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Abstract: Most of our terrestrial carbon (C) storage occurs in soils as organic C derived from living
organisms. Therefore, the fate of soil organic C (SOC) in response to changes in climate, land use,
and management is of great concern. Here we provide a unified conceptual model for SOC cycling
by gathering the available information on SOC sources, dissolved organic C (DOC) dynamics, and
soil biogeochemical processes. The evidence suggests that belowground C inputs (from roots and
microorganisms) are the dominant source of both SOC and DOC in most ecosystems. Considering
our emerging understanding of SOC protection mechanisms and long-term storage, we highlight
the present need to sample (often ignored) deeper soil layers. Contrary to long-held biases, deep
SOC—which contains most of the global amount and is often hundreds to thousands of years old—is
susceptible to decomposition on decadal timescales when the environmental conditions under which
it accumulated change. Finally, we discuss the vulnerability of SOC in different soil types and
ecosystems globally, as well as identify the need for methodological standardization of SOC quality
and quantity analyses. Further study of SOC protection mechanisms and the deep soil biogeochemical
environment will provide valuable information about controls on SOC cycling, which in turn may
help prioritize C sequestration initiatives and provide key insights into climate-carbon feedbacks.

Keywords: soil organic carbon; deep SOC protection; microbial processing; biogeochemical processes;
dissolved OC; C sources; C sequestration; climate change; land use; management

1. Introduction

Soils have the unique ability to sequester and store large amounts of carbon (C). They are
estimated to contain about two to three times the amount of C stored in the atmosphere and vegetation
combined [1,2]. Most soil C is in the form of organic C derived from living organisms and has been
stored for hundreds to thousands of years in deeper soil layers (below ~20 cm) [3,4]. Therefore, the loss
of even relatively small amounts of this soil organic C (SOC) could exacerbate global climate change
by releasing substantial amounts of greenhouse gases, such as carbon dioxide (CO2) and methane
(CH4), to the atmosphere. Various components of the soil environment interact to protect SOC from
loss or, alternatively, enhance the microbial decomposition of organic C compounds. Changes in
environmental constraints affect SOC cycling by altering soil properties and C inputs, which in
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turn alter soil microbial communities and processes, as well as their access to organic matter and
other nutrients.

Our shifting understanding of SOC “stability” and the interactions of organic C with the soil
environment have resulted in the proposal of numerous conceptual and mechanistic SOC models [2,5,6].
Here we provide a unified conceptual model for SOC cycling by gathering the available information
on SOC sources, dissolved organic C (DOC) dynamics, and deep soil biogeochemical processes.
Emphasis is placed on how our emerging understanding of SOC protection mechanisms translates
into a pressing need to sample deeper soil layers. We also discuss SOC vulnerability on a global scale
in different soil types and ecosystems. Finally, we identify additional common practices that may
affect SOC quality and quantity analyses and their comparability, such as the use of different soil
sampling methods [7], the exclusion of the coarse soil (>2 mm) fraction [8], and the use of varying SOC
fractionation techniques [9–11].

2. Vertical Distribution and Storage: Our Shifting Understanding of Soil Organic Carbon “Stability”

Soil depth plays an important role in SOC distribution. Although SOC concentrations decrease
rather linearly with increasing depth, total SOC storage is greater in deeper soil layers than at the
surface. In fact, due to increased mass in deeper soil layers, well over 50% of the global SOC stock
is stored in deeper soil layers (below ~20 cm) [12,13]. Radiocarbon ages of SOC also increase with
depth, with deep SOC commonly being as old as 1000 to more than 10,000 years [3,4,14,15]. The sharp
increase in SOC age from surface to deeper soil suggests that SOC is stored longer in deeper soil layers.

2.1. “Humus” Versus a Decomposition Continuum

Historically, long-term storage (or preservation) of SOC was thought to occur via the formation
of complex and “stable” SOC compounds, generally referred to as “humus”. While this theory
of “humification” is based on alkaline extraction of SOC in the laboratory (which Lehmann and
Kleber [2] describe as “incomplete, selective, and prone to creating artifacts”), contemporary, in situ
spectromicroscopic techniques have revealed the presence of much smaller, more chemically simple
organic C compounds in the soil environment [3]. Moreover, no modern analytic techniques have
observed “humic substances” in the soil [2], and alkaline extraction is unable to confirm the existence
of these substances [16]. The emerging concept of SOC storage as an ecosystem property, rather
than simply the result of chemical “recalcitrance” or “stability,” is well-supported in the literature
over the past few decades [2,3,5,17]. This concept is based on the premise that organic matter in
the soil decomposes along a continuum. Microbial processing increases the solubility and potential
for protection of organic C compounds [2,18,19]. Protection of these compounds is provided by the
interaction of the physical, chemical, and biological properties of the soil environment, which reduce
the probability (and thus rate) of decomposition, creating the capacity of soil to sequester C [2,3].

2.2. Physical Protection and Mineral Sorption

In most mineral soils, SOC protection occurs primarily through abiotic mechanisms involving
physical protection and mineral sorption [2]. Physical protection takes place in the fine pores of
soil microaggregates (0.053 mm < diameter (Ø) < 0.25 mm) in which anoxic conditions prevail or
which are inaccessible to, or spatially separated from, microbial decomposers [20,21]. Microaggregates
are often formed and stabilized within macroaggregates (Ø > 0.25 mm), the formation of which is
fostered primarily by roots [21,22]. Microorganisms, particularly root-associated microorganisms, and
organic matter also play key roles in fostering aggregate formation [21–23]. The sorption of dissolved
organic C (DOC) compounds to minerals occurs in large part with the clay fraction [24,25]. The iron
and aluminum hydrous oxides (secondary minerals containing iron and aluminum, respectively,
hydroxides [OH−], and weakly bound H2O) of some clay separates are especially effective sorbents
of SOC [5,24,26–29]. Mineral sorption is likely the primary means of SOC protection [2,30–36] and is
particularly important in deeper soil layers [2,5,26,37,38]. The fraction of SOC sorbed to minerals has
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been shown to increase with depth and comprise the majority of organic C stored in soils [25,26,39–41].
While the age of SOC in the surface soil is primarily dependent on climate and land use variables,
deep SOC age is more strongly related to soil type, highlighting the importance of soil texture and
mineralogy—specifically the clay fraction—in promoting long-term SOC storage [42,43].

2.3. Vertical Movement and Cycling

Major mechanisms contributing to deep SOC include C inputs from roots and
root-associated-microorganisms [25,44–50], as well as the translocation of DOC to deeper soil
layers [5,6,26,27,30,51]. Rain events and new inputs of organic matter are important drivers of
DOC flux [44,52]. Waterflow or the saturation of mineral sorption sites in surface soil layers by
organic matter inputs preferentially releases less-strongly-sorbed DOC from sorption sites [52,53].
Dissolved organic C released into the soil solution is susceptible to further microbial processing
and transport to deeper soil layers, where minerals often have greater surface area (higher clay
content and greater abundance of iron and aluminum hydrous oxides) and mineral surfaces
are not yet saturated with C [21,53,54]. As DOC is transported vertically down the soil profile,
certain organic C compounds are preferentially sorbed to mineral surfaces. Preferential sorption
appears to occur with smaller, microbial-derived, highly-oxidized, hydrophobic, and nitrogenous
organic C compounds [2,5,18,24,27,55–59], likely due to the stronger affinity for mineral surfaces
of proteinaceous microbial residues versus less proteinaceous plant residues [29,60–62]. Therefore,
the quality (i.e., composition) of organic C compounds plays a role in long-term SOC storage [63] in
relation to soil mineralogy and mineral associations, particularly at depth [64].

Dissolved organic C fluxes contribute indirectly and directly to SOC storage by supporting
microorganisms and sorbing to the mineral fraction, respectively. In fact, nearly one-third of deep
soil microbial activity may be supported by DOC fluxes [44]. Similar to SOC concentrations, DOC
concentrations decrease with increasing soil depth [27,52,54,65]. However, this decrease appears to be
primarily due to sorption rather than respiration losses [54,66]. Dissolved organic C age has been found
to increase with depth [52] and to approximate the age of SOC at the same depth [67,68], supporting
the framework of a continuum of organic matter decomposition and protection and release processes.

3. Inputs and Sources: A Deeper Look at Shoot Litter, Roots, and Microorganisms

Quantifying organic matter inputs to soil from various sources and their relative and total
contributions to SOC can provide key insights into processes related to SOC protection and cycling [18].
Organic matter inputs to soil include shoot litter, roots (including root death and a wide variety of
rhizodeposition processes, such as passive and active secretion of exudates and the sloughing of root
tissues), and microbial biomass [69–71]. Relative contributions to SOC from these three sources, and
the complex dynamics of their interactions with the soil environment, are largely debated.

Shoot-derived C is incorporated into the bulk SOC through the transport of DOC from the litter
layer [5,6,30,65], as well as through the mixing of particulate organic matter into superficial soil layers
via soil fauna (i.e., bioturbation). Bioturbation can play an important role in SOC cycling in some
ecosystems [26]. However, the abundance and effect (particularly long-term) of bioturbation agents
usually declines sharply with depth [72], and their contributions to deep SOC may be negligible
compared to DOC transport [73]. Because root- and microbial-derived C are input belowground,
incorporation into the DOC pool and bulk SOC may be more direct. Nonetheless, most belowground
C inputs undergo stages of decomposition via repeated microbial processing, protection, and release
into the DOC pool.

Studies that reviewed or modeled DOC dynamics in forest ecosystems estimated that
DOC-derived SOC represented ~20%–89% of total SOC [44,74–76]. Unfortunately, only shoot-derived
C contributions to the DOC pool were considered in these reviews and models, leaving gaps in our
knowledge of DOC dynamics [70,77] and the relative contributions of different sources to SOC [78].
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Here we review the evidence regarding SOC and DOC sources and provide a unified conceptual model
for SOC cycling (Figure 1).
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Figure 1. Proposed model for soil organic carbon (SOC) cycling showing root carbon (C) inputs as the
primary source of both SOC and dissolved organic C (DOC) in most ecosystems. Root-derived C is
shown undergoing multiple stages of microbial processing, protection, and release into the DOC pool
as it is transported vertically down the soil profile. Unlike shoot C inputs—which are often mineralized
in the litter layer or undergo partial oxidation via microbial extracellular enzymes—most root C inputs
will undergo microbial assimilation, biosynthesis, and turnover prior to SOC incorporation. Microbial
processing increases the solubility and potential for protection of organic C compounds, which are
protected primarily through abiotic mechanisms involving physical protection within soil micro- and
macro-aggregates (upper right inset) and mineral sorption of DOC compounds. Microbial activities, and
thus SOC decomposition, can be stimulated by multiple mechanisms, and the protection of SOC can be
counteracted by physical or biochemical mechanisms, such as by certain root exudates fostering the release
of organic C compounds from protective mineral associations (lower left inset). Soil fauna (e.g., detritivores)
are represented by earthworms, which contribute to bioturbation. Respired C is shown for the whole soil
(in relative amounts), as well as for individual processes. Differences in microbial communities between
the litter layer, rhizosphere (i.e., the portion of soil in the immediate vicinity of roots), bulk soil, and with
depth are indicated by color. Within the circles illustrating DOC cycling, thicker lines indicate more rapid
rates. The size of the ends of wedges represents a relative increase or decrease. Controls on the processes
shown include temperature, moisture, the flora and fauna present, and other ecosystem and soil properties
(e.g., parent materials, texture, mineralogy, and pH).
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3.1. Root Versus Shoot Contributions

About 40–50% of all C fixed by plants via photosynthesis is allocated belowground, and about
one-fourth of this C is released into the soil environment by growing roots via rhizodeposition [69,71,79,80].
Compared to aboveground contributions to mineral SOC, root-derived C contributions are approximately
1.5–10 times greater, and they may make up as much as 75% of total SOC [25,44–50]. In a recent review,
Jackson et al. [37] found that average root-derived C contributions to SOC in agricultural systems were 45%,
compared to just 8% for aboveground C inputs. Several direct and indirect mechanisms are responsible for
the incorporation of root C into the bulk SOC. Direct mechanisms include exudate sorption to mineral
surfaces and root litter protection in aggregate interiors, while indirect mechanisms include processing or
assimilation by root-associated microorganisms or mycorrhizae [19,21,81]. For example, ectomycorrhizal
fungi appear to obtain all their C from tree roots, thus acting primarily as a transfer of root C to the
surrounding soil environment [82]. In a chronosequence of boreal forested islands, 14C bomb-carbon
modeling revealed that 50–70% of the SOC was root- or root-associated-microbial-derived [83]. Similarly,
in a poplar plantation, mycorrhizal fungal external mycelium were found to contribute ~60% of new SOC
over three growing seasons, a larger contribution than fine root turnover inputs and over twice that of
shoot litter inputs [84].

Shoot litter and root manipulation experiments have provided mixed results as to whether
aboveground or belowground C inputs are more important for maintaining SOC stocks [85–87].
Recolonization of roots in “root exclusion” plots [86], potential changes in bulk density between
plots over time [86,88], and confounding variables, such as microbial biomass [89], can complicate
the interpretation of results. For example, shoot litter manipulations affected SOC concentrations
(at 0–10 cm in depth) after only two years in a wet tropical forest; however, changes in fine root
biomass, surface DOC fluxes, microbial biomass, nutrient fluxes, and soil moisture accompanied the
SOC changes [89]. Therefore, the effects of shoot litter manipulation on SOC concentrations may
have been indirect and more related to modifications in fine root biomass and root C inputs, which in
turn may have driven changes in microbial activity and microbial biomass turnover [89]. Although
some studies have shown the importance of shoot C inputs to maintaining SOC stocks [85,87,90],
changes in SOC quantity from shoot litter manipulations have not resulted in similar changes in
SOC quality [86,89]. In a temperate deciduous forest, SOC composition and microbial biomass
(at ~0–10 cm in depth) were strongly influenced by root manipulations over 20 years, while shoot
litter manipulations had no effect on either [91]. This indicates that SOC stocks are primarily derived
from underground sources. However, modifications in aboveground C inputs may rapidly affect SOC
quantity to varying degrees in different ecosystems, likely due to changes in both particulate organic
C [87] and complex biogeochemical interactions in the soil environment [86,90].

3.2. Microbial Processing and Turnover

Incubation and in situ root growth experiments have shown that the mean transit time of
root-derived C in soils is over twice that of shoot-derived C [21], which is often mineralized in
the litter layer [3,52]. The creation of micrometer-scale pores and aggregates by mycorrhiza and
root-hair activities enhance the physical protection of root-derived C from microorganisms [18,21,92],
as does the fact that C input belowground has more opportunities for interactions with the mineral
soil and sorption to the clay fraction than does shoot-derived C. Nonetheless, due to organic matter
inputs by roots, the portion of soil in the immediate vicinity of roots (i.e., the rhizosphere) has higher
concentrations of SOC and other nutrients, and thus enhanced microbial activity compared to the
bulk soil [21,93]. Therefore, a substantial portion of rhizodeposits undergoes microbial processing and
bio-transformation into other microbial-derived C compounds prior to SOC incorporation [6,25,79,81].
For example, root exudates—which are the primary form of rhizodeposits [69]—have been found to
rapidly approach the signature of microbial sugars, while rhizospheric sugars as a whole were found
to rapidly approach the chemical composition of the bulk SOC [79]. This suggests that a substantial
portion of root exudates, following microbial processing, is ultimately incorporated into the bulk SOC.
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Microbial necromass and products may make up as much as 80% of SOC [94]. Isotopic and biomarker
analyses confirm that root-derived C is the primary source of C for soil microorganisms [95,96]. Most
root C inputs undergo microbial assimilation, biosynthesis, and turnover [6]. In contrast, aboveground
C inputs may evade passing through a living microbial body, rather undergoing partial oxidation via
microbial extracellular enzymes [6]. Repeated microbial processing of root C inputs and interrelated
SOC protection mechanisms (i.e., mineral sorption) are particularly important in contributing to SOC
storage in deeper soil layers [51,97]. In fact, microbial-derived C compounds (amino sugars) associated
with root C inputs have been found to increase in abundance (amino sugars per g C) in the rhizosphere
and with increasing soil depth [25,98]. Additionally, soils with higher initial microbial biomass and clay
fractions result in greater incorporation of C inputs into microbial biomass and SOC [99,100], illustrating
the key role soil texture plays in SOC storage. By modelling root mass, amino sugars, the clay fraction,
and the particulate organic C fraction, Angst et al. [25] were able to account for >90% of variability in
SOC stocks [35,101].

3.3. Dissolved Organic Carbon Pool

A larger clay fraction leads to increased opportunities for SOC protection via mineral sorption of
DOC [25,27,32], the primary protection mechanism promoting long-term SOC storage [2,30–36]. At the
same time, because preferential sorption to mineral surfaces occurs with proteinaceous microbial
residues [29,60–62], SOC stored long-term is enriched in microbial-derived C compounds [63,98].
The strong relationships between root C inputs, microbial-derived C, the clay fraction, and SOC
storage indicate that the DOC pool is likely comprised primarily of root-associated-microbial-derived
C. Multiple studies reveal a sharp contrast between litter layer and mineral soil DOC sources and
fluxes. For example, in a meta-analysis of shoot litter manipulation experiments in temperate forests,
DOC differed only in the litter layer in response to aboveground C input changes, while there was no
response in the mineral soil [90]. Similarly, although isotopically-labelled shoot-derived C contributed
to ~70% of DOC leached from the litter layer in two deciduous forests, this fraction decreased to 8%
and 5% at 5 and 10 cm in depth, respectively [65], indicating that the majority of DOC in the soil profile
was derived from other sources. This is consistent with the lack of relationship found between mineral
soil DOC fluxes and environmental conditions in temperate forests, despite DOC fluxes from the litter
layer generally increasing with annual precipitation [102]. The evidence suggests that the sources and
drivers of DOC flux in mineral soil may be largely unrelated to the litter layer.

Root biomass and the DOC pool follow similar distribution patterns, with the majority of root
biomass across all terrestrial biomes in the upper 30 cm of soil [103] and the majority of DOC emanating
from the surface soil (above ~20 cm) in most ecosystems and decreasing with increasing soil depth [44].
In a temperate forest, mean microbial biomass and DOC concentration were two times higher in
rhizosphere compared to bulk soils, and the size of these organic C pools was positively related to
exudation rates [104]. Similarly, DOC concentrations in a temperate coastal prairie were highest directly
below the main rooting zone and the DOC was similar in magnitude and chemical characteristics to
DOC collected from a nearby forest [52]. Although there was some seasonal variation in surface DOC
concentration and composition in these contrasting grassland and forest ecosystems, the fluctuations
declined steeply with depth [52]. This indicates that fresh shoot C inputs are only a minor component
of DOC pools, limited primarily to the surface soil and fluxes following rain events after long dry
periods [52].

Isotopic and spectroscopic evidence have revealed that the DOC pool is comprised primarily
of smaller, more soluble, highly-oxidized organic C compounds released from the bulk SOC
following microbial processing [52]. In the deeper soil layers (below ~20 cm) of a temperate forest,
Ahrens et al. [51] determined that the DOC pool was comprised of 50–60% microbial-derived C.
Microbial diversity and DOC chemistry are both strongly associated with soil depth. In fact, microbial
population composition and the chemical character of DOC are interdependent and vary more with
soil depth than with landscape position or local vegetation [105]. Compared to shoot-derived C,
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root-derived C has a much greater influence on soil microbial community composition [106] and
biomass [91]. Similarly, SOC composition is strongly associated with soil depth, root C inputs, and
microbial biomass [86,89,91]. On the other hand, manipulations in aboveground C inputs have resulted
in only minor or no changes in SOC composition in the mineral soil, even after up to 20 years of shoot
litter manipulations [86,89,91].

3.4. Synthesis

The evidence suggests that, in most ecosystems, both SOC and DOC are primarily derived from
belowground sources (i.e., roots and microorganisms). Because shoot litter leachate may contribute
more substantially to bulk SOC as opposed to rhizosphere SOC [6], the ratio of rhizosphere to bulk
soil is an important factor in determining the relative contribution to SOC of aboveground versus
belowground sources [81]. Additionally, the litter layer likely plays an important indirect role in
maintaining SOC stocks in some forest ecosystems [89]. Our review indicates that microbial-derived
C, primarily from microbial-processed and bio-transformed root C inputs [25,95,96], comprises the
majority of SOC in most ecosystems [6,25,51,79,83,94] and is protected via the sorption of DOC
to minerals [27,52,79,104], particularly to clay [24,25,35]. As shown in Figure 1, root-derived C
undergoes multiple stages of microbial processing, protection, and release into the DOC pool as
it is transported vertically down the soil profile—helping resolve the argument that the phenomenon
of SOC radiocarbon ages increasing with depth is not well explained if roots are considered the primary
source of SOC [5,21,107].

4. Deep and Dynamic: Old Soil Organic Carbon is Susceptible to Abrupt Decomposition

Despite organic C in deeper soil layers having longer transit times than in more superficial
layers [108], SOC traditionally considered as “stabilized” is vulnerable to abrupt decomposition [3,109].
Numerous studies have indicated that deep and old SOC may be more susceptible than superficial
SOC to substantial and potentially rapid decomposition resulting from changes in environmental
conditions [33,109–117]. Important knowledge gaps exist regarding deep soil biogeochemical processes,
as well as the global amount of SOC and its vertical and spatial distribution [118–121]. Common bias
against sampling deeper soil layers not only contributes to uncertainty in global SOC estimates and
climate models, but it also limits our understanding of SOC cycling and protection mechanisms. Here
we highlight the need to sample deeper soil layers considering our emerging understanding of SOC
cycling and the growing body of evidence revealing changes in deep SOC over relatively modest
periods of time in response to changes in climate, land use, and management.

4.1. Global Stocks and Sampling Bias

Global SOC stocks from 0–100 cm in depth are estimated to range from 1220–1576 Pg C
(1 Pg = 1015 g) [12,13,122–126]. In a comparison of 27 studies over the past several decades,
Scharlemann et al. [118] found the median across all estimates for the global SOC stock was roughly
1500 Pg C in the upper 100 cm. Estimates for global SOC stocks from 0–200 cm in depth range
from ~2000–2500 Pg C [12,13], while the 200–300 cm stock was estimated at 351 Pg C [13]. Far fewer
observations exist of the size of SOC stocks in soil below ~20 cm, causing substantial uncertainty
in global SOC estimates [12,13,18,25,109,119]. Using a compilation of 86 published soil profiles,
Jandl et al. [119] found that about half were sampled to 20 cm or less and ~90% were sampled to
30 cm or less.

Ignoring the component of an ecosystem that often contains the most organic C (i.e., deep soil)
can lead to drastic misinterpretations of C cycling and changes over time [109]. For example, following
20 years of shoot litter manipulations in a temperate deciduous forest, Bowden et al. [86] found that
most of the SOC loss (compared to the control) in plots with no aboveground C inputs occurred between
10 and 50 cm in depth. However, in shoot litter manipulation experiments across five ecosystems and
totaling 70 publications used for a meta-analysis, the majority of sampling was conducted in the top
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10 cm of mineral soil [90], which may have led to substantial underestimations of SOC changes. Land
use conversion and climate change studies have also illustrated the need to account for deeper soil
layers when assessing SOC changes over time, wherein incorrect conclusions about the direction or
magnitude of SOC change can be drawn by shallow sampling [43,114,127]. Future progress toward
understanding the effects of climate, land use, and management change on global C cycling will come
from recognizing that deep SOC can (and does) change on decadal timescales.

4.2. Climate Change

Global surface temperature change by the end of the 21st century is projected to be in the range
of +2–4 ◦C, with greater mean warming over land masses than over the ocean and with the most
warming occurring in the Arctic region [128]. Although considerable variation in temperature can
occur in the surface soil and even in deeper soil layers, the soil profile as a whole approximates
the mean annual air temperature [129,130]. Therefore, soils will warm at roughly the same rate as
surface temperatures over the next century. Recent studies underscore the importance of the deep
SOC response to global warming. For example, in permafrost soils experiencing thaw, old deeper SOC
contributions to ecosystem respiration flux increased with soil temperature and ecosystem respiration
flux [113]. While in a temperate forest ecosystem, subjecting the mineral soil profile to 100 cm in
depth to 4 ◦C warming increased CO2 production at all depths and increased total soil respiration by
34–37% [114]. About 50% and 40% of soil respiration and the warming response, respectively, occurred
below 15 cm [114]. Unfortunately, most studies do not report the warming response below 20 cm [114],
leaving additional uncertainty in climate models.

Climate change also may have drastic implications for DOC flux. By the end of this century,
extreme precipitation events are expected to become more intense and more frequent over mid-latitude
and wet tropical terrestrial ecosystems [128]. These extreme precipitation events could transport
to deeper soil layers large amounts of DOC comprised primarily of recently-fixed C, especially
after prolonged periods without rain events where fresh C compounds have accrued in the surface
soil [44,52]. While this could lead to enhanced potential for mineral associations at depth, and thus
longer-term SOC storage, rapid fluxes of DOC can also result in increased DOC export [67,131].
Moreover, increased and continuing fresh C inputs to deeper soil layers can enhance bulk SOC
decomposition for years to decades [115,117,132,133] by providing deep microbial communities
with the energy to synthesize extracellular enzymes for SOC decomposition [4,133–135]. That is,
the introduction of fresh organic C compounds to deeper soil layers can stimulate, or prime, microbial
activities, alleviating potential energetic barriers to SOC decomposition that may have existed.

Similarly, fresh root C inputs can enhance microbial activity and SOC decomposition,
a phenomenon referred to as (positive) rhizosphere priming [136,137]. Under changing environmental
conditions, wherein deep soil microbial communities are suddenly exposed to additional root C inputs,
increased bulk SOC decomposition can occur. For example, elevated atmospheric CO2 concentrations
and increased aboveground and belowground plant growth have resulted in losses of old SOC
that exceeded the formation of new SOC, potentially due to increases in rooting depth and root C
inputs [138–141]. In some cases, root exudates may drive increases in bulk SOC decomposition without
associated increases in microbial biomass, indicating that the microorganisms are allocating the energy
provided by fresh root C exudates to mineralization activities rather than to growth [133].

Interactions between root exudates and the soil mineral matrix can enhance the availability of
SOC. For example, the common root exudate, oxalic acid, fosters the release of organic C compounds
from protective mineral associations, thereby promoting SOC loss via microbial decomposition
or export [33]. This may be why soils with finer texture experience greater rhizosphere priming
effects than soils with coarser texture [132]. In other words, rhizosphere priming appears to impact
mineral-associated SOC—that potentially has been stored long-term—more than particulate SOC [132].
According to a recent meta-analysis, rhizosphere priming increases SOC decomposition rates by
an average of 59% [132], a phenomenon likely driven by root exudates rather than root litter [133].
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Compared to surface soil, deeper soil layers appear to be as sensitive or more sensitive to rhizosphere
priming [116,135]. In addition to possible rhizosphere priming effects, the introduction of roots to
deeper soil layers increases soil moisture variability and aeration through transpiration, exposing soil
microorganisms to potentially more favorable metabolic conditions [115].

Projected increases in hot temperature extremes over most land areas during the next century,
especially on seasonal timescales [128], could promote the loss of deep SOC by modifying fine root
distribution and corresponding rhizodeposits in the soil. In a study that modeled root allocation in
temperate forest ecosystems, increased soil temperatures, reductions in soil moisture, and subsequent
increases in soil strength led to fine root colonization of deeper soil layers [49]. Compared to coarse
roots, fine roots likely release more exudates that travel further from the root surface [142], and
they have faster turnover rates [143], both of which can induce rhizosphere priming effects in the
surrounding bulk soil. On the other hand, root litter appears to decompose slower in deeper soil
layers, likely due to shifts in microbial communities and decreased microbial biomass and available
nitrogen [130,144]. In the absence of rhizosphere priming effects, this slowly decomposing root litter
could increase SOC stocks and long-term storage under climate-change-induced increases in primary
production and rooting depth [130].

Despite multiple soil biogeochemical models projecting reductions in SOC stocks and increases in
CO2 emissions from soils under warming, a substantial fraction of experiments diverge with these
modeled results [145]. Additionally, some studies have shown varying priming effects with fresh
C inputs depending on soil properties or nutrition, plant nutrient contents, C sources, or relative
amounts of C inputs to soil [146–152]. Although additional shoot litter may be unlikely to increase
SOC stocks [86,87,90], roots and root-associated microorganisms contribute more substantially to SOC
storage, particularly in deeper soil layers. Therefore, climate-change-induced increases in root biomass
and rooting depth would likely increase SOC stocks eventually [153]. However, such increases in
SOC stocks could take decades to manifest and may be preceded by priming-induced deep and old
SOC losses.

4.3. Land Use Change and Management

Land use change and management have been observed to impact deep SOC on decadal
timescales [154]. In a meta-analysis, conversion from forest to pasture was found to increase SOC stocks
by 7–13% above 100 cm, with similar increases for all depths sampled (<30, 30–50, and 50–100 cm) [155],
whereas conversion from forest to crop decreased SOC stocks by ~50% above 60 cm, with similar
decreases for the depths sampled (<30 and 30–60 cm) [155]. Conversion from crop to secondary
forest increased SOC stocks by 53% [155]; however, sampling depth was not noted in the analysis.
When deeper soil layers were sampled following conversion from crop to forest, SOC losses from
>15 cm in depth were found to offset surface SOC gains for at least 40 years after conversion [50,115].
Forest harvest also has been shown to affect deep soil, reducing SOC from 60–100+ cm in depth by an
average of ~18%, according to a recent meta-analysis [156]. Compared to harvest, thinning resulted
in even greater (+9%) SOC reductions in the mineral soil [156]. Deep SOC seems to be especially
sensitive to thinning practices [115]. For example, in a temperate forest, thinning reduced SOC stocks
by 25% compared to the control over ~11 years of treatments, with most of the loss occurring below
~20 cm [157].

Reductions in deep SOC following land use change and management practices likely result from a
combination of effects and complex interactions in the soil environment that enhance microbial activity,
SOC decomposition, and DOC export. Land use change and management can affect soil temperature,
moisture, and DOC flux, among other soil properties and processes [158]. For example, mean soil
temperature and mean daily soil temperature flux at 100 cm in depth have been observed to increase by
~2–4 ◦C and ~4–6 ◦C, respectively, in the first two years following harvest compared to an unharvested
reference in a temperate forest ecosystem [159]. Soils compacted by harvest treatments experienced
greater temperature increases than soils not compacted by the same treatments [159], probably due
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to the higher thermal conductivity of compacted soils [129]. These increases in soil temperature can
substantially hasten rates of SOC decomposition by enhancing microbial metabolism [129]. Similarly,
DOC flux is an important driver of soil biogeochemical processes. Increases in DOC flux from surface
soil layers due to land use change or management practices can introduce substantial quantities of
fresh C compounds to deeper soil layers, potentially enhancing old SOC decomposition and DOC
export [67,68,131,160].

Disturbance or changes in the litter layer in response to land use or management can also affect
deeper soil layers. For example, the exclusion of aboveground C inputs over 20 years in a temperate
deciduous forest resulted in reductions (−24%) in SOC stocks to at least 50 cm in depth, with much
of this loss occurring below 10 cm [86]. On the other hand, increased aboveground C inputs, which
could result from enhanced forest productivity, have shown mixed promise toward increasing SOC
stocks [86,87,90]. Although few shoot litter manipulation experiments have sampled deeper soil
layers [90], a recent incubation experiment revealed that deep SOC as opposed to surface SOC would
be more susceptible to priming induced by increased aboveground C inputs [117]. Fresh C from
shoot litter could potentially reach deeper soil layers via preferential pathways of interconnected
large soil pores. Preferential pathways, which can persist for decades in forest ecosystems [161],
represent means for recently-fixed superficial C to enter deeper soil layers without substantial abiotic
and biotic interactions with the soil environment along the way [54]. Because decomposition rates in
preferential flow paths are likely enhanced [161] due to increased SOC concentrations (+10–70%) and
microbial biomass (+9–92%) compared to nearby bulk soil [27,162], these pathways can enhance SOC
decomposition in the surrounding soil.

Deep SOC losses observed following reforestation of formerly cultivated land may be primarily
due to rhizosphere priming effects induced by changes in root biomass and surface area, rooting
depth, and rhizodeposits [50,115]. That is, when relatively shallow-rooted agricultural ecosystems are
converted to deep-rooted forests, root C inputs are introduced to deeper soil layers and can enhance
or promote the decomposition of older SOC that was formerly protected under the agricultural
ecosystem [115,138]. Forest management practices such as fertilization also have been observed to
increase soil rooting depth [163], and the added nitrogen could enhance the potential rhizosphere
priming response in deeper soil layers [116,144]. On the other hand, increased live fine root length, and
thus increased activity and exudation, is considered the likely explanation for gains in SOC storage
following conversion from forest to pasture [153]. As noted previously, practices or environmental
conditions that increase root C inputs to soil are likely to also increase microbial biomass, which in turn
could eventually increase SOC stocks and long-term storage. Nonetheless, in the case of conversion
from crop to forest, SOC stocks took nearly 50 years to stabilize, resulting in deep and old SOC losses
before potential gains could manifest [50,115].

5. Vulnerability on a Global Scale: Permafrost, Peatland, Wetland, and Forest Soils

Our ability to increase SOC storage and decrease greenhouse gas emissions from soils on a large
scale is partially dependent on our gaining a deeper understanding of the mechanisms and controls
responsible for the protection of SOC [145,164]. Assessing the vulnerability of both shallow and deep
SOC in various soil types and ecosystems is essential to prioritize C sequestration initiatives and
constrain climate models. Not only is SOC distributed unequally in the vertical profile, with the
majority of SOC stored below ~20 cm [13], but it is also distributed unequally on global and spatial
scales, varying substantially across biomes and landscapes [35]. As the magnitude of SOC loss due to
both warming and priming increases with the size of the initial stock, soils with larger standing SOC
stocks are especially at risk in our changing world [163,165].

5.1. Permafrost Soils

Organic C is stored in soil wherever primary production rates and organic matter inputs are
greater than decomposition rates. This relationship of production versus decomposition is highly
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dependent on microbial controls, which in turn are highly dependent on climate. In general, maximum
decomposition rates occur in warm, humid environments. Therefore, the northern hemisphere stores
more SOC than does the southern hemisphere [126]. Soils in the northern permafrost (i.e., any
subsurface materials that remain below 0 ◦C for two or more consecutive years) region are estimated
to contain ~1700 Pg C to 300+ cm in depth [166], which is more than the global SOC stock estimated
for the upper 100 cm [118]. Nearly 90% of this ~1700 Pg C occurs in perennially frozen soils and
deposits [166].

Permafrost SOC is especially vulnerable to abrupt and potentially rapid decomposition due to
global warming [164]. While SOC in most mineral soils is protected in aggregate interiors or through
adsorption to mineral surfaces [2], protection from microbial decomposition in permafrost soils is
primarily dependent on the frozen conditions of the soil [164,167]. The thawing of permafrost thus
enables the decomposition of ancient SOC. Unfortunately, the Arctic region is likely to warm more
rapidly than the global mean [128], which is expected to increase seasonal permafrost thaw depths by
at least 30–50% by 2050 [168]. Substantial reductions, ranging from 37–81% by 2100, in the upper 3.5 m
of permafrost in the northern hemisphere have been projected by numerous climate models [128].
During and after permafrost thaw, protection and long-term storage of unfrozen SOC resulting from
soil processes, such as the development of soil structure or mineral sorption, is possible [3]. However,
thawed permafrost is also susceptible to erosion and mass movement by mudslides [129].

5.2. Peatland and Wetland Soils

Similar to permafrost soils, peatland and wetland soils are more vulnerable than most mineral
soils to rapid change because the protection of SOC in these systems is primarily dependent on the
anaerobic conditions under which the soils formed [164,167]. Peatlands and wetlands are estimated
to contain ~500 Pg C [169,170], or about one-third of the global SOC stock estimated for the upper
100 cm [118]. While peatlands occupy only 3% of the terrestrial global surface [171], they contain over
80% of this estimated 500 Pg C [169]. Expected decreases in soil moisture during the summertime in
continental areas [128,172] could potentially dry out surface layers of peat, thus making substantial
amounts of SOC available for aerobic decomposition [167]. While additional C sequestration in
vegetation and reduced CH4 emissions may offset increases in CO2 emissions from peatlands under
aerobic conditions, increases in peat fire frequency and severity expected due to higher temperatures
and peat drying would rapidly release large amounts of C to the atmosphere [167].

5.3. Forest Soils

Forest ecosystems are estimated to contain over half the global SOC stock [12,13,18], and soils
not affected by land use change have been acting as a global C sink for centuries [1,173]. Between
1990 and 2007, the world’s forests sequestered as much as 30% of annual global anthropogenic CO2

emissions [174,175]. However, differences between the two large fluxes of forest soil C inputs and
soil respiratory C losses are small [176,177]. Therefore, even minor changes in C inputs or losses
from forest soils can potentially affect the global C cycle [176,178]. In our warming world, it is
unclear if forest soils will continue to act as a global C sink. Hastened microbial metabolic processes
due to warming are projected to result in net global reductions in SOC storage [179]. Moreover,
in some forest ecosystems, warming-induced increases in primary production and rhizodeposition
could result in priming effects, further decreasing SOC stocks for decades, particularly in deeper soil
layers [33,110–112,132,138–140,180]. On the other hand, given the pivotal role that microorganisms
play in SOC cycling—that is, increasing the solubility and potential for protection of organic C
compounds [2,18,19]—warming and increased belowground C inputs could potentially lead toward
greater opportunities for SOC protection and long-term storage [164].
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5.4. Models

Current soil models used for climate change projections do not reflect our emerging understanding
of SOC cycling, protection, and long-term storage mechanisms [164]. A recently developed SOC
model—Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment (CORPSE)—revealed
that priming effects, when accounted for, resulted in net SOC storage losses in most terrestrial
ecosystems under elevated CO2, counteracting SOC gains from increased primary production and C
inputs [181]. However, priming effects are generally unaccounted for in global models [138]. In fact,
standard models used to predict SOC dynamics do not incorporate direct microbial controls on the
vertical and spatial distribution of SOC stocks [126]. By modelling microbial processes, Wieder et
al. [126] were able to explain 50% of the variation in global SOC observations in the upper 100 cm
of soil compared to traditional models that explained only 28–30% of the variation. These results
underscore the importance of including microbial controls on SOC dynamics in global models, as well
as the need for further study of deep soil microbial processes, SOC protection mechanisms, and their
interactions [78,141,145,164]. Much uncertainty remains in controls on SOC cycling, particularly in
the deep soil environment. Long-term studies focused on changes in C inputs to soil—and resulting
shifts in superficial and deeper soil microbial communities and activity, DOC fluxes and chemistry,
SOC fractions, and greenhouse gas fluxes—are needed to help constrain soil biogeochemical models
and, by extension, climate models [145].

6. Sampling and Processing: The Need for Methodological Standardization

To understand the effects of climate, land use, and management change on C cycling in soils,
our ability to accurately quantify and compare SOC stocks over time is critical. Unfortunately, all soil
sampling and processing methods are not equally accurate, precise, or comparable. The inaccuracy or
incompatibility of SOC quality and quantity results obtained with different techniques presents
additional challenges toward understanding soil biogeochemical processes and SOC protection
mechanisms. Identifying these actual or potential issues and developing standards will move us
closer to creating more reliable global SOC databases and models.

6.1. Sampling Methods

Numerous soil sampling tools and methods exist. Of the three most common methods—which
include core, clod, and excavation methods—the core method is by far the most commonly used [7].
Despite being the most used method, the core method frequently has been found to underestimate
soil mass and bulk density compared with other soil sampling methods, which can lead to substantial
underestimations of SOC stocks [7,182–186]. Therefore, it is recommended that the accuracy of the core
method for measuring these parameters be assessed for a given soil and adjusted appropriately using
a more reliable method, such as the excavation method [7]. Additional incompatibility issues arise due
to whether soil is sampled by depth or horizon and how (or if) bulk density is used as the parameter
to calculate SOC stocks [7,187,188]. In general, sampling by horizon is recommended for studying
pedogenic controls on soil properties, while sampling by depth is recommended for nutrition-based
studies because it requires a smaller sampling size for a given error limit [189,190]. Calculating SOC
stocks using the mass-based approach is commonly recommended to avoid confounding effects caused
by land-use- or management-related changes in bulk density over time [88,191–195].

6.2. Coarse Fraction

Many studies exclude the coarse soil (>2 mm) fraction of SOC, which may contain a substantial
portion of organic C content [8,109,196]. The coarse soil fraction has been found to contain as much as
75% of total SOC in rocky forest soils [184]. Zabowski et al. [8] concluded that soils with a coarse fraction
greater than 20% (by weight) were likely to have substantial (>10% of total SOC) organic C content
in the coarse fraction. Within the 48 conterminous United States alone, skeletal (≥35% by volume
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rock content) soils comprise ~33% of the area [188]. Therefore, the common practice of discarding the
coarse fraction of soils could result in substantial underestimations of the SOC stocks of rocky soils if
the volume of soil occupied by coarse fragments is considered void (i.e., coarse fragment mass but not
volume is subtracted from SOC estimates, as suggested by Throop et al. [188]) [8,109,196]. Although
the coarse fraction of SOC has been historically ignored and considered chemically inert [196], Koele
and Hildebrand [197] concluded that nutrient exchange mechanisms were essentially the same for
both free and stone-protected fine soil (<2 mm) and that the coarse fraction contribution to short-term
nutritional dynamics was substantial. This evidence suggests that we cannot assume coarse fraction
SOC is inactive on decadal timescales. While it would be more labor-intensive, determining the
contribution of the coarse soil fraction to SOC in rocky soils would improve the accuracy of regional
and global SOC stock estimates [8,109,196].

6.3. Processing and Analysis

Soil can be processed field moist, wet, air-dried, oven-dried, or rewetted after drying. These
different methods, understandably, can yield very different results. For example, air-drying soil
increases the quantity or strength of organic C interactions with minerals, aggregate stability, and
DOC, while decreasing microbial biomass C and altering microbial community structure [9,198,199].
Similarly, the common practice of oven-drying soil prior to analysis was shown to increase DOC
concentrations [200]. Such effects should be considered and air- or oven-drying should be strictly
avoided when microorganisms [201], DOC, or SOC fractions are measured or analyzed. Sieving with
mesh sizes smaller than 5–6 mm can also alter soil microbial biomass and activity, as well as DOC
concentrations [201–203]. Dissolved organic C quality and quantity analyses are further complicated
by the different techniques available, including in situ and laboratory collection techniques [44,200,204]
and the use of various extraction methods (e.g., cold or hot with water or a CaCl2, K2SO4, or KCl
solution) [11,198,205,206], filter types [11], and pore sizes [207], all of which can lead to different results
or potential artefacts.

In general, DOC extracted with different salts is more similar than DOC extracted with water,
and the amount of DOC released from mineral soil is greatest for K2SO4, similar for KCl and water,
and slightly lower for CaCl2 [205]. Chantigny et al. [206] and Gabor et al. [205] recommend using
CaCl2 extraction in the laboratory for mineral soils to potentially limit organic matter desorption from
mineral surfaces or to reduce possible artifacts and interference for fluorescence analysis. Although
DOC extracted in the laboratory is not equivalent to DOC in soil solution extracted in the field
by lysimeters [205], soil pore water DOC also is not perfectly represented by lysimeters [208,209].
Concerning filter type, Chantigny et al. [206] and Zsolnay [11] recommend polycarbonate filters.
Unlike cellulose and acetate filters, polycarbonate filters do not appear to adsorb or release DOC [11].
Dissolved organic C is commonly extracted with a filter pore size of 0.45 µm. However, most DOC
compounds are smaller than 0.025 µm, and thus pore sizes between 0.4 and 1.2 µm have resulted in
DOC filtrates with similar properties [11,207]. To provide DOC properties that are more homogeneous
and to reduce possible interference for fluorescence analysis, Chow et al. [207] recommend a filter pore
size of 0.1 µm or smaller.

6.4. Fractionation Methods

Finally, varying methods used for physical fractionation of SOC [10]—to isolate organic C
contained in differently sized aggregates, density fractions, and mineral-associations—add ambiguity
to meta-analyses and limit our ability to draw overall conclusions about organic C protection
mechanisms in the soil environment and in different soil types, ecosystems, and biomes. Not
only can SOC fractionation provide insight into mechanisms of C cycling in soils and controls on
long-term storage, but it can also reveal changes in SOC fractions over time that may not be evident
in the SOC stock as a whole [100]. Although there are many viable and useful SOC fractionation
techniques [10], given the essential roles that both mineral sorption [2,25,26,30–36,40,41] and aggregate
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formation [36,41,151,152,210,211] play in SOC cycling and protection, methods that include aggregate,
density, and particle-size fractionation [210] will provide the most robust data, moving us toward a
better understanding of SOC dynamics [145].

7. Synthesis and Future Directions

Any changes in microbial controls, root biomass and surface area, organic matter, or soil properties
(e.g., temperature and moisture) can affect SOC accumulation, decomposition, and transit time—even
in deeper soil layers. Unfortunately, available data on SOC in the literature is often confined to surface
soil layers (above ~20 cm), which store less than half of the global SOC stock [12,13,18,25,109,119].
Deep SOC is not intrinsically “stable” and is vulnerable to potentially rapid decomposition when
the environmental conditions under which it accumulated change, as the studies reviewed herein
have revealed. With biological activity (and associated SOC cycling processes) often extending to at
least 100 cm in depth [212,213], and with half the variation in global SOC observations to 100 cm in
depth explained by modeling microbial processes [126], sampling soil to 100 cm in depth should be
the standard rather than the exception. However, sampling even deeper may be necessary in certain
cases, with some soils containing substantial SOC and microbial activity well below 100 cm [214–217].

The increased accuracy and precision of data gained by sampling deeper soil layers and by
following a standardized methodology for SOC quality and quantity analyses would enhance our
knowledge of SOC cycling and assist in reducing uncertainty in climate change projections [119]. Due
to increasing SOC radiocarbon ages with depth, losses of deeper SOC result in additions of relatively
long-sequestered C to the atmosphere and to a comparably short-term C cycle [3,14,15]. Further
study of SOC sources and biogeochemical processes in the deep soil environment will contribute
substantially to our emerging understanding of SOC protection mechanisms and vulnerability, which
can provide us with key insights into climate-carbon feedbacks, as well as help us to prioritize C
sequestration initiatives. Importantly, the evidence suggests that belowground C inputs (from roots
and microorganisms) are the dominant source of both SOC and DOC in most ecosystems. However, the
litter layer likely plays an important indirect role in maintaining SOC stocks in some forest ecosystems.
Our shifting understanding of SOC “stability” has important implications for future research and for
our understanding of the effects of climate, land use, and management change on SOC cycling.
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