087 0.090 0.095 0.120

In the evaluation of DeepChain within the context of smart city applications, the per-
formance was assessed at two distinct rates: a moderate rate of 180.3 TPS and a significantly
higher rate of 1602.5 TPS. The results revealed that DeepChain achieved a throughput of
178.9 TPS at the moderate rate and 1601.3 TPS at the higher rate. The completion rates were
calculated as follows:

Completion Rate180.3 TPS=
178.9
180.3

≈ 99.22%,

Completion Rate1602.5 TPS=
1601.3
1602.5

≈ 99.92%,

Similarly, the Federated Average (FedAvg) algorithm was evaluated under the same
operational conditions. At a moderate transaction rate of 170.2 TPS, FedAvg achieved a
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throughput of 169.1 TPS, while at a higher rate of 1590.8 TPS, it attained 1589.4 TPS. The
completion rates for FedAvg were:

Completion Rate170.2 TPS=
169.1
170.2

≈ 99.36%,

Completion Rate1590.8 TPS=
1589.3
1590.8

≈ 99.91%,

Initial Configuration:
This configuration represents the baseline scenario with a moderate load on the

system. The times for encryption, re-encryption, and decryption are calculated based
on fundamental operations like message processing, hashing, and group theory-based
multiplication. Table 6 presents the notations and descriptions for the comparative analysis
of computational overhead in cryptographic operations across various BFLIoT scenarios.

Table 6. Notation and their descriptions.

Notation Description

Tenc Encrypt a message.

Tre−enc Re-encrypt a message using proxy re-encryption

Tm Time to process a message

Te Basic encryption time

Th Hashing time

Ta Authentication time

Tbp Base proxy re-encryption time

Tmtp Message to proxy conversion time

Tgtmul Group theory-based multiplication time

• Encryption time Tenc is calculated as 6Tm + Te + 6Th + 2Ta ≈ 38.789 ms. This calcu-
lation includes the time to process six messages, perform basic encryption, hash six
times, and authenticate twice.

• Re-encryption time Tre−enc = 3Tbp + Tm + 2Tgtmul ≈ 38.451 ms. Proxy re-encryption
uses three base proxy operations, message processing, and two group theory-based
multiplications.

• Decryption time Tdec is 4Tbp +(n+3)Tm +Tmtp +4Tgtmul +3Th +(n+1)Ta ≈ 325.895 ms.
Decryption involves multiple base proxy operations, message processing, message-
to-proxy conversion, several group theory-based multiplications, hashing, and au-
thentication steps. Here, n refers to the number of messages being decrypted, adding
complexity to the process.

Second Configuration:
This configuration modifies the re-encryption and decryption processes, streamlining

some parts to slightly improve performance in specific areas.

• Re-encryption time Tre−enc is 2Tbp + Te + 2Tm + Tgtmul ≈ 38.091 ms. This process
reduces the number of base proxy operations from three to two. It also adjusts
encryption time and message processing to optimize the re-encryption time.

• Decryption time Tdec is 2Tbp + Tgtmul ≈ 108.874 ms. Decryption in this configuration
is simplified, involving only two base proxy operations and one group theory-based
multiplication. This results in a much faster decryption time compared to the initial
configuration.

Third Configuration:
This setup focuses on further reducing the encryption time while maintaining accept-

able levels of re-encryption and decryption performance.
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• Encryption time Tenc is Tm + Th + Tgtmul ≈ 5.651 ms. The encryption process is highly
optimized, with minimal message processing, one hashing operation, and one group
theory-based multiplication, resulting in a much faster encryption time.

• Re-encryption Time Tre−enc is 2Tbp + 3Tm + 2Te + Th + Ta + 2Tgtmul ≈ 48.723 ms. Al-
though encryption is faster, re-encryption remains more complex, involving two base
proxy operations, three message processing steps, two encryption operations, one
hashing operation, one authentication step, and two group theory-based multiplica-
tions.

• Decryption time Tdec is 2Tbp + Tmtp + 2Tgtmul ≈ 112.276 ms.

Decryption is slightly more complex than in the second configuration but still opti-
mized. It requires two base proxy operations, message-to-proxy conversion, and two group
theory-based multiplications.

Degraded Configuration 1:
This configuration highlights increased times due to heavier processing, perhaps due

to system overload, larger message sizes, or less efficient components.

• Encryption time Tenc = 6Tm + Te + 6Th + 2Ta ≈ 48.789 ms. Encryption becomes slower,
possibly due to increased message size or processing demands.

• Re-encryption time Tre−enc is 3Tbp + Tm + 2Tgtmul ≈ 48.451 ms.

Encryption becomes slower, possibly due to increased message size or processing
demands.

• Decryption time Tdec is 4Tbp +(n+ 3)Tm + Tmtp + 4Tgtmul + 3Th +(n+ 1)Ta ≈ 425.895 ms.

Decryption performance lags significantly, suggesting either larger messages or an
increased number of operations per message.

Degraded Configuration 2:
This configuration further emphasizes the slowdown, reflecting worse performance

metrics compared to previous setups.

• Re-encryption time Tre−enc is 2Tbp + Te + 2Tm + Tgtmul ≈ 48.091 ms. Despite reduc-
tions in base proxy operations, re-encryption remains slow.

• Decryption time Tdec is 2Tbp + Tgtmul ≈ 208.874 ms.

Decryption performance continues to deteriorate due to slower group theory-based
multiplication or base proxy operations.

Degraded Configuration 3:
This configuration presents the slowest times across all phases, indicating further

system inefficiencies.

• Encryption time Tenc is Tm + Th + Tgtmul ≈ 15.651 ms.
• Re-encryption time Tre−enc is 2Tbp + 3Tm + 2Te + Th + Ta + 2Tgtmul ≈ 58.723 ms,
• Decryption time Tdec is 2Tbp + Tmtp + 2Tgtmul ≈ 212.276 ms.

Degraded Configuration 4:
The paper introduces an efficient and privacy-preserving authentication protocol

designed for heterogeneous systems to secure communication between ID-based and
certificate-based cryptosystems. Despite its focus on security, the system experiences a
substantial degradation in performance across encryption, re-encryption, and decryption
processes.

• Encryption time Tenc is calculated as 6Tm + Te + 6Th + 2Ta ≈ 68.789 ms.

The encryption time shows a marked degradation compared to earlier configurations,
suggesting increased processing demands due to message size and additional cryptographic
operations such as hashing and authentication.

• Re-encryption time Tre−enc is 3Tbp + Tm + 2Tgtmul ≈ 68.451 ms.

Re-encryption also reflects a notable performance decrease, with proxy-based re-
encryption and group theory-based multiplication slowing down the process significantly.
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• Decryption time Tdec is 4Tbp +(n+ 3)Tm + Tmtp + 4Tgtmul + 3Th +(n+ 1)Ta ≈ 625.895 ms.

Re-encryption also reflects a notable performance decrease, with proxy-based re-
encryption and group theory-based multiplication slowing down the process significantly.

Figure 3 shows the overhead of cryptography with another algorithms in same scenarios.
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Figure 3. Comparative Analysis of Computational Overhead in Cryptographic Operations across
BFLIoT Scenarios.

In assessing the reliability of various IoT security methodologies, it was observed
that the BFLIoT approach consistently outperformed others, as indicated by the reliability
scores across different sensor counts. The formula utilized to ascertain the reliability at any
sensor count is given by R = e−λt, where R is the reliability score, λ is the failure rate, and
t is the period considered.

For BFLIoT, at the sensor count of 200, the reliability score is 0.93, implying that the
system exhibits a 93% probability of uninterrupted functioning over 10 h. This can be
attributed to the decentralized nature of federated learning, coupled with the robustness
of blockchain technology. Specifically, the failure rate λ is inversely related to the number
of sensors; more sensors lead to a distributed and redundant data acquisition approach,
enhancing the fault tolerance of the system:

λ = −1
t

ln(R)

For BFLIoT, the calculated failure rate λBFLIoT at 200 sensors is lower compared to
other methods, indicative of a more resilient framework.

Figure 4 clearly illustrates how each security methodology performs under varying
sensor densities, crucial for understanding their effectiveness in larger, more complex IoT
networks.



Smart Cities 2024, 7 2832

Smart Cities 2024, 7, FOR PEER REVIEW  33 
 

of sensors; more sensors lead to a distributed and redundant data acquisition approach, 
enhancing the fault tolerance of the system: 𝜆 = − 1𝑡 ln(𝑅)  

For BFLIoT, the calculated failure rate 𝜆୆୊୐୍୭୘ at 200 sensors is lower compared to 
other methods, indicative of a more resilient framework. 

Figure 4 clearly illustrates how each security methodology performs under varying 
sensor densities, crucial for understanding their effectiveness in larger, more complex IoT 
networks. 

 
Figure 4. Reliability in differnet number of sensors. 

The energy consumption results, as illustrated in Figure 5, reveal the comparative 
analysis of our proposed BFLIoT method against traditional security approaches and a 
scenario without security. Notably, the ‘No security’ approach demonstrates the lowest 
energy consumption across all sensor counts, which can be attributed to the absence of 
any encryption or advanced data processing overhead. The lack of security measures im-
plies that there is no additional computational burden, resulting in minimal energy utili-
zation. However, this also means that the data is susceptible to various cyber threats, ren-
dering the system vulnerable to attacks. 

On the other hand, the ‘Classic security’ method, which includes traditional security 
measures such as AES (Advanced Encryption Standard) for symmetric encryption, RSA 
(Rivest–Shamir–Adleman) for asymmetric encryption, and secure key exchange protocols 
like Diffie–Hellman, exhibits the highest energy consumption. These cryptographic oper-
ations are known to be computationally intensive. Performing symmetric/asymmetric en-
cryption and decryption, key exchange protocols, and digital signatures for each data 
transmission and reception significantly increases the overall energy expenditure. While 
this method provides a high level of security, it is not optimized for scenarios where en-
ergy efficiency is a critical factor, such as in IoT devices with limited battery life. 

Our proposed BFLIoT method is positioned between these two extremes. It leverages 
a hybrid approach that incorporates lightweight cryptographic operations and efficient 
FL processes, aiming to balance security and energy efficiency. By offloading some of the 
computational tasks to edge devices and utilizing blockchain for immutable record-

Figure 4. Reliability in differnet number of sensors.

The energy consumption results, as illustrated in Figure 5, reveal the comparative
analysis of our proposed BFLIoT method against traditional security approaches and a
scenario without security. Notably, the ‘No security’ approach demonstrates the lowest
energy consumption across all sensor counts, which can be attributed to the absence of any
encryption or advanced data processing overhead. The lack of security measures implies
that there is no additional computational burden, resulting in minimal energy utilization.
However, this also means that the data is susceptible to various cyber threats, rendering
the system vulnerable to attacks.
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On the other hand, the ‘Classic security’ method, which includes traditional security
measures such as AES (Advanced Encryption Standard) for symmetric encryption, RSA
(Rivest–Shamir–Adleman) for asymmetric encryption, and secure key exchange protocols
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like Diffie–Hellman, exhibits the highest energy consumption. These cryptographic op-
erations are known to be computationally intensive. Performing symmetric/asymmetric
encryption and decryption, key exchange protocols, and digital signatures for each data
transmission and reception significantly increases the overall energy expenditure. While
this method provides a high level of security, it is not optimized for scenarios where energy
efficiency is a critical factor, such as in IoT devices with limited battery life.

Our proposed BFLIoT method is positioned between these two extremes. It leverages
a hybrid approach that incorporates lightweight cryptographic operations and efficient
FL processes, aiming to balance security and energy efficiency. By offloading some of the
computational tasks to edge devices and utilizing blockchain for immutable record-keeping,
BFLIoT reduces the energy consumption related to data encryption and transmission
while still maintaining a robust security posture. Furthermore, the FL approach allows
for localized model updates without the need to transmit large volumes of data, thus
conserving energy. The result is a middle-ground solution that upholds data integrity and
confidentiality while being more energy-conscious than classical security methods.

Figure 6 presents a comparative analysis of latency across various algorithms—BFLIoT,
Deep-Chain, IBBE, SAVIoT, FedAvg, and eCDH—measured at different sensor counts (40,
80, 120, 160, and 200). It is evident that the BFLIoT system consistently outperforms other
algorithms, demonstrating the lowest latency across all sensor counts, indicative of its
efficient data handling and processing capabilities. In contrast, FedAvg and eCDH exhibit
the highest latency, suggesting that they are less efficient in managing data transmission
and processing in an IoT environment. As the number of sensors increases, most algorithms
show a trend of increased latency, though BFLIoT maintains relatively stable and lower
latency, highlighting its suitability for real-time smart city applications where low latency
is crucial.
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Figure 7 displays the model’s accuracy, where both training and validation accuracy
demonstrate significant fluctuations between approximately 0.80 and 0.96 across the epochs.
This pattern reflects the dynamic nature of the IoT data, with accuracy stabilizing at higher
values after the initial training phases. The fluctuations in the accuracy are consistent with
the expected variability in data from heterogeneous IoT devices within smart cities. This
behavior highlights the system’s adaptive capacity, allowing for real-time data processing
while maintaining a satisfactory accuracy rate. The BFLIoT framework’s integration of FL
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ensures that the training data remains distributed across IoT nodes, thereby preserving
privacy and improving scalability without sacrificing performance.

Smart Cities 2024, 7, FOR PEER REVIEW  36 
 

 
Figure 7. Model accuracy in different epochs. 

 
Figure 8. Model loss in different epochs. 

7. Conclusions and Future Work 
The BFLIoT framework presents a groundbreaking solution to enhance the security, 

scalability, and efficiency of IoT systems within smart city applications. By integrating 
blockchain technology with federated learning, BFLIoT decentralizes data processing, 
enabling real-time, collaborative data analysis while preserving privacy. This approach 
addresses the risks associated with centralized data repositories and ensures data 
integrity through the blockchain’s immutable ledger system. Performance evaluations 
and security validations using ProVerif confirm BFLIoT’s effectiveness in maintaining 
high security and operational standards, making it a viable model for modern urban 
infrastructures. The novelty of BFLIoT lies in its unique combination of blockchain and FL 
technologies to tackle the specific challenges of IoT environments. Unlike traditional 
centralized data processing systems, BFLIoT leverages the decentralized nature of 
blockchain to provide enhanced security and data integrity. FL ensures data privacy by 
keeping data localized on edge devices, with only model updates shared, significantly 

Figure 7. Model accuracy in different epochs.

Figure 8 depicts the model’s loss, where both training and validation loss follow
a similar trajectory. The loss decreases sharply during the initial 25 epochs, stabilizing
with minor fluctuations for the remainder of the training process. This indicates that the
model quickly converges to a low-error state, and subsequent fluctuations reflect the minor
adjustments necessary to fine tune the model over time. These fluctuations correspond to
the iterative updates typical of Federated Learning, where model parameters are optimized
based on distributed data streams. The consistent reduction in loss validates the efficacy of
the BFLIoT system in ensuring secure and scalable data handling without compromising
model performance.
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7. Conclusions and Future Work

The BFLIoT framework presents a groundbreaking solution to enhance the security,
scalability, and efficiency of IoT systems within smart city applications. By integrating
blockchain technology with federated learning, BFLIoT decentralizes data processing,
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enabling real-time, collaborative data analysis while preserving privacy. This approach
addresses the risks associated with centralized data repositories and ensures data integrity
through the blockchain’s immutable ledger system. Performance evaluations and security
validations using ProVerif confirm BFLIoT’s effectiveness in maintaining high security
and operational standards, making it a viable model for modern urban infrastructures.
The novelty of BFLIoT lies in its unique combination of blockchain and FL technologies
to tackle the specific challenges of IoT environments. Unlike traditional centralized data
processing systems, BFLIoT leverages the decentralized nature of blockchain to provide
enhanced security and data integrity. FL ensures data privacy by keeping data localized
on edge devices, with only model updates shared, significantly reducing data exposure
risks compared to conventional cloud-based solutions. Compared to existing frameworks,
BFLIoT offers superior scalability by distributing the data processing load across multiple
nodes, avoiding bottlenecks and latency issues common in centralized architectures. The
integration of ProVerif for security validation underscores the rigorous verification process
BFLIoT has undergone, highlighting its robustness against potential threats.

Future work will expand BFLIoT’s applicability beyond smart cities to sectors such
as healthcare, agriculture, and industrial IoT, adapting to the unique challenges of these
environments. Additional research will focus on enhancing energy efficiency by exploring
advanced cryptographic methods and efficient data communication techniques to support
the sustainability of IoT ecosystems. The BFLIoT system addresses the limitations of current
IoT frameworks and offers a secure, scalable, and privacy-preserving solution. It represents
a significant advancement in IoT technology, poised to impact various sectors and enhance
urban infrastructure management.
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Appendix A

Table A1. Notation in IoT device data classification model.

Notation Description

X Set of feature vectors from IoT devices, used to extract relevant information for security analysis.

xi Feature vector for the i-th device, encompassing data points like device behavior and network interactions.

Y Set of predefined categories representing various potential security statuses of the devices.

f Classification model mapping feature vectors X to categories Y, vital for determining security threat levels

yi The category assigned to the i-th device’s data, indicating the security status as determined by model f

θ Parameters of the classification model, are tuned to optimize threat detection accuracy.

L Cross-entropy loss function for classification, measuring the model’s performance in accurately classifying
device data.
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Table A1. Cont.

Notation Description

zij
A binary indicator if category j is the correct classification for observation i, is used for

training accuracy.

Ŵij Predicted probability that i belongs to category j, indicating the likelihood of each security status.

n Total number of IoT devices represented in the dataset, influencing the model’s complexity
and scalability

m Total number of security categories, which define the granularity of threat assessment.

S1, S2, . . . , Sp
Segments of the dataset, each defined by unique criteria to enhance model learning and

detection capabilities.

gseg
Segmentation function that assigns data points to segments based on their characteristics, improving

model efficiency.

Sj Segment containing data points categorized under security status j, used for focused analysis.

g(xi)
The function g serves as the segmentation function, assigning each device’s feature vector xi to a
specific segment Sj which groups data points based on similar characteristics such as behavior,

security risk levels, or operational patterns.

Var(Sj) Intra-segment variance for segment Sj indicating the consistency of data within a segment.

µj Mean of data points within segment S_j, helping in normalization and comparison of segments.

p P represents the total number of segments into which the dataset is divided.

µ The overall mean of the dataset provides a baseline for comparing segment deviations.

θ(t+1) Updated model parameters after iteration t+1, reflecting learning and adaptation to new data.

α Learning rate used in the optimization algorithm, balancing speed, and accuracy of convergence.

∇L(θt) The gradient of the loss function concerning parameters θ at iteration t, guiding model updates.

Table A2. Notation of the proposed method.

Notation Description

Xnorm
Normalized data ensures uniform scale across IoT device inputs, crucial for accurate traffic and

environmental analysis.

µX
Represents the mean of IoT device data, essential for assessing average traffic conditions or

environmental quality.

σX
Standard deviation, indicating variability in IoT data, is useful for detecting anomalies in traffic or

environmental conditions.

e A bilinear map crucial for secure multi-party computations in traffic and environmental data sharing
among IoT devices.

G, GT
Cryptographic groups used for secure data operations, ensuring that traffic and environmental data

remain tamper-proof.

q Prime number defining the order of cryptographic groups, foundational for the security parameters
of IoT data exchanges.

H1
Hash function that maps binary strings to integers within Z∗q . Hash function that securely maps

device identifiers to cryptographic values, protecting device identity in a smart city network.

Z∗q
Z∗q refers to the set of all nonzero integers modulo q. In cryptographic terms, this represents the

multiplicative group of integers modulo q excluding zero.

H2
Hash function that maps binary strings to elements of group G. Hash function for securely

embedding IoT data within cryptographic groups, vital for preserving data integrity.

H3
Hash function that maps elements of GT back into binary strings. Converts group elements back to

strings, facilitating the secure retrieval of encrypted traffic and environmental data.
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Table A2. Cont.

Notation Description

H4
Hash function used for verifying data integrity. Ensures data integrity by verifying that traffic and

environmental data have not been altered post-encryption.

Ppub
Public key used for encryption and signature verification. Public key for encrypting IoT data,

allowing secure data exchange across the smart city network.

g Generator of the cryptographic group G. Generator of the cryptographic group, fundamental to the
creation and management of encryption keys in IoT security.

s Secret scalar chosen from Z∗q , used in public key generation. Secret key component in cryptographic
operations, critical for maintaining secure communication between IoT devices.

C Cipher text of encrypted data.

EIDD
Unique identifier of an IoT device, used for secure network authentication. Unique identifier for each

IoT device, ensuring secure and authenticated device operations in smart city infrastructure.

lskesb ← Random( f ) Long secret key generated securely for each device through a random process. Randomly generated
long secret key for each IoT device, enhancing the security of device-specific operations.

LPKesb = glskesb
Long-term public key derived from the long sec ret key using generator g. Used in securing device

communications within the IoT network.

Store C in blockchain Encrypted data C is securely stored in the blockchain. Ensuring immutable recording of traffic and
environmental data.

Bnew = Hash(Bold)
New blockchain block created from the hash of the previous block, a critical step for maintaining a

secure, verifiable record of IoT data transactions.

Cretrieve(EC) Method for IoT devices to securely access encrypted data from the blockchain, crucial for Edge
Computing (EC).

Dprocessed
Represents the IoT data post-decryption, used for actionable insights into traffic flow and

environmental conditions.

DecryptlskEC (C) Decryption of cipher text C by the IoT device using its long secret key.

∆D f low
Measures the change in data flow, critical for monitoring variations in traffic density or

environmental sensor outputs.

dD
dt

Rate of change of data, important for understanding trends in traffic congestion and environmental
conditions over time∮

C
Contour integral over a closed path C, used in the context of data flow integration. Integral used to

ensure the completeness and integrity of data paths in the IoT network.

F
Vector field integrated over path C, typically representing data flow or force fields. Represents forces

or flows in vector fields, useful in simulations of traffic patterns and environmental
dispersion models

ds Differential path element along the contour C.

→
r EC

Position vector of the IoT device in the network. Essential for optimizing sensor placements and
ensuring effective data coverage in a smart city.

∝ Symbol indicating proportionality, used in algorithms that adjust IoT device operations based on
traffic and environmental data scales.

→
r sensor

Position vector of the sensor relative to the IoT device. Sensor position vectors, key to strategically
deploying environmental and traffic monitoring sensors for optimal data collection.

⊥
Denotes perpendicularity between vectors, used in optimal path calculations. Indicates

perpendicularity in data transmission paths, crucial for minimizing interference and maximizing the
efficiency of data flow in IoT networks.

→
d optimal Optimal direction vector for data transmission between IoT device and sensor.

EIDD,b Encrypted device identifier for IoT device b, ensuring confidentiality and integrity.

ω Random element selected from Z∗q , used in cryptographic operations.

RSKa,b Rendezvous Secret Key, a cryptographic key for secure interactions between entities a and b.
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Table A2. Cont.

Notation Description

Sa,b
Secret session key for communication between devices a and b. Encrypted communication, vital for

maintaining data confidentiality in IoT interactions.

yb Public ephemeral value associated with device b during a session.

tseq
t stands for timestamp. Seq: Indicates that this timestamp is part of a sequence, which could be used

to order events, messages, or data packets chronologically.

ra,b Nonce used once in a session between devices a and b for enhanced security.

ED Encrypted Data, key for protecting sensitive information in traffic and environmental
monitoring systems.

ENCk
Represents the encryption function. The subscript k indicates that this function uses the

cryptographic key k to perform the encryption.

(Xbatch)
This is the batch of data that is being encrypted. In the context of IoT systems or any large-scale data

processing environment like a smart city BFLIoT system, data is often processed in batches
for efficiency.

hed
Hash of encrypted data, providing a unique fingerprint for verification without revealing content.

Providing a checksum to verify data integrity before decryption in IoT systems.

C0 Initial commitment in cryptographic protocols, ensuring integrity and non-repudiation.

θ(t+1)

Updated model parameters after iteration t + 1, typically in a learning or optimization context.
Updated model parameters in machine learning algorithms, essential for adapting traffic control and

environmental prediction models to new data.

η
Learning rate, controlling the update magnitude in optimization processes. Determining the speed

and effectiveness of updates to IoT data processing models.

∇L(θt, Declskcsb
(ED))

Gradient of the loss function with respect to θt, calculated on decrypted data. Key for refining
machine learning models based on secure IoT data.

Θ(t+1)
Aggregated model parameters after updates from all devices at iteration t + 1. Critical for

enhancing the collaborative intelligence of IoT devices in smart city applications.

∆θi

(t+1)
Parameter updates from the i-th device, contributing to the overall model update.

ESA Set of all participating EC devices in the federated learning network. Central to distributed data
processing and decision-making in smart cities.

ED0 Encrypted version of the aggregated model parameters for secure transmission.

⋃N
i=1 Di

Disjoint union of datasets from N devices, representing data aggregation while preserving privacy.
Maintaining data privacy while enabling comprehensive analysis in federated learning.

θ∗ Optimal model parameters obtained from minimizing integrated loss across aggregated data.∫
UDi

L(θ, x) dx Integral of the loss function over the disjoint union of datasets, indicating continuous optimization.

Glocal,i Local gradient computed on the i-th device, derived from local data and model parameters.

∇L(θt, Di) Gradient of the loss function for local model parameters θt on dataset Di.

PKFL Public key used in federated learning for encrypting data, ensuring participant data confidentiality.

N Total number of devices participating in the federated learning network, indicative of the scale of
collaborative data processing in smart city infrastructure.

1
N

Used to average aggregated values across all devices, essential for balancing model updates in
federated learning systems.

Gencrypted
Encrypted local gradients, secured with public key PKFL. Securing detailed traffic and

environmental data during collaborative learning processes.

Gaggregated
Aggregated encrypted gradients, averaged across all participating devices. Averaged to update

global models without compromising the privacy of individual IoT data inputs.

θnew
global Updated global model parameters after applying aggregated gradient changes.
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Table A2. Cont.

Notation Description

∆θ Change to be applied to the global model, based on the decrypted aggregated gradients.

θnew
encrypted Encrypted updated global model, ready for secure transmission to devices.

θnew
global Decrypted updated global model, ready for deployment on edge devices.

SKEdi Secret key of a specific EC device, used to decrypt transmitted data.

PKEdi Public key associated with an EC device, used for encrypting data before transmission.

H4(Xnorm) Hash function applied to normalized data, part of security checks for anomaly detection.

A(x) Anomaly detection function that classifies data points as normal or anomalous based on a threshold T.
Crucial for identifying deviations in traffic patterns and environmental conditions in real-time.

p(x; θglobal) Probability output of the global model for a data point x, used to assess anomaly status against threshold T.

T Threshold for classifying data points in anomaly detection, adjusted dynamically.

Tnew
Updated dynamic threshold for anomaly detection based on statistical measures of detected
anomalies. Recalibrated to maintain accuracy as traffic and environmental conditions evolve.

µanomalies Mean of detected anomalies, used in dynamic threshold calculation.

σanomalies Standard deviation of detected anomalies, used in dynamic threshold calculation.

λ Scaling factor applied to the standard deviation in the calculation of the new threshold Tnew.

θlocal,i
Encrypted local model update of the i-th device, using public key PKFL. Ensuring secure and

personalized adaptation to localized data conditions.

E−1
pk (G

k
encrypted) Decryption of encrypted gradients, part of the global model update aggregation.

Θaggregated Aggregated model updates from participating devices, prior to consensus validation.

1
k

This represents the multiplicative inverse of the number k, used to calculate an average.
In this context, it appears there might be a typographical error or confusion, as k is also

used as the variable of summation. It is more conventional to see it as 1
k when computing an

average, where K is the total number of items over which the sum is calculated.

Bvalidated
Blockchain record after consensus validation of the aggregated updates. Ensuring that all device

contributions are authenticated and the model update is secure

Bnew Updated blockchain record incorporating the new validated updates.

Θnew
global Broadcasted new global model state, synchronized across all network participants.

Deploy→ ECi
Represents the deployment process of Θnew

global to each EC device, denoted by ECi, across the
entire network.

Cenc
C Stands for ciphertext, which is the output of an encryption process. enc Indicates that the
ciphertext has been encrypted, specifying the state of the data as being securely encoded.

kindexed
k Represents a cryptographic key, which is used for encryption, and decryption. Indexed: Implies that

the key is part of a collection or series of keys, each uniquely identified by an index.

tesa The notation tesa represents a specific timestamp in data communication contexts.

SKbi
SK Stands for “Secret Key,” which is used for decrypting data that has been encrypted with the

corresponding Public Key. bi serves as an identifier and index for a particular device.

tesb t Stands for timestamp. Esb stands for a specific protocol.

Cdec

C Stands for ciphertext which is the data in its encrypted form. Dec Indicates that the ciphertext has
been decrypted, specifying the state of the data as having been transformed from its secure, encoded

format to its plaintext format.

TKbi

T stands for Transformation. K: Represents a Key used in the cryptographic operation. b i user b and
has an identifier i.
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Table A3. Notation of security proof with enhanced mathematical Rigor.

A Represents the adversary in the cryptographic proof, trying to compromise the system. Testing the system’s resilience
against potential security breaches.

C The challenger in cryptographic games simulates the protocol to validate the security measures of the IoT system.

s A secret value selected uniformly at random from Zq, used as the exponent in the key generation to create the public key.
Used in the cryptographic key generation process to secure IoT device communications.

Ppub The public key in the BFLIoT system, derived as gs, where g is a generator of the group G.

m Represents a message that is an element of Zq, involved in the encryption process.

r A random value is chosen uniformly from Zq for each encryption process.

C The ciphertext resulting from the encryption scheme combines a power of g and the message masked with a hash output.

H A cryptographic hash function is used as a random oracle, ensuring the randomness of the hash output used in
the encryption.

B An algorithm constructed to solve the DL problem using the adversary’s ability to break the encryption scheme.

Gi Local gradient from a device in the federated learning process.
∼
Gi Noise-adjusted gradient ensuring (ϵ, δ)-differential privacy by adding Gaussian noise N (0, σ2 I).

HF The cryptographic hash function used in the PoW mechanism within the blockchain integration.

n Nonce in the PoW, a number that miners adjust to solve the hashing challenge.

N (0, σ2 I) Gaussian noise was added to the local gradient to ensure differential privacy.
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