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Abstract: Humus forms are the morphological results of organic matter decay and distribution in
the topsoil, and thus important indicators for decomposer activities in forest ecosystems. The first
aim was to examine if humus forms are suitable indicators of microbiological properties of the
topsoil in a high mountain forest (Val di Rabbi, Trentino, Italian Alps). The second aim was to
predict microbiological parameters based on the topsoil pH value on two slopes of the study area
(ca. 1200–2200 m a.s.l.). We investigated humus forms and determined pH values and microbiological
parameters (enzymatic activities, carbon/nitrogen (C/N) ratio and the ratio of bacterial/archaeal
abundance) of the uppermost mineral horizon. The results reveal significant correlations between
pH value and microbiological parameters (except for bacterial/archaeal abundance), which enable
upscaling to the landscape scale using linear models. Based on a random forest with kriging of
model residuals, predictive maps of humus form, pH value and microbiological parameters show that
decomposition processes in our study area correspond with the topography. As compared to locations
on south-facing slopes or close to the valley bottom, locations on north-facing slopes or close to the
upper treeline exhibit Moder (scarcely Mull or Amphimull), more acidic topsoil (around pH 4), a lower
activity of leucine-aminopeptidase, a lower ratio of alkaline/acid phosphomonoesterase activity and
a higher soil C/N ratio (above 20). Our results suggest a high potential of humus forms to indicate
soil microbiological properties in a high mountain forest. Together with the pH values of the topsoil,
humus forms proved to be a useful tool as a basis for predictive maps of leucine-aminopeptidase
activity, ratio of alkaline/acid phosphomonoesterase activity and C/N ratio of the mineral topsoil.

Keywords: spatial modeling; hydrolytic enzyme activities; soil acidity; random forest; forest ecosystem;
Italian Alps

1. Introduction

The humus form is an important indicator for decomposition in terrestrial ecosystems [1,2].
Humus forms are the morphological results of different biological activities in the topsoil. They thereby
reflect the composition of the decomposer community [3]. Additionally, humus forms are well accepted
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as integrating indicators for changes in forest ecosystems [4]. Previous studies illustrated a strong
correlation between the spatial distribution of enchytraeid species, humus forms and pH values of
the topsoil (e.g., [5–7]), which has also been shown for high mountain environments [8]. Furthermore,
extensive information on forest humus forms in a high mountain area can be used to upscale the spatial
distribution of enchytraeid species to the landscape scale [9]. A high soil biological activity as derived
from a well-structured mineral topsoil was connected with mull-indicating enchytraeid species at
southern slope exposure (in case of sufficient soil moisture), whereas a low soil biological activity
indicated by a poorly structured mineral topsoil was connected with moder-indicating enchytraeid
species at northern slope exposure [9].

Due to the fact that changes in microbial communities can occur more quickly than remarkable
changes in basic soil functions (e.g., filtering pollutants, storing nutrients), the study of microbial
parameters is deemed a sensitive indicator when evaluating effects of soil disturbance [10]. In this sense,
extracellular enzymes, which are biological catalysts of specific reactions, are considered as sensitive
indicators of soil biological processes and soil fertility [11]. Abiotic factors like soil temperature, water
potential, pH, substrate availability and complexity, along with biotic processes including enzyme
synthesis and secretion, largely influence the activities of enzymes in natural environments [12].

Leucine-aminopeptidase activity has an important role in the nitrogen (N) cycle, as it catalyzes
the hydrolysis of leucine and other amino acids from protein or peptide substrates [13]. Bacteria play a
relevant role in the production of leucine-aminopeptidases [14] and, accordingly, Bardelli et al. [15]
observed a greater activity in south-facing subalpine forest soils where a greater bacterial abundance
was recorded in comparison with north-facing slopes.

Phosphorus (P) is taken up by microorganisms and plants largely as orthophosphate in
soil solution. Since in many terrestrial ecosystems soil orthophosphate is limiting for plant productivity,
the production of extracellular enzymes facilitating the mineralization of organic P compounds is
therefore determined by the need for orthophosphate [16]. The phosphomonoesterases include
acid and alkaline phosphatases, phytases and nucleotidases [17], and mineralize orthophosphate
monoesters such as sugar phosphates, phytate and nucleotides. In particular, acid and alkaline
phosphatases are responsible for the mineralization of organic P into phosphate by hydrolyzing
phosphoric (mono) ester bonds under acid and alkaline conditions, respectively. They have an
important role for P cycling in forest ecosystems, particularly where P availability may limit plant
productivity [18]; and an increase in their activity can occur when P is limited, reflecting a demand for
this macronutrient [16].

The soil carbon/nitrogen (C/N) ratio is among the most important properties of soil organic
matter (SOM) and serves as a reliable proxy of the decomposition rate of SOM. The higher the ratio,
the lower the decomposition rate, and as such, the soil C/N ratio can be considered as an estimator
of microbial activity and overall as a proxy for soil quality and soil ecological conditions [15,19].
Soil microorganisms use carbon and nitrogen for metabolism, with a C/N ratio of about 20:1 favoring
SOM decomposition. The C/N ratio is influenced by a multitude of site-related factors (e.g., [20]).

Soil microorganisms (bacteria, archaea and fungi) and their complex interplay are crucial in
biogeochemical cycling in (forest) soils, especially in carbon (C) and nitrogen (N) cycling, as principal
drivers of mineral weathering, decomposition/mineralization of organic matter (OM) and pedogenesis.
Understanding the ecological role of microbial community dynamics for nutrient cycling is essential
for understanding the functional stability of ecosystems and for predicting future scenarios due to
changing environmental conditions [21]. Although bacteria and fungi are considered the primary
decomposers of SOM, archaea have gained increasing interest as ecological indicators due to their
adaptability to harsh environmental conditions (e.g., low temperatures, low pH, nutrient deficiency)
and their role within the N cycle, owing to their ammonia oxidizing potential. In fact, ammonia
oxidation, the first and rate-limiting step of nitrification, was only recently attributed also to archaea,
thanks to the discovery of homologue ammonia monooxygenase (amo) genes [22–24]. The comparative
assessment of bacteria and archaea provides important descriptive information about soil quality [25],
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as they can compete for the same nutrients [26] and due to different pH dependencies of fungi, bacteria
and archaea [27].

In order to understand spatial decomposition patterns in a high mountain environment, it would
be useful if humus forms could be applied as indicators not only of the distribution of enchytraeid
species [9,28], but also of microbiological parameters [29]. Hence, the aims of this study were (i) to map
humus forms and topsoil pH values in a mountain forest area in the Italian Alps as a basis for upscaling,
(ii) to examine correlations between humus forms, pH values and microbiological parameters of the
topsoil, (iii) to rank the examined parameters in terms of their usability for upscaling by proxy of
humus forms and topsoil pH values, (iv) to upscale microbiological parameters utilizing humus forms
and topsoil pH values if feasible according to (iii). In this study, upscaling refers to the extrapolation
of microbiological data from the level of a study site to the slope scale using information on the
spatial distribution of humus forms and pH values. The following microbiological parameters of the
topsoil were addressed in this study: (1) the leucine-aminopeptidase activity as indicator of N cycle
processes, (2) the ratio of alkaline/acid phosphomonoesterase activity as indicator of P cycle processes,
(3) the C/N ratio as indicator of both C cycle and N cycle processes, (4) the ratio of bacterial/archaeal
abundance as indicator of C cycle and N cycle processes, especially ammonia oxidation.

2. Materials and Methods

2.1. Study Area

The study area is located in the northeastern Italian Alpine valley Val di Rabbi in the Autonomous
Province of Trento (Figure 1). With reference to geology, the study area is part of the Central Alps,
characterized by siliceous bedrock. The dominant parent materials are acidic paragneiss, mica schists,
phyllites and orthogneiss [30,31]. The climate of the study area is governed by the high relief intensity
of the Alpine environment. Climatic variations are generally due to differences in elevation and slope
exposure, with the local climatic situation being more complex [32]. The mean annual air temperature
in the study area ranges from about 2 ◦C close to the tree line to 7 ◦C at the lowest sites near the
valley bottom. The mean annual precipitation is about 800–850 mm [33]. The main soil classes in the
study area are Haplic Cambisols (Dystric) and Umbric Podzols below ca. 1900 m a.s.l., whereas Entic
Podzols, Albic Podzols and Umbric Podzols are dominant in the forest above ([34], according to [35]).
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Upscaling of local data refers to the forested parts of one north-facing slope (~1200–2100 m a.s.l.,
approx. 2.5 km2) and one south-facing slope (~1200–2200 m a.s.l., approx. 3.8 km2). The main tree
species on these slopes are European larch (Larix decidua) and Norway spruce (Picea abies), both of
them similarly prevalent at both slopes. Regarding the lower tree layer, Norway spruce is by far the
dominant species, whereas young European larch trees only occur above 1800 m a.s.l. [37].

2.2. Sampling

For this study, we considered two sampling sets: the first set comprised 60 sampling sites for
humus form determination and topsoil acidity analysis (RN1–RN30 and RS1–RS30); the second
set comprised six additional sampling sites for extensive microbiological analyses (N1–N3 and
S6–S8) (Table 1).

Table 1. Soil properties, related investigation sites and sampled objects.

Soil Property Sites Sampled Soil Horizons/Depths

Humus forms: Presence of organic layers RN1–RN30, RS1–RS30 OL, OF, OH horizons
Humus forms: Soil structure RN1–RN30, RS1–RS30 A horizon

pH value (H2O) RN1–RN30, RS1–RS30 A horizon
pH value (H2O) N1–N3, S6–S8 0–15 cm, depth increments of 5 cm

Leucine-aminopeptidase activity N1–N3, S6–S8 0–15 cm, depth increments of 5 cm
Acid phosphomonoesterase activity N1–N3, S6–S8 0–15 cm, depth increments of 5 cm

Alkaline phosphomonoesterase activity N1–N3, S6–S8 0–15 cm, depth increments of 5 cm
Total C N1–N3, S6–S8 0–15 cm, depth increments of 5 cm
Total N N1–N3, S6–S8 0–15 cm, depth increments of 5 cm

Bacterial abundance N1–N3, S6–S8 0–15 cm, depth increments of 5 cm
Archaeal abundance N1–N3, S6–S8 0–15 cm, depth increments of 5 cm

Sampling of humus forms was carried out at a total of 60 sampling sites in Val di Rabbi.
Among these sites, 30 of them were located on one north-facing (RN1–RN30) and 30 on one neighboring
south-facing (RS1–RS30) slope, respectively (Figure 1). These sites were determined based on
conditioned Latin Hypercube Sampling (cLHS) [38]. The application of cLHS allowed to obtain
a set of sampling sites most closely representing the investigated slopes in terms of the covariates
elevation, slope gradient, slope exposure, slope curvature (planform, profile and general curvature),
SAGA wetness index, LS factor (slope length and steepness) and forest type (details are given in [37]).
Each of these sites comprised an area of 25 m × 25 m. The number of sampling plots corresponded to
the number of ground cover types (one sample per available ground cover type: the ground cover
types were litter, consisting of tree litter, mostly needles; grass; moss; fern; shrubs). For all of the
ground cover types, percentages of their spatial distributions within the area of the site were estimated.
At each sampling plot, a humus form profile was described and a sample for topsoil acidity analysis
(two replicates) was collected from the uppermost mineral horizon directly beneath the organic layers.
All analyses were carried out at these sites in September 2015.

For microbiological analyses, six additional sampling sites were chosen on the basis of local
knowledge from experts involved in previous soil ecological studies (Figure 1). They are located
at three different elevations (~1200, 1400 and 1630 m a.s.l.) inside the closed forest, each half of
them on north-facing (N1–N3) and south-facing (S6–S8) slopes, respectively. Further environmental
characteristics of these sites have been specified elsewhere [15,39]. Soil sampling at these sites was
comprised of three replicates with five subsamples each (for quantitative real-time PCR, the subsamples
were pooled). A corer (diameter 5 cm) was used to sample three soil depths separately, including
organic layers at the surface: 0–5 cm, 5–10 cm, 10–15 cm. Sampling was carried out at these sites
in August 2012. All samples were bulked and sieved (<2 mm), aliquoted into 50-mL sterile conical
centrifuge tubes, and stored at −20 ◦C. Apart from topsoil acidity, the analyses of these samples
covered total C and N contents, soil enzymatic activities, abundance of bacteria and archaea.
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2.3. Soil Analysis

Soil properties determined for the first sampling set (RN1–RN30 and RS1–RS30) comprised humus
forms and topsoil acidity; the second sampling set (N1–N3 and S6–S8) was analyzed with respect to
topsoil acidity, soil enzymatic activities, total C and N, bacterial and archaeal abundance (Table 1).

2.3.1. Humus Forms

Humus form profiles (width 50–100 cm) were described and classified according to [40].
In addition to the set of humus forms specified therein, the humus form Amphimull (AMU) was used
whenever organic layers (OF and OH) existed above a well-structured soil in the uppermost mineral
horizon (Figure 2). Amphimull is a humus form usually not present under Central European climatic
conditions, except for some mountain areas [41].
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2.3.2. Topsoil Acidity

The pH values were determined in soil water extracts (1:10 m/v) from air-dried samples.

2.3.3. Soil Enzymatic Activities

A heteromolecular exchange principle [42] was used to desorb enzymes from soil in order to
determine the leucine-aminopeptidase, acid and alkaline phosphomonoesterase potential activities,
as described by Bardelli et al. [15]. For the disruption of soil aggregates and microbial cells
the procedure involved the use of a 3% solution of lysozyme as desorbant and a bead-beating
agent followed by centrifugation at 20,000 g for 5 min. Afterwards, the supernatant containing
desorbed enzymes was dispensed into 384-well microplates together with the appropriate buffer
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and the fluorometric quantification of the enzymes activities was done using 4-methyl-umbelliferyl
(MUF) substrate. All the measurements were done in duplicate and the activities were expressed as
nanomoles of MUF g−1 dry soil h−1.

2.3.4. Total C and N

Soil samples were homogenized with a mortar prior to analysis. A CN analyzer (TruSpec CHN,
LECO, Sao Jose dos Campos, MI, USA) was used to determine total C and N contents in oven-dried
soil samples. The temperature used for CN analysis was 950 ◦C. Due to the siliceous bedrock
throughout our study area, total C only includes organic C.

2.3.5. Quantitative Real-Time PCR

The DNA extraction and purification from soil samples (0.5 g, fresh weight) was done using
a commercial kit (FastDNA Kit for Soil, MP-Biomedicals) as described in [43]. The Rotorgene
6000 Real Time Thermal Cycler (Corbett Research, Sydney, Australia) was used in combination with
the Rotor-Gene Series Software 1.7 in order to quantify the 16S rRNA gene copy number of bacteria
and archaea with the primer pairs 1055f/1392r (bacteria, [44]) and Parch519f/Arc915r (archaea, [45]).
Standard curves for quantification of both microbial domains were constructed as described by
Bardelli et al. [15]. The reaction mix for each qPCR run was performed by using the 1X Sensimix™
SYBR® Hi-rox (Bioline, Taunton, MA, USA) based on the DNA-intercalating dye SYBR Green I as
shown in [15]. Each run was accompanied by a melting analysis starting from 60 ◦C to 95 ◦C with
temperature increments of 0.25 ◦C and a transition rate of 5 s to check for product specificity and
potential primer dimer formation. The purity of the amplified products was also checked by the
presence of a single band of the expected length on a 1% agarose gel stained with the DNA stain
Midori Green (Nippon Genetics, Duere, Germany) and visualized by UV-transillumination (Vilber
Lourmat Deutschland GmbH, Eberhardzell, Germany). The efficiency for the bacterial and archaeal
qPCR runs was in a range between 80% and 85%, indicating a good reproducibility.

2.4. Spatial Modeling

Humus forms were modeled in terms of two dimensions: (1) biogenic soil structure in the mineral
soil and (2) presence of organic layers above the mineral soil. Relative units (values from 0 to 1) were
used for both dimensions according to the determined humus forms (Figure 2, Table 2). At each site,
the related samples were aggregated using weights according to the estimated relative distribution
of different ground cover types. For example, at a site with Amphimull (AMU) under grass (70%
occurrence) and Typischer Moder (MOA) under litter (30% occurrence), the dimension biogenic soil
structure in the mineral soil amounts to 0.7 × 1.0 + 0.3 × 0.0 = 0.7 and the presence of organic layers
above the mineral soil amounts to 0.7 × 1.0 + 0.3 × 1.0 = 1.0.

Table 2. Two-dimensional characterization of humus forms for modeling. At each site, the relative
distribution of different ground cover types provided weights, which were used to spatially aggregate
the related samples.

Humus form (According to [40,41]) Humus form
(According to Figure 2)

Biogenic Soil Structure in the
Mineral Soil (Relative Units

According to Figure 2)

Presence of Organic Layers
Above Mineral Soil (Relative
Units According to Figure 2)

F-Mull (MUO) Mull 1.0 0.0
Mullartiger Moder (MOM) Mullmoder 0.5 0.5

Typischer Moder (MOA, MOR) Moder 0.0 1.0
Rohhumusartiger Moder (MRA, MRR) Moder 0.0 1.0

Rohhumus (ROA, ROR) Moder 0.0 1.0
Amphimull (AMU) Amphimull 1.0 1.0

Graswurzelfilz-Moder (GMO) Moder 0.0 1.0
Hagerhumus (HMO) Eroded Moder 0.0 0.0



Soil Syst. 2018, 2, 12 7 of 22

Spatial modeling consisted of a random forest [46] and ordinary kriging of the model residuals [47].
An approach combining a random forest and residuals kriging has been successfully applied in earlier
digital soil mapping studies [48]. During the last years, random forest has been established as
one of the most powerful approaches for spatial modeling in the context of predictive mapping
in ecology and soil science [49–52]. In comparison with single-tree-based models, the use of a
random forest avoids overfitting tendencies, yet includes the concurrent influences of a large set of
environmental variables. In this study, environmental variables included topographic and vegetation
parameters. Terrain attributes were derived from a digital terrain model with a grid width of 1 m
(Provincia Autonoma di Trento, Ufficio Sistemi Informativi-Servizio autorizzazioni e valutazioni
ambientali, LiDAR data from 2006 to 2008, available at http://dati.trentino.it/dataset/lidar-rilievo-
2006-2007-2008-link-al-servizio-di-download). These attributes included elevation, slope, slope
exposure, general curvature, profile and planform curvature (all slope parameters derived according
to [53]) and LS factor (following [54]). Vegetation characteristics included forest type and forest density
(obtained from Provincia Autonoma di Trento, Servizio Foreste e Fauna). The random forest models
of the humus form parameters and the pH value thereby accounted for the highly heterogeneous
conditions of relief and vegetation in the study area. In all random forest models, the number of trees
amounted to 10,000 and the terminal nodes had a minimum size of 3 elements. Spatial modeling was
performed with the statistical software R [55] and the R package randomForest [56].

Linear models were used to quantify the relationships between the pH value and microbiological
parameters. These models were based on the data from the sites N1–N3 and S6–S8. For each sample
from these sites, data was taken from that soil depth at which the uppermost mineral horizon was
found (Tables S1 and S2). Those linear models with a highly significant correlation (p < 0.01) were used
to derive spatial models of the microbiological parameters from the model of topsoil acidity.

2.5. Model Assessment

The random forest models (used for humus form parameters and topsoil acidity) were evaluated
by the mean value of the squared model residuals and the explained variance of the model [56].
The predicted values of the model refer to the out-of-bag samples, respectively, i.e., the set of trees
where a sample does not belong to the data used for model training.

The linear models underlying the upscaling procedure of microbiological parameters were
evaluated with the standard errors of the predictions. Maps of the standard errors were generated to
reveal the spatially variable precision of the predicted values.

In order to assess the transferability of the upscaling results from pH values to humus forms,
the relationships between the predictions of humus form parameter values on the one hand and
pH values, enzyme activities and the soil C/N ratio on the other hand were examined using linear
regression analyses.

3. Results

The results from sampling of humus forms and topsoil acidity at the sites RN1–RN30 and
RS1–RS30 show a distinct dominance of moder humus forms (particularly in the higher parts of the
study area). Mullmoder and mull humus forms occur especially at south-facing sites and Amphimull
can be found only below 1600 m a.s.l. The pH values in the uppermost mineral soil horizon range
from 4 (at site RN27) to 6 (at site RN1). The data basis for the spatial modeling of humus forms
(as characterized by the biogenic soil structure in the mineral soil and the presence of organic layers
above the mineral soil) and of topsoil acidity is shown in Table 3 (raw data is presented in Table S3).

http://dati.trentino.it/dataset/lidar-rilievo-2006-2007-2008-link-al-servizio-di-download
http://dati.trentino.it/dataset/lidar-rilievo-2006-2007-2008-link-al-servizio-di-download
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Table 3. Input data for modeling from sampling of humus forms and topsoil acidity.

Site
Humus form
(According to

Figure 2)

Biogenic Soil Structure in the
Mineral Soil (Relative Units

According to Figure 2)

Presence of Organic Layers
above Mineral Soil (Relative
Units According to Figure 2)

pH in A Horizon
H2O (1:10)

RN1 Amphimull 1.0 1.0 6.06
RN2 Mullmoder 0.5 0.5 5.18
RN3 Moder 0.0 1.0 4.88
RN4 Amphimull 1.0 1.0 5.20
RN5 Amphimull, Mull 1.0 0.7 5.14

RN6 Eroded Moder,
Moder 0.0 0.5 4.63

RN7 Moder 0.0 1.0 4.82
RN8 Moder 0.0 1.0 4.63
RN9 Moder 0.0 1.0 5.00

RN10 Amphimull 1.0 1.0 4.62
RN11 Moder, Mullmoder 0.25 0.75 4.57
RN12 Mullmoder, Moder 0.4 0.6 4.47
RN13 Moder 0.0 1.0 4.42
RN14 Moder 0.0 1.0 4.45
RN15 Moder 0.0 1.0 4.68
RN16 Moder 0.0 1.0 4.80
RN17 Moder 0.0 1.0 4.20
RN18 Moder 0.0 1.0 4.25
RN19 Moder 0.0 1.0 4.67
RN20 Moder 0.0 1.0 4.73
RN21 Moder 0.0 1.0 4.17
RN22 Moder 0.0 1.0 4.24
RN23 Moder 0.0 1.0 4.46
RN24 Moder 0.0 1.0 4.22
RN25 Mullmoder, Moder 0.4 0.6 4.67
RN26 Moder 0.0 1.0 4.74
RN27 Moder 0.0 1.0 4.02
RN28 Moder 0.0 1.0 4.52
RN29 Mullmoder, Moder 0.4 0.6 4.70
RN30 Moder 0.0 1.0 4.05
RS1 Mull 1.0 0.0 5.70
RS2 Moder 0.0 1.0 5.80
RS3 Amphimull 1.0 1.0 4.43
RS4 Moder, Amphimull 0.4 1.0 4.75
RS5 Amphimull 1.0 1.0 5.79
RS6 Mull 1.0 0.0 5.36
RS7 Mullmoder, Mull 0.65 0.35 4.79
RS8 Moder, Amphimull 0.3 1.0 4.90
RS9 Amphimull 1.0 1.0 5.45

RS10 Mull 1.0 0.0 5.95
RS11 Mullmoder 0.5 0.5 5.39
RS12 Mullmoder 0.5 0.5 4.72
RS13 Mullmoder 0.5 0.5 5.30
RS14 Moder 0.0 1.0 4.61

RS15 Moder, Eroded
Moder 0.0 0.6 4.76

RS16 Moder 0.0 1.0 4.66
RS17 Moder, Mull 0.3 0.7 4.86
RS18 Moder 0.0 1.0 4.72
RS19 Moder 0.0 1.0 4.49
RS20 Mull 1.0 0.0 5.30
RS21 Moder, Mull 0.5 0.5 4.71
RS22 Mullmoder 0.5 0.5 5.15
RS23 Mull 1.0 0.0 5.02
RS24 Moder 0.0 1.0 4.96
RS25 Moder 0.0 1.0 4.78
RS26 Moder 0.0 1.0 5.95
RS27 Moder 0.0 1.0 4.61
RS28 Moder 0.0 1.0 4.55
RS29 Moder 0.0 1.0 4.67
RS30 Moder 0.0 1.0 4.59
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Chemical and microbiological analyses at the sites N1–N3 and S6–S8 show distinct variations of
the investigated parameters with soil depth (especially for the ratio of bacterial/archaeal abundance
and the enzymatic activities) (Table 4). At these sites, the range of pH values is comparable to the
other 60 sites (from 4.2 to 6.0). In addition, the ratio of alkaline/acid phosphomonoesterase activity
shows an increasing trend from northern exposure and high elevation to southern exposure and low
elevation. The C/N ratio increases from south-facing to north-facing sites (Table 4).

Table 4. Chemical and microbiological properties of the soils collected at the six study sites at north-and
south-facing areas (N1–N3 and S6–S8, respectively). The results are shown pairwise, i.e., the couples
of north- and south-facing sites at the same elevation (N1–S6; N2–S7; N3–S8). Values are means
(n = 3) ± standard deviations. Data are expressed on a dry weight basis. At all sites, soil C only
includes organic C (Corg). Nitrogen values used for calculation of the soil C/N ratio refer to total
nitrogen (Nt).

Site Soil Depth
(cm)

pH H2O
(1:10)

Leucine-Aminopeptidase
Activity (nmol MUF g−1

Dry Soil h−1)

Ratio of Alkaline/Acid
phospho-Monoesterase

Activity

Total C
Content

(%)

Soil
Corg/Nt
Ratio

Ratio of
Bacterial/Archaeal

Abundance

N1 0–5 4.8 ± 0.4 368.9 ± 184.9 0.14 ± 0.1 24.6 ± 2.4 26.9 ± 3.9 11.8 ± 11.9

5–10 4.8 ± 0.4 85.5 ± 48.9 0.08 ± 0.1 10.6 ± 6.2 20.6 ± 2.2 6.4 ± 3.5
10–15 4.8 ± 0.3 31.5 ± 21.9 0.04 ± 0.1 4.4 ± 1.9 18.1 ± 3.7 1.7 ± 0.4

S6 0–5 6.0 ± 0.5 283.6 ± 56.6 0.83 ± 1.0 10.2 ± 3.7 19.9 ± 3.3 42.6 ± 43.3

5–10 5.7 ± 0.6 94.5 ± 27.9 0.52 ± 0.6 4.0 ± 0.5 17.4 ± 2.8 20.9 ± 7.4
10–15 5.6 ± 0.5 57.1 ± 19.5 0.40 ± 0.4 2.6 ± 0.8 15.4 ± 1.9 10.0 ± 7.8

N2 0–5 4.7 ± 0.8 393.7 ± 300.7 0.17 ± 0.2 42.8 ± 9.8 23.8 ± 4.2 232.4 ± 332.8

5–10 4.3 ± 0.6 115.5 ± 45.4 0.04 ± 0.1 33.1 ± 13.5 24.8 ± 4.0 55.7 ± 54.6
10–15 4.5 ± 0.6 38.9 ± 8.8 0.02 ± 0.02 11.3 ± 8.4 20.0 ± 1.8 14.5 ± 22.2

S7 0–5 5.7 ± 0.2 866.8 ± 80.9 0.56 ± 0.2 23.1 ± 1.0 18.1 ± 2.0 650.2 ± 446.5

5–10 5.8 ± 0.2 207.5 ± 77.9 0.62 ± 0.2 9.0 ± 2.3 15.9 ± 1.5 250.4 ± 356.0
10–15 5.8 ± 0.3 131.0 ± 75.5 0.67 ± 0.4 5.6 ± 1.6 14.9 ± 2.0 17.2 ± 14.9

N3 0–5 4.6 ± 0.3 375.3 ± 115.1 0.07 ± 0.04 46.3 ±2.3 22.5 ± 2.2 340.6 ± 548.3

5–10 4.2 ± 0.2 123.8 ± 25.8 0.02 ± 0.01 38.7 ± 12.9 22.0 ± 2.3 24.7 ± 6.1
10–15 4.2 ± 0.3 77.4 ± 8.7 0.02 ± 0.01 18.8 ± 8.1 21.1 ± 1.8 17.2 ± 15.2

S8 0–5 5.4 ± 0.4 289.5 ± 144.1 0.16 ± 0.2 24.0 ± 11.4 21.0 ± 0.8 75.7 ± 94.4

5–10 5.4 ± 0.2 70.8 ± 19.9 0.07 ± 0.02 10.1 ± 5.9 16.7 ± 2.0 19.1 ± 3.6
10–15 5.4 ± 0.3 90.9 ± 6.5 0.07 ± 0.1 6.1 ± 0.5 14.2 ± 1.7 6.8 ± 10.9

Maps of humus form parameters (presence of organic layers above the mineral soil and biogenic
soil structure in the mineral soil) were obtained from spatial modeling. According to the predictions,
organic layers are present almost throughout the whole north-facing slope (values close to 1), whereas
there is a relatively heterogeneous pattern at the south-facing slope (Figure 3a). The predictions of
the biogenic soil structure in the uppermost mineral horizon embrace a distinct decreasing trend with
elevation at the north-facing slope. This holds partially true for the south-facing slope, where the
predicted percentage of biogenic soil structure is generally higher as compared to the north-facing
slope (Figure 3b).

The predicted distribution of pH values of the A horizon is presented in Figure 4. Apart from
considerable local patterns of variability, these predictions show a general trend of decreasing topsoil
acidity from high to low elevation and from northern to southern slope exposure.

The results of the submodels (random forests and kriging procedures) are shown in Figures S1–S6.
Mean values of the squared residuals and explained variances of the underlying random forest models
are shown in Table 5.

Table 5. Quality measures of the random forest models.

Parameter Mean Values of the Squared Residuals Explained Variance (%)

Presence of organic layers above the mineral soil 0.079 18.05
Biogenic soil structure in the mineral soil 0.118 24.18

pH value (H2O) 0.140 37.04
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Figure 3. Predicted distribution of the two modeled humus form dimensions: (a) presence of organic
layers above the mineral soil; (b) biogenic soil structure in the mineral soil.

The relationships between the pH value and microbiological parameters as quantified by
linear models are summarized in Table 6. On the basis of the P values of the linear models,
the leucine-aminopeptidase activity, the ratio of alkaline/acid phosphomonoesterase activity and
the C/N ratio are rated as usable parameters for upscaling, whereas the ratio of bacterial/archaeal
abundance is rated as not usable.

Table 6. Results of linear modeling of microbiological parameters and the soil C/N ratio as a function
of the pH value (n = number of observations).

Parameter n Linear Regression
Equation

Residual Standard
Error R2 p

Value

Leucine-aminopeptidase activity 89 y = 98.87x − 348.57 171.9 0.1569 <0.001

Ratio of alkaline/acid
phospho-monoesterase activity 88 y = 0.45988x − 2.05861 0.2882 0.5889 <0.001

Soil C/N ratio 87 y = −3.4416x + 37.2690 3.51 0.3425 <0.001

Ratio of
bacterial/archaeal abundance 18 y = 61.08x − 258.55 149.5 0.0914 0.223
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Figure 4. Predicted distribution of topsoil acidity.

The results of upscaling of the enzyme activities as well as the C/N ratio are presented
as predictive maps (Figure 5). Because of the linear relationship to the topsoil pH value, the
patterns concur with the predicted distribution of pH values (Figure 4). The predicted activity
of leucine-aminopeptidase in the uppermost mineral horizon ranges from 22.0 to 310.4 nmol
MUF g−1 dry soil h−1; the ratio of alkaline/acid phosphomonoesterase has values up to 1.0
(where the activity of alkaline phosphomonoesterase is predicted to equal the activity of acid
phosphomonoesterase). Within our study area, both parameters are generally predicted to be lower at
northern slope exposure and high elevation as compared to southern slope exposure and low elevation.
The predicted values of the C/N ratio range from 16 at south-facing sites with low elevation to 23 at
north-facing sites.

Figure 6 shows the standard error of the predictions from upscaling using the example of
leucine-aminopeptidase (see Figures S7 and S8 for alkaline/acid phosphomonoesterase and C/N ratio).
The predictions from linear modeling tend to be more imprecise at sites with predicted values below
ca. pH 4.2 and above ca. pH 6.0 than at sites with intermediate pH values.

The linear regression models used for the analysis of the transferability of upscaling results from
the pH value to humus forms revealed moderate, but highly significant relationships between the
predictions of humus form dimensions (biogenic soil structure in the mineral soil and presence of
organic layers above the mineral soil) on the one hand and the predicted pH values, enzyme activities
and soil C/N ratio on the other hand (Table 7).
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Table 7. Results of linear regression analysis between predictions for humus forms (x1 = presence of
organic layers above the mineral soil, x2 = biogenic soil structure in the mineral soil) (Figure 3) and
predictions of topsoil acidity and microbiological parameters (Figures 4 and 5) (n = 5,891,366, number
of predicted pixels).

Parameter Linear Regression Equation Residual
Standard Error Adj. R2 p Value

pH value y = −0.53x1 + 0.68x2 + 5.05 0.2156 0.4332 <0.001

Leucine-aminopeptidase activity y = −60.80x1 + 67.97x2 + 159.70 30.54 0.3009 <0.001

Ratio of alkaline/acid
phospho-monoesterase activity y = −0.27x1 + 0.29x2 + 0.31 0.1259 0.3084 <0.001

Soil C/N ratio y = 2.12x1 – 2.37x2 + 19.58 1.063 0.3009 <0.001

4. Discussion

4.1. Spatial Modeling of Humus Forms and Topsoil Acidity

The spatial models illustrate that humus forms, as well as pH values of the A horizon, in our
study area are arranged in patterns corresponding to topographical features. The distributions of both
humus form dimensions (presence of organic layers above the mineral soil and biogenic soil structure
in the mineral soil) are related to slope exposure. Nevertheless, spatial patterns of both humus form
dimensions are relatively dissimilar (Figure 3). This implies that effects of topographic characteristics
on the biological activity in the mineral soil are different from those on the formation of organic layers.
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For example, the percentage of biogenic soil structure in the mineral soil distinctly decreases within the
forested area from low to high elevation (which indicates a decline of burrowing and mixing activities
of soil organisms), whereas the presence of organic layers does not show discernible variations in
terms of elevation. It would be interesting to analyze in more detail if the climatic conditions in our
study area have a higher effect on the biogenic soil structure in the mineral soil as compared to the
presence of organic layers. The results generally emphasize the dominance of moder-like humus forms
on the north-exposed slope, especially at high elevation. Mull-like humus forms, on the contrary,
mainly occur at the south-exposed slope, especially at low elevation. However, the correlations of
the topography with the biogenic soil structure and with the presence of organic layers are different.
Therefore, the humus forms Amphimull and Eroded Moder are also common in our study area.

The distribution of pH values of the A horizon likewise relates to the topographical situation,
which influences the microclimatic conditions and the kind of litter: low pH values (around 4.0–4.5)
are clearly dominant on the north-exposed slope (except for the very lowest part). In contrast, on
the south-exposed slope there is a trend of relatively high pH values (around 6.5) decreasing with
elevational gain to lower average values (around 4.5–5.0). Consequently, the analogous distributions
of humus forms and pH values generally turn out as expected [6]: the presence of mull-like humus
forms characterized by a high biological activity in the mineral soil coincides with higher pH values
as compared to moder-like humus forms. Altogether, these findings at the slope scale confirm and
amplify the trends from modeling at broader scales [9,57].

Regarding the quality of the presented models, the mean values of the squared residuals from
the random forest models are low in relation to the total ranges of values. Nevertheless, the random
forest models show relatively low explained variances (about 18–37%). Therefore, we addressed
the local variability in the data (which the random forest models were not able to cover) by means
of a kriging procedure of the model residuals (Figures S2, S4 and S6). This way, the deviations of
the observed values from those values predicted by the random forest model (based on out-of-bag
samples) could be included in the final predictions. Therefore, the quality of the presented models
is altogether rated as high. However, the model results only account for the effects of topographic
variation and spatial forest patterns (random forest models) together with deviations given by the
kriging of the model residuals. This implies that the models do not reflect possible effects of variation
of siliceous bedrock (as geological conditions are similar throughout the study area). Furthermore,
the models are not representative of local peculiarities of un-sampled locations within the study area
(e.g., totally different percentages of ground cover types or local disturbances).

Until now, only a few studies have considered spatial modeling of humus forms or organic
horizons in high mountain areas. Aberegg et al. [30] used a classification tree approach to model
the distribution of mull, moder and mor humus forms. In a more recent study, Hellwig et al. [57]
introduced an approach based on decision tree analysis and fuzzy logic for modeling humus forms.
This approach was specially designed for highly heterogeneous areas in the high mountains, where
only a low amount of sample data is available due to poor accessibility. Recent implementations of
this model addressed the presence of OH horizons [9,57]. The humus form model presented in this
study also involves the biological activity in the mineral soil, thus accounting for the properties of five
different humus form classes (Figure 2).

The lack of studies on spatial modeling of humus forms and other soil parameters related to
organic matter decomposition contradicts the benefits of spatial models as compared to conventional
mapping approaches. Soil analysis in the field is often time-consuming and costly. This is especially
true for high mountain areas, where the spatial variation of soil properties is complex due to highly
heterogeneous environmental conditions. In this context, digital soil mapping techniques are valuable
tools to utilize and combine extensive information on soil-forming factors, for example from remote
sensing [58].
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4.2. Upscaling of Microbiological Parameters

Topsoil pH values appear to be useful for upscaling three out of the four parameters investigated
in this study: leucine-aminopeptidase activity, ratio of alkaline/acid phosphomonoesterase activity
and C/N ratio. The significant correlations that we found between pH values, C/N ratio and enzyme
activities correspond to the study of Leifeld and von Lützow [59], who found that microbial soil organic
matter decomposition depended on pH and substrate C/N ratio rather than on inherent chemical
substrate properties. As linear models depending on pH value were used for upscaling (Table 6),
the predicted spatial patterns of enzyme activities and C/N ratio are arranged in the same spatial
patterns as the pattern of pH values (Figure 5). The significant relationships that we found between
predicted humus form dimensions on the one hand and predicted pH values, enzyme activities and soil
C/N ratio on the other hand suggest that also humus forms are a suitable indicator of microbiological
processes related to organic matter decomposition.

Regarding leucine-aminopeptidase activity, the positive relationship with topsoil pH values aligns
with Sinsabaugh et al. [60], who found an increase of this activity with increasing soil pH levels (pH 4
to 8.5). Furthermore, the slope exposure had a significant impact on leucine-aminopeptidase activity,
even though such exposure-effect was elevation-dependent and a higher activity was registered at
south than at north exposure only at 1400 m a.s.l. This suggests that at this specific elevation this
enzymatic activity might have been more sensitive to the differences in soil temperature between both
slopes, bearing in mind that also in alpine soils temperature is an important factor in the regulation
of soil N mineralization [61]. In addition, the type of vegetation could also have influenced the
potential activity of the leucine-aminopeptidase, since the proportion of easily available monomers
and polymers that enter the soil varies greatly depending on plant community composition as pointed
out by Sanaullah et al. [62].

Similar to the activity of leucine-aminopeptidase, the ratio of alkaline/acid phosphomonoesterase
activity shows a positive relationship with topsoil pH values. This implies that the activity of alkaline
phosphomonoesterase increases as compared to the activity of acid phosphomonoesterase under
less acidic conditions, which is consistent with earlier studies [63,64]. The ratio of alkaline/acid
phosphomonoesterase activity has also previously been reported as being closely related to the soil
pH value [65]. Our results confirm this relationship for high mountain forests of the Central Alps.

The soil C/N ratio of the A horizon is significantly, positively correlated with the pH value.
Similarly to the results of this study, other studies from mountain areas have shown an increasing C/N
ratio of the topsoil with elevation depending on the kind of litter [66–68]. Moreover, Cools et al. [20]
found a distinct relationship between the topsoil C/N ratio and the humus form.

The linear models used to quantify the relationships between the pH value and the microbiological
parameters are all highly significant, but differ in the explained variation as indicated by the coefficient
of determination (R2) (Table 6). Accordingly, a ranking of the parameters can be deduced with regard
to the quality of the predictions and to the usability for upscaling by proxy of humus forms and topsoil
pH values. The ratio of alkaline/acid phosphomonoesterase activity is ranked first; the C/N ratio
follows in the second position; the leucine-aminopeptidase activity takes the third position.

Additionally, standard errors of the predictions from the linear models were determined to assess
the accuracy of the predicted values in respect of its spatial variability. Although the pattern of the
standard errors corresponds with the independent variable (pH value), the maps indicate those areas,
where predictions are less accurate (mostly at the north-facing slope). Furthermore, they provide
quantitative accuracy values, which allow for the consideration of the magnitude of deviations when
using predicted values.

Contrary to the aforementioned parameters, upscaling based on pH values is infeasible for the
ratio of bacterial/archaeal abundance (P value ca. 0.22). Prosser and Nicol [23] suggested ammonia
limitation, mixotrophy, and pH as the main factors providing niche specialization and differentiation
between soil ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) in a wide
range of soil types. In a study of forest soils along an elevation gradient in South Tyrol (Italian Alps),
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Siles and Margesin [69] found that bacterial and fungal diversity properties and community structures
were highly correlated to topsoil pH values. However, archaeal, bacterial and fungal abundances were
not significantly related to pH values [69]. Corresponding to these findings, the results of our study
do not identify a significant relationship between the pH values and the ratio of bacterial/archaeal
abundance in the topsoil of a high mountain forest. This might be due to the complex interactions and
ecological functions of soil microorganisms or caused by the range of low pH values, in particular at
the north-facing slope. Especially for undisturbed forest soils, our knowledge of its autochthonous
microorganisms—even in the era of high throughput molecular ecology—remains limited [18,70].

Upscaling of microbiological parameters is based on two sampling sets and two steps of modeling
(random forest model together with kriging of the residuals and linear regression analysis). Therefore,
the model results are subject to potential uncertainty due to limitations both of the sample data
and of the models. The sampling set used for microbiological analyses comprises considerably less
investigation sites than the sampling set used for the determination of humus forms. Hence, that
sampling set is less representative in terms of factors such as elevation. In addition, those samples
for microbiological analyses partly were collected at sites within a few kilometers distance from
the slopes where humus forms were described (Figure 1). With respect to upscaling, the spatial
patterns of the pH value are used to derive predictions of the microbiological parameters with a
linear model. The model evaluation revealed that this is feasible for all parameters except for the ratio
of bacterial/archaeal abundance. Nevertheless, the actual relationship remains uncertain (whether
linear or not) and other factors potentially relevant for microbiological properties of the mineral soil
(e.g., soil C content, depth of the A horizon) are not part of these models.

4.3. Soil Ecological Implications

In mountain ecosystems, topography causes a high spatial variability of microclimatic conditions
and slope dynamics. The results of this study emphasize the considerable effects of topography on
decomposition processes as expressed by the distribution of humus forms, topsoil pH values and
microbiological parameters. Bojko and Kabala [71] established a significant relationship between soil
organic carbon pools and humus forms of mountain soils. In that regard, our results confirm the
findings from earlier studies that demonstrated the pivotal role of topography (alongside with factors
such as vegetation and climate) for the formation of soil organic carbon patterns in high mountain
areas [72–74]. Spatial variation of organic matter decomposition has been reported to be engendered
by differences of soil temperature [75–78], soil moisture [79–82], litter quality and quantity [83–85],
slope processes [86] and seasonality. These factors are likely to be strongly affected by the topographic
diversity in our study area, thus they potentially govern also spatial differences that we found in the
models of this study.

Furthermore, the results of this study are in line with the patterns of humus forms and soil
pH values described in previous studies of mountain forests. Egli et al. [87] investigated mountain
soils also within the area of this study and found a higher percentage of weakly degraded organic
matter as well as higher soil organic carbon concentrations at northern slope exposure as compared
to southern slope exposure. Other studies described patterns similar to this study regarding humus
forms, pH values and soil C/N ratio along an elevation gradient (e.g., [66,88]).

However, random forest models alone are not sufficient to predict the spatial distribution of
humus forms and pH values. Most of the variance in humus forms and pH values is not explained by
those models depending on climatic, topographic and vegetation influences. This insight points to the
importance of additional, currently undiscovered mechanisms determining decomposition processes.
These may include rather local effects of decomposer organisms [89,90], caused by e.g., litter affinity of
decomposer organisms [91,92], temporal shifts of decomposer communities during decomposition [93]
and responses to different levels of litter species diversity [81,94].

The results of this study show a strong relationship between topography on the one hand and
enzyme activities and the C/N ratio of the topsoil on the other hand (Figure 5). This relationship might
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be relevant to consider also for projections of future landscape development, as C and N cycling are
predicted to be affected by climate change, especially at high-elevation sites [95,96].

When integrated with those of previous studies [8,9,28], our findings show that the humus form
proves to be a comprehensive indicator for soil ecological processes in a high mountain environment
of the Central Alps, including soil macro- and mesofaunal as well as microbiological properties.

5. Conclusions

Variations of humus forms, pH values and microbiological parameters investigated in this study
are arranged in patterns that are related to topography. Although the underlying random forest
models explain only between 18% and 37% of the variances of humus form parameters and pH values,
the predictive maps reveal distinct patterns especially corresponding to elevation and slope exposure.
These patterns are also reflected by the spatial models of microbiological parameters. Unlike the ratio
of bacterial/archaeal abundance, all parameters are highly significantly correlated with the pH value.
Regarding their usability for upscaling by proxy of humus forms and topsoil pH values, they can
be ranked as follows: (1) the ratio of alkaline/acid phosphomonoesterase activity, (2) the C/N ratio,
(3) the leucine-aminopeptidase activity.

With this study, we applied concepts from digital soil mapping to the field of soil microbiology.
This study illustrates both the capability and the high value of modeling techniques to cope with soil
ecological research questions in a spatial context. Thus, we encourage further usage of soil-landscape
modeling in the context of soil ecological studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-8789/2/1/12/s1,
Figure S1: Results of the random forest model for the biogenic soil structure in the mineral soil, Figure S2: Results
of the kriging procedure of the model residuals for the biogenic soil structure in the mineral soil, Figure S3:
Results of the random forest model for the presence of organic layers above the mineral soil, Figure S4: Results
of the kriging procedure of the model residuals for the presence of organic layers above the mineral soil, Figure
S5: Results of the random forest model for the topsoil acidity, Figure S6: Results of the kriging procedure of
the model residuals for the topsoil acidity, Figure S7: Standard error of predictions from linear model of the
ratio alkaline/acid phosphomonoesterase activity as a function of the pH value, Figure S8: Standard error of
predictions from linear model of the soil C/N ratio as a function of the pH value, Table S1: Input data for linear
models of soil C/N ratio and enzyme activities depending on pH values, Table S2: Input data for linear model of
the ratio bacterial/archaeal abundance depending on pH values, Table S3: Humus forms and pH values sampled
at 60 sites in Val di Rabbi.
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78. Klimek, B.; Jelonkiewicz, Ł.; Niklińska, M. Drivers of temperature sensitivity of decomposition of soil
organic matter along a mountain altitudinal gradient in the Western Carpathians. Ecol. Res. 2016, 31, 609–615.
[CrossRef]

79. A’Bear, A.D.; Jones, T.H.; Kandeler, E.; Boddy, L. Interactive effects of temperature and soil moisture on
fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 2014, 70, 151–158.
[CrossRef]

80. Brockett, B.F.T.; Prescott, C.E.; Grayston, S.J. Soil moisture is the major factor influencing microbial
community structure and enzyme activities across seven biogeoclimatic zones in western Canada.
Soil Biol. Biochem. 2012, 44, 9–20. [CrossRef]

81. Santonja, M.; Fernandez, C.; Proffit, M.; Gers, C.; Gauquelin, T.; Reiter, I.M.; Cramer, W.; Baldy, V. Plant litter
mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a
Mediterranean oak forest. J. Ecol. 2017, 105, 801–815. [CrossRef]

82. García-Palacios, P.; Prieto, I.; Ourcival, J.-M.; Hättenschwiler, S. Disentangling the Litter Quality and Soil
Microbial Contribution to Leaf and Fine Root Litter Decomposition Responses to Reduced Rainfall. Ecosyst.
2016, 19, 490–503. [CrossRef]

83. De Long, J.R.; Dorrepaal, E.; Kardol, P.; Nilsson, M.C.; Teuber, L.M.; Wardle, D.A. Understory plant functional
groups and litter species identity are stronger drivers of litter decomposition than warming along a boreal
forest post-fire successional gradient. Soil Biol. Biochem. 2016, 98, 159–170. [CrossRef]

84. Makkonen, M.; Berg, M.P.; Handa, I.T.; Hättenschwiler, S.; van Ruijven, J.; van Bodegom, P.M.; Aerts, R.
Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal
gradient. Ecol. Lett. 2012, 15, 1033–1041. [CrossRef] [PubMed]

85. Hättenschwiler, S.; Gasser, P. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl.
Acad. Sci. USA 2005, 102, 1519–1524. [CrossRef] [PubMed]

86. Berhe, A.A.; Harden, J.W.; Torn, M.S.; Harte, J. Linking soil organic matter dynamics and erosion-induced
terrestrial carbon sequestration at different landform positions. J. Geophys. Res. 2008, 113. [CrossRef]

87. Egli, M.; Sartori, G.; Mirabella, A.; Favilli, F.; Giaccai, D.; Delbos, E. Effect of north and south exposure on
organic matter in high Alpine soils. Geoderma 2009, 149, 124–136. [CrossRef]

88. Bayranvand, M.; Kooch, Y.; Hosseini, S.M.; Alberti, G. Humus forms in relation to altitude and forest type in
the Northern mountainous regions of Iran. For. Ecol. Manag. 2017, 385, 78–86. [CrossRef]

89. Bradford, M.A.; Berg, B.; Maynard, D.S.; Wieder, W.R.; Wood, S.A. Understanding the dominant controls on
litter decomposition. J. Ecol. 2016, 104, 229–238. [CrossRef]

90. Prescott, C.E.; Maynard, D.G.; Laiho, R. Humus in northern forests: Friend or foe? For. Ecol. Manag. 2000,
133, 23–36. [CrossRef]

91. Austin, A.T.; Vivanco, L.; González-Arzac, A.; Pérez, L.I. There’s no place like home? An exploration of the
mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol. 2014, 204, 307–314.
[CrossRef] [PubMed]

92. Milcu, A.; Manning, P. All size classes of soil fauna and litter quality control the acceleration of litter decay
in its home environment. Oikos 2011, 120, 1366–1370. [CrossRef]

http://dx.doi.org/10.1016/j.catena.2016.09.022
http://dx.doi.org/10.1016/S1002-0160(12)60079-4
http://dx.doi.org/10.1016/j.geoderma.2014.01.021
http://dx.doi.org/10.1016/j.catena.2015.08.017
http://dx.doi.org/10.1038/nature04514
http://www.ncbi.nlm.nih.gov/pubmed/16525463
http://dx.doi.org/10.1111/j.1365-2486.2011.02496.x
http://dx.doi.org/10.1007/s00374-009-0413-8
http://dx.doi.org/10.1007/s11284-016-1369-4
http://dx.doi.org/10.1016/j.soilbio.2013.12.017
http://dx.doi.org/10.1016/j.soilbio.2011.09.003
http://dx.doi.org/10.1111/1365-2745.12711
http://dx.doi.org/10.1007/s10021-015-9946-x
http://dx.doi.org/10.1016/j.soilbio.2016.04.009
http://dx.doi.org/10.1111/j.1461-0248.2012.01826.x
http://www.ncbi.nlm.nih.gov/pubmed/22732002
http://dx.doi.org/10.1073/pnas.0404977102
http://www.ncbi.nlm.nih.gov/pubmed/15671172
http://dx.doi.org/10.1029/2008JG000751
http://dx.doi.org/10.1016/j.geoderma.2008.11.027
http://dx.doi.org/10.1016/j.foreco.2016.11.035
http://dx.doi.org/10.1111/1365-2745.12507
http://dx.doi.org/10.1016/S0378-1127(99)00295-9
http://dx.doi.org/10.1111/nph.12959
http://www.ncbi.nlm.nih.gov/pubmed/25103145
http://dx.doi.org/10.1111/j.1600-0706.2010.19418.x


Soil Syst. 2018, 2, 12 22 of 22

93. García-Palacios, P.; Shaw, E.A.; Wall, D.H.; Hättenschwiler, S. Temporal dynamics of biotic and abiotic drivers
of litter decomposition. Ecol. Lett. 2016, 19, 554–563. [CrossRef] [PubMed]

94. Setiawan, N.N.; Vanhellemont, M.; De Schrijver, A.; Schelfhout, S.; Baeten, L.; Verheyen, K. Mixing effects on
litter decomposition rates in a young tree diversity experiment. Acta Oecol. 2016, 70, 79–86. [CrossRef]

95. Gutiérrez-Girón, A.; Díaz-Pinés, E.; Rubio, A.; Gavilán, R.G. Both altitude and vegetation affect temperature
sensitivity of soil organic matter decomposition in Mediterranean high mountain soils. Geoderma 2015,
237–238, 1–8. [CrossRef]

96. Dawes, M.A.; Schleppi, P.; Hättenschwiler, S.; Rixen, C.; Hagedorn, F. Soil warming opens the nitrogen cycle
at the alpine treeline. Glob. Chang. Biol. 2017, 23, 421–434. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/ele.12590
http://www.ncbi.nlm.nih.gov/pubmed/26947573
http://dx.doi.org/10.1016/j.actao.2015.12.003
http://dx.doi.org/10.1016/j.geoderma.2014.08.005
http://dx.doi.org/10.1111/gcb.13365
http://www.ncbi.nlm.nih.gov/pubmed/27207568
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Sampling 
	Soil Analysis 
	Humus Forms 
	Topsoil Acidity 
	Soil Enzymatic Activities 
	Total C and N 
	Quantitative Real-Time PCR 

	Spatial Modeling 
	Model Assessment 

	Results 
	Discussion 
	Spatial Modeling of Humus Forms and Topsoil Acidity 
	Upscaling of Microbiological Parameters 
	Soil Ecological Implications 

	Conclusions 
	References

