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Abstract: Repeated applications of phosphorus (P) fertilizers result in the buildup of P in soil (commonly
known as legacy P), a large fraction of which is not immediately available for plant use. Long-term
applications and accumulations of soil P is an inefficient use of dwindling P supplies and can result in
nutrient runoff, often leading to eutrophication of water bodies. Although soil legacy P is problematic
in some regards, it conversely may serve as a source of P for crop use and could potentially decrease
dependence on external P fertilizer inputs. This paper reviews the (1) current knowledge on the
occurrence and bioaccessibility of different chemical forms of P in soil, (2) legacy P transformations
with mineral and organic fertilizer applications in relation to their potential bioaccessibility, and (3)
approaches and associated challenges for accessing native soil P that could be used to harness soil
legacy P for crop production. We highlight how the occurrence and potential bioaccessibility of
different forms of soil inorganic and organic P vary depending on soil properties, such as soil pH
and organic matter content. We also found that accumulation of inorganic legacy P forms changes
more than organic P species with fertilizer applications and cessations. We also discuss progress
and challenges with current approaches for accessing native soil P that could be used for accessing
legacy P, including natural and genetically modified plant-based strategies, the use of P-solubilizing
microorganisms, and immobilized organic P-hydrolyzing enzymes. It is foreseeable that accessing
legacy P will require multidisciplinary approaches to address these limitations.

Keywords: legacy phosphorus; speciation; transformation; accessibility

1. Introduction

Phosphorus (P) is essential to life on Earth. It plays critical roles in core biological systems associated
with energy storage, cell replication, and protein synthesis [1]. Among essential macronutrients, it is
often the concentration of bioaccessible P, or dissolved inorganic P, in soil that limits plant growth [2].
This fact makes the utilization of P, a finite resource that is mined from specific locations worldwide [3],
a critical component of the global food system that aims to feed a growing population [4]. When
inorganic fertilizers are added to soil to ameliorate deficiencies, P undergoes sorption, precipitation,
and organic matter complexation reactions that render it unavailable for plant uptake [5]. Consequently,
large quantities of fertilizers (globally, 16.5 million metric tons P y−1 [4]) are added to maintain soil

Soil Syst. 2020, 4, 74; doi:10.3390/soilsystems4040074 www.mdpi.com/journal/soilsystems

http://www.mdpi.com/journal/soilsystems
http://www.mdpi.com
https://orcid.org/0000-0002-9182-0957
https://orcid.org/0000-0002-1662-7372
https://orcid.org/0000-0003-0226-0757
https://orcid.org/0000-0002-1453-7402
http://dx.doi.org/10.3390/soilsystems4040074
http://www.mdpi.com/journal/soilsystems
https://www.mdpi.com/2571-8789/4/4/74?type=check_update&version=2


Soil Syst. 2020, 4, 74 2 of 22

solution P levels that are optimal for plant growth [6]. With only 10–36% of added P taken up by most
crops in the year of application [7,8], long-term P fertilization has led to the buildup of residual P in
soil (at a rate of ≈10 million metric tons P y−1 globally [9]) that is not immediately accessible to plants,
and is commonly known as legacy P. Legacy P can be categorized as inorganic and organic legacy P,
referring to excess, unassimilated inorganic and organic P, respectively, from added inorganic and/or
organic fertilizers in the year of application.

Long-term accumulation of soil P is undesirable from agricultural, economic, and environmental
perspectives. Apart from simply being an inefficient use of a finite resource, the buildup of legacy P, such
as in European and U.S. soils under long-term P fertilizer applications [10], also presents environmental
challenges. Excessive legacy soil P can result in its loss from soil by leaching and erosion to surrounding
water bodies. For instance, it is estimated that freshwater ecosystems have had a 75% increase in total
P as compared to their pre-industrial revolution state [9]; estuaries and other waterbodies may also
be impacted [11]. These increased loadings of P can lead to elevated concentrations and widespread
eutrophication of water bodies [12]. For example, 40% of U.S. lakes contain excess P, and ≈80% of states
reported the annual occurrence of harmful algal blooms in fresh waterbodies [13,14]. At the same time,
legacy P has drawn interest as a potential resource that may be harnessed to reduce use of P fertilizers.
Worldwide, soil P is estimated to be five times greater than minable P [15], represented graphically in
Figure 1, making the enhancement of legacy P for plant use potentially transformative to the global
food system.
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Currently, there are significant technological and societal challenges associated with accessing
legacy soil P as a resource for agriculture. First, legacy P naturally becomes available for plant use.
For example, highly P-enriched soils in North Carolina, USA, are estimated to support 50–250 years of
crop growth without P application [16]. However, actual crop recoveries of this residual P are highly
variable across soils, with 4 to >100 years after last fertilizer application needed to recover up to 80% of
added P [7,17,18]. Secondly, controlling and increasing soil P solubilization of inorganic legacy P or
mineralization of organic legacy P for plant use requires a detailed understanding of the occurrence and
reactivity of different soil chemical P forms. Most soil P is bound in bioinaccessible forms with iron,
aluminum, or calcium minerals, and organic matter [10,19]. Therefore, with more than 20,000 different
soil types mapped across the U.S. alone [20], determining the relative importance of these soil P chemical
forms in relation to edaphic factors is a challenge for developing effective management strategies. Third,
understanding the dynamic processes associated with P transformation from mineral and animal waste
fertilizers into these soil P chemical forms is necessary to maximize the contributions of legacy P as
a complement or substitute for externally added P fertilizers. Finally, technologies and strategies for
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potentially enhancing the capacity to dissolve inorganic legacy P or hydrolyze organic legacy P, herein
referred to as bioaccessibility, that are feasible on a large scale are not yet available.

In light of these challenges, this paper aims to review (1) the chemical forms of P in soil and their
variation with chemically relevant soil properties (Section 2), (2) the transformation of P into different
proportions of various chemical species after mineral and organic P fertilizer applications (Section 3),
and (3) different plant- and microbial-based approaches for accessing native soil P and potentially
legacy P and associated challenges (Section 4). We conclude with an overall outlook on legacy P as
a currently untapped resource that could potentially decrease the dependence on external fertilizer
applications in the future as research and technology advances, particularly with the generation of
plant cultivars with more efficient P mobilization and utilization processes/capabilities, and with the
use of P-solubilizing microorganisms (Section 5).

2. Occurrence and Bioaccessibility of Different Chemical Forms of Soil Legacy P

Inorganic P typically accounts for the bulk of total P in mineral soils [21]. Phosphorus is
predominantly taken up by plant roots via dissolved inorganic forms, viz. soluble orthophosphate
and its protonated forms. However, concentrations of soluble or bioaccessible phosphate in soils
are typically too low for optimal plant growth (ranging from 0.1 to 1 µmol P L−1 soil solution [22]).
This low dissolved concentration stems from the strong association of inorganic P with a myriad of
minerals. Kizewski et al. [19] compiled a list of the most commonly identified inorganic P species in
soils by spectroscopic techniques, which include the calcium phosphate minerals hydroxyapatite and
octacalcium phosphate, and phosphate adsorbed on Fe- or Al-oxide minerals.

Unlike inorganic P wherein solubilization equals bioaccessibility, organic P becomes bioaccessible
only after mineralization, a biological degradation process catalyzed by specific phosphatase enzymes.
Orthophosphate monoesters and diesters are the most common classes of organic P, with monoesters
typically comprising 50–70% of organic soil P [23,24]. Among monoester compounds, either the
inositol hexakisphosates (IHPs) or humic P constitute the predominant portion of this class [25–29].
These species have differing behaviors in soils, and thus understanding organic speciation of soil P is
also critical.

Building off of this knowledge, the following section focuses on the relationship between different
P forms and bioaccessibility as influenced by relevant soil properties—a topic that is critical to
understanding legacy P accumulation and the potential for legacy P utilization.

2.1. Inorganic P Forms and Bioaccessibility

Among edaphic factors, soil pH largely governs the speciation and bioaccessibility of inorganic
P species. In general, acidic pH (pH < 7) favors P association with Al and Fe whereas alkaline pH
(pH > 7) favors association with Ca [5]. For instance, in slightly acidic agricultural soils (pH 5.5–6.0),
bulk sample P-XANES (X-ray absorption near edge structure) spectroscopy analysis showed 46–56%
of total P adsorbed to Fe, 31–42% as Al phosphate mineral, 8–15% as apatite, and 0–12% as organic
P [30]. In alkaline, calcareous soils (pH 7.6–7.9), 54–74% of total P existed as hydroxyapatite and/or
dicalcium phosphate dihydrate, 25–35% adsorbed to Fe mineral (goethite), and 0–19% organic P [31].

Under acidic soil conditions, Fe- or Al-adsorbed and precipitated P forms control soil solution P
(Figure 2a–c). For adsorbed species, composition and phase impact their bioaccessibility. For example, P
adsorbed to goethite (α-FeOOH) desorbs similarly to gibbsite (Al(OH)3) and alumina (Al2O3) (within 10%
difference) at pH ≈6 under similar experimental conditions [32]. In fact, plant P uptake by ryegrass has
been demonstrated with goethite- and poorly crystalline Al(OH)3-adsorbed P at near sorption capacity as
lone P sources, demonstrating the potential bioaccessibility of adsorbed P species [33]. However, specific
soil mineralogies can strongly impact P extractability and potentially bioaccessibility. Phosphorus
adsorbed to amorphous Fe (hydr)oxide phases (i.e., ferrihydrite and Fe(OH)3) is 400–500 times less
desorbable than P adsorbed to goethite and amorphous Al(OH)3, with negligible desorption when Fe to
Al ratios are increased in amorphous Fe/Al(OH)3 mixtures [34]. It is worth noting that current analytical
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capabilities, including spectroscopic techniques, such as P K-edge XANES, are limited in their ability to
distinguish between P species lacking in distinct spectral features [35], emphasizing that identifying the
key adsorbent species in soils is not always straightforward. Thus, functionally defined extractions
have been designed to estimate the concentration of poorly crystalline Fe and Al minerals and the P
associated with them [36]. Derived from these measurements, the degree of P saturation, defined as
the ratio of oxalate-extractable P to the sum of oxalate extractable Fe and Al [37], is an estimate of how
much of the P binding capacity of these minerals is occupied, and may serve as a useful tool in assessing
the relatively bioaccessible P stocks of legacy P, particularly for acidic soils [38].
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 Figure 2. Cont.



Soil Syst. 2020, 4, 74 5 of 22
 

2 

 

 
Figure 2. Soil solution pH controls: (a) dissolved phosphate concentrations in equilibrium with major
phosphate minerals, (b) adsorbed P concentrations on to various soil minerals, and (c) desorbed P from
different soil minerals as fractions of adsorbed concentrations. *Plotted data points were calculated by
Visual MINTEQ Ver. 3.1 at 0.001 KCl and excess concentrations of each mineral (2 g L−1). Adsorption
and desorption data were computed from the following works: 1 [39], 2 [34], 3 [40], 4 [41], 5 [32], 6 [42],
7 [43]. Lines are meant to guide the eye and do not represent model fits.

In alkaline soils, bioaccessibility of inorganic precipitated P is controlled by the following Ca
phosphate minerals of decreasing solubility: brushite (CaHPO4•2H2O) > β-tricalcium phosphate
(Ca3(PO4)2) > octacalcium phosphate (Ca8H2(PO4)6•5H2O) > hydroxyapatite (Ca5(PO4)3(OH))
(Figure 2a). In addition to brushite, calcite-adsorbed P can be another source of labile P, particularly
for calcareous alkaline soils (Figure 2). Although P adsorption to Fe (hydr)oxide minerals still occurs
under alkaline pH [40], fractions of desorbed P could be similar or greater from these Fe adsorbents
than from calcite at pH 8.2 (Figure 2b,c). This suggests that Fe adsorbents could still be controlling
more of solution P even in alkaline conditions. However, there is a lack of data on the plant uptake of
P from Fe or Al adsorbents under alkaline conditions.

In soils, P is often categorized into labile or non-labile pools, but this concept is rather arbitrary
with unclear molecular boundaries [44]. For instance, the use of Hedley sequential extraction method
could lead to chemical P redistributions in the course of the extraction process, overestimating Ca-bound
P species (i.e., hydroxyapatite), particularly for soils high in exchangeable Ca [45]. Similarly, agronomic
soil P tests using various types of chemical solutions (e.g., Bray 1 [46], Mehlich-3 [47], Olsen [48], or
Morgan [49] extractants), measure labile P, but the extractable P does not equate to P molecules that
plants access in soil. Hence, these tests are agronomically useful only when correlated and calibrated
with actual crop response [50]. The use of anion exchange resin membranes may offer a more direct
alternative index for bioaccessible fractions of soil legacy P by simulating root surfaces in removing
dissolved P at native soil pH, thus providing a better approach for predicting bioavailable P [51–53].
However, use of resins can be laborious, time-consuming, and likely incompatible with commercial soil
test laboratories where the farmers require quick soil diagnostic tests. Moreover, when well calibrated,
soil test extraction methods (e.g., Mehlich-3, Bray, Olsen, and other tests [54]) can determine the fertilizer
needs for crops. Consequently, despite being a better method to measure soil bioavailable P, the current
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use of the anion exchange method is largely limited to research purposes and has low adoption by
commercial soil test laboratories. It is worth noting that neither the soil test nor other commonly used
labile P extractions, anion resin P measurements, or any field sensing tools can distinguish the individual
P species contributing to dissolved inorganic P in soil solution.

2.2. Organic P Forms and Bioaccessibility

Soil pH has been shown to influence occurrence of total organic P and specific organic P species
differently. At higher pH in tropical rainforest soils, total organic P concentrations were found to be
greater (pH 3.3–7; R2 = 0.89), but this relationship appears to be reversed in temperate agricultural
grasslands (pH 5.3–6.7; R2 = −0.60) [55,56]. A more comprehensive regional study by Hou et al. [57]
showed generally uniform concentrations of total organic P with pH in tropical, subtropical, and
temperate forest soils. This agrees with total organic P concentrations remaining constant across soil
pH gradients (pH 3.7–7.8) along the arable Hoosfield strip at Rothamsted Research Station, UK [58].
In terms of specific organic P species, Turner and Blackwell [58] found that non-IHP phosphomonoesters
constituted the bulk of soil organic P (51–67%) and did not vary considerably across the Hoosfield
pH gradient. However, concentrations of IHPs (myo- and scyllo-isomers), DNA, and phosphonates
increased for pH ≤ 5 from relatively uniform concentrations (for IHP) or undetected presence (for DNA
and phosphonates) at higher pH (pH 5–8) [58]. The degradation of IHP may be limited by lower
enzymatic hydrolysis (breakdown) by phytase enzyme at higher pH, as its activity is mostly optimum
between pH 2 and 6.5 with fewer characterized phytases showing optimum activities between pH 7 and
8 [59–63]. In contrast, phosphodiesterase activities decrease at lower soil pH [64]. Additionally, greater
accumulation of IHPs and DNAs at highly acidic pH may arise from their stronger associations with
clay surfaces at low pH [65,66], with presumably decreased microbial activity under these conditions.

Soil organic P is positively related with soil organic C in natural ecosystems and cultivated grassland
soils [57,67–69]. No relationships have been drawn between IHPs and organic C, but mixed relationships
have been reported between DNA and organic C in non-agricultural and cropland soils [67,70]. In arable
soils, humic P has been highly correlated with soil organic C [70]. Positive associations with organic C,
however, do not necessitate equal rates of turnover for organic P. In a meta-analysis of 80 topsoils in
different countries, Spohn [71] found no changes in organic P concentrations in bulk soils or clay-size
fractions in comparison to the significant reductions in organic C concentrations due to land-use change
(i.e., native woodlands to croplands). Although different organic P species were not distinguished in
the meta-analysis, this analysis suggests that organic P forms are likely more persistent than organic C,
or their degradation is limited by factors independent of those of bulk organic C.

Among commonly identifiable organic P compounds, simple non-IHP phosphomonesters
enzymatically degrade the fastest, followed by phosphodiester, with IHP being most resistant [72].
The relatively rapid degradation of non-IHP monoesters could either be due to greater enzymatic
efficiencies of non-IHP phosphomonesterases [73,74] or to the longer persistence of these enzymes
in soils relative to phosphodiesterases or phytases [75,76]. Although sustained activities have been
reported for adsorbed non-IHP phosphomonoesterase [77] and adsorbed phytase [78], it is not clear
how much of these immobilized enzyme activities constitute in their activities in field soils. Moreover,
although many laboratory experiments imply limited IHP mineralization, when added in the field, IHP
has been reported to degrade rapidly, with 12–18% remaining in calcareous soils after 13 weeks [79,80].
However, it has also been recognized that freshly added IHP may be different from residual IHP that has
aged in field soils under much longer periods [78]. Dissolved organic P (<0.2 µm, molybdate-unreactive)
in soil water extracts hydrolyzed between 0 and 61% of molybdate-unreactive P in the presence of
added enzymes with highly variable fractions of hydrolyzed P class or species [81,82]. Similarly, organic
P in soil leachate from soils receiving inorganic fertilizer and dairy effluent hydrolyzed 36–54% of
malachite-green unreactive P (another measure for organic P) using enzyme additions [83,84]. However,
Toor et al. [84] reported 10–21% of unreactive P inherently hydrolyzed in the leachate in the absence
of phosphatase enzymes. These studies suggest that organic P could mineralize during transport in
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water, but their field hydrolysis may be less than laboratory measurements considering the optimized
conditions used in added phosphatase assays [85].

As for humic P, information is currently limited regarding its potential mineralization. Jarosch
et al. [86] reported highly significant correlation between enzyme-stable P and high molecular weight
unhydrolyzed organic P, consistent with humic P bearing monoester P linkages [87]. Collectively, these
studies not only show a gradient chemical stability of organic P but also suggest that humic P might be
the most recalcitrant form of organic P, thereby presenting a challenge towards mineralizing this pool
of soil organic legacy P for plant use.

3. Legacy P Transformations with Mineral and Organic Fertilizer Applications

As noted above, legacy P accumulates in soil with repeated additions of excess P fertilizers.
In the USA, inorganic P fertilizer is applied approximately 10 times more than organic fertilizers
(by mass; Table 1). This section reviews particularly how legacy inorganic P transforms into various
species with mineral and organic fertilizer applications as it relates to its overall speciation and
potential bioaccessibility in soils. We also review studies on impacts of fertilizer application and
cessation on implied transformations of specific organic legacy P. This section focuses on soil P species
transformation studies before and after fertilizer applications as probed by spectroscopic techniques
(i.e., P-XANES for inorganic P and solution P-NMR (nuclear magnetic resonance) for organic P).
Considering the analytical limitations of these techniques in distinguishing between fertilizer-derived
versus native parent material-derived inorganic P in soil, we consider existing soil inorganic P largely
as fertilizer-derived or legacy inorganic P throughout this section.

Table 1. Types and annual usage of phosphate fertilizers in the USA (the year 2015). Data are from the
United States Department of Agriculture Economic Research Service (https://www.ers.usda.gov/data-
products/fertilizer-use-and-price.aspx).

Inorganic P Fertilizers

Superphosphates Diammonium phosphate
(DAP) (18-46-0)

Monoammonium phosphate
(MAP) (11-(51-55)-0)

Other nitrogen–phosphate
grades

metric tons of material

651,162 2,236,864 2,458,331 1,723,509

Organic P Fertilizers

Compost Dried manure Sewage sludge Other organic materials

metric tons of material

101,062 86,900 192,101 196,800

3.1. Soil Inorganic Legacy P Transformations

Different types of P fertilizers have been shown to transform inorganic legacy P species of contacted
soils depending on soil properties, fertilizer placement, and incubation time. For instance, addition of
granular monoammonium phosphate (MAP; (NH4)H2PO4) or liquid ammonium polyphosphate (APP)
changes P speciation from predominantly Al-adsorbed P (>90%) to Fe-adsorbed (>70%) within 7.5 mm
around the point of application. These shifts towards Fe-adsorbed species also yielded the greatest resin
P extractability with MAP in acidic Oxisol (pH 3.9) and APP in Andisol (pH 5.9) [88]. Khatiwada et al. [51]
also reported predominantly Fe- and Al-adsorbed P (63%) and greater resin-extractable P from liquid
MAP than granular MAP (≈50%) when both fertilizers were deep-banded (at 10 cm below the soil surface)
and the soils were sampled at 7.5–10 cm depth. Incorporating single superphosphate (monocalcium
phosphate) with or without hog manure in bulk soil (0–20 cm) in an acidic soil (pH 5.87–6.13), increased
the proportion of Fe-adsorbed P (at 43 or 47%, respectively), and produced Ca-adsorbed P (31.5%) while
consuming 100% of apatite in an unfertilized control after 21 years of fertilization [89]. For the same
soils, NPK (nitrogen–phosphorus–potassium) addition more than tripled Olsen-extractable P to 10.4

https://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx
https://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx
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and 38.2 mg kg−1 for surface and subsurface layers, respectively; however, NPK application coupled
with hog manure increased extractable P up to nine times relative to unfertilized control soils (11.4 to
99.4 and 9.6 to 43.4 mg kg−1 for surface and subsurface soils, respectively) [89]. Positive association
suggested by these studies between soluble P and adsorbed P forms from additions of synthetic and
organic P fertilizers may indicate greater contribution of adsorbed P forms over precipitated P minerals
in supplying dissolved P in soils. However, although liquid MAP remained mostly adsorbed (≈80%)
even after 6 months of field application, resin-P extractability decreased by as much as two thirds [51].
This highlights the need to couple molecular-scale P speciation studies with macroscale measurements
evaluating soluble P (i.e., resin-P extractability), as well as experiments that address in-field kinetics of
P solubilization from identified P forms, ideally throughout the growing season and in the long term
(i.e., between years of production), when developing P fertility regimes.

Transformations of legacy P have also been shown to differ in alkaline soils upon additions of
inorganic P fertilizers. For example, Lou et al. [89] observed a slight increase in hydroxyapatite (71–78%
from 67–72%) with concomitant decreases in proportions of P adsorbed to goethite and alumina from
NPK additions to a calcareous soil (pH 8.1–8.4). However, to a non-calcareous alkaline soil (pH 7.4–8),
the same NPK applications (i.e., P as diammonium phosphate) shifted P speciation from predominantly
hydroxyapatite-P in unfertilized soil (52–57%) to brushite-P (44–63%), with a slight increase in goethite-
or alumina-bound P [89]. Inorganic P fertilizer applications generally increased Olsen-P from 11 to 19%
for calcareous or 9 to 41% for the non-calcareous surface soils, respectively [89]. On the other hand,
Kar et al. [90] reported that most soil P (55–90% of total P) precipitated as hydroxyapatite after the
addition of MAP coupled with urea, with the rest being adsorbed in a non-calcareous alkaline soil
(pH 7.9) from 0–20 cm away from the point of application. However, 27 years of urea-based fertilization
with or without P led to >50% reduction of hydroxyapatite species and enrichment of FePO4 for an
acidified alkaline Mollisol (originally pH 7.6 to 5.7) [91]. Together, these studies demonstrate how both
soil and fertilizer types influence predominant soil legacy P forms in the short and the long term.

Contrary to purely mineral fertilizations, adding manure alone or in combination with inorganic
fertilizers tends to show more consistent outcomes in diminishing proportions of more stable legacy P
species in alkaline soils. For example, applying hog manure with NPK promoted transformation of
hydroxyapatite into brushite (39–50%) on both non-calcareous and calcareous surface soils examined
by Lou et al. [89]. This agrees with the findings of Kar et al. [90] who showed that addition of solid
cattle manure to a calcareous alkaline soil (pH 7.8) also led to dominant precipitation of brushite
(60%), particularly at the point of application (i.e., center of the band). However, for both MAP- and
manure-fertilized soils, resin-extractable P decreased with increasing distance away from the point of
subsurface band application. Nevertheless, resin-P fractions were 10 times greater in manured compared
to MAP-fertilized soils [90]. Under laboratory conditions, Ajiboye et al. [92] also reported decreased
hydroxyapatite precipitation and altered distributions among more soluble P species (i.e., β-tricalcium
phosphate or calcite-adsorbed P) when different organic amendments were incorporated with calcareous
alkaline soils. Increased fractions of soluble P observed in manured alkaline soils has been attributed to
organic acids inhibiting precipitation of sparingly soluble Ca phosphate minerals and to the lower Ca to
P ratios in manure-amended relative to MAP-amended soils [90]. Together these speciation studies
suggest that manure enhances transformation of inorganic legacy P into more soluble chemical forms,
confirming their lability in resin P extractions. Management strategies or technological advances that
catalyze the solubilization from these pools would be necessary for legacy P to either substitute, if not
eliminate, mineral P fertilizers for crop needs.

Overall, results of reviewed literature in this section show that inorganic legacy P could convert to
more soluble forms with appropriate fertilizer management (i.e., fertilizer type and placement), but
these effects are soil-specific and vary with space and time. For example, formation of insoluble soil P
species was decreased in an Andisol (pH 5.9) with a liquid synthetic APP fertilizer, but decreased with a
granular fertilizer (MAP) in an Oxisol (pH 3.9) [88]. Additionally, although subsurface banding of some
inorganic and manure fertilizers enhanced more soluble inorganic legacy P speciation (e.g., brushite
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and adsorbed P forms) along with increased resin-extractable P, these effects were diminished farther
away from the point and time of application [51]. These results suggest that, depending on long-term P
application rates, placement, and soil type, fertilization-enhanced solubilization of inorganic legacy P
may be time-sensitive and likely microscopic in scale, which may not necessarily impact the bulk soils in
the rooting zone. This observation is consistent with the findings of Weyers et al. [31] and Koch et al. [30],
who reported insignificant effects of 3 to 16 years of mineral or manure fertilizer applications on inorganic
legacy P speciation of bulk soils. Moreover, the reviewed studies suggest that manure applications
may offer a benefit for enhancing the solubilization of soil legacy P (i.e., hydroxyapatite), particularly
for alkaline soils, and thus combining inorganic and organic P fertilizer applications may be a simple
management strategy for decreasing dependence for mineral P fertilizers. However, it should also be
mentioned that hydroxyapatite has also been detected as the main P species in acid soils (pH 4.2–5.9)
with a long history of receiving higher rates of poultry litter [93,94]. Therefore, the relationships between
application, solubilization, and ultimately crop utilization of manure-driven legacy P requires additional
long-term evaluation both for acid and alkaline soils. To further enrich our understanding on legacy P
transformations, we review organic legacy P transformations with fertilizer applications and cessations
in the succeeding section.

3.2. Soil Organic P Transformations

Existing soil organic P does not seem to be impacted by P fertilizer applications [95], suggesting
that organic legacy P may not be actively accumulating in organically P-fertilized soils. However, unlike
those of inorganic soil legacy P, many P fertilization studies evaluating organic legacy P transformations
are limited in investigating other specific fertilization variables (i.e., changes in organic legacy P
speciation as affected by fertilizer application in space and time). For example, in a field study on
bulk soils (0–20 cm) by Annaheim et al. [96], no significant changes were observed in concentrations
of different organic P forms receiving organic fertilizers relative to unfertilized controls, despite stark
differences in contents of organic P species in applied organic fertilizers (i.e., dairy manure, compost, dry
sewage sludge). By comparing the expected concentrations of what could have been accumulated after
62 years of additions, they also demonstrated the limited accumulation for all forms of added organic P
species, including IHPs, nucleic acids, and unidentified monoesters. Similarly, Dou et al. [29] reported
negligible IHP accumulation in farm soils receiving different types of manure for 8–10 years, despite an
estimated 30 kg P ha−1 annual additions from manure-derived IHPs. These long-term studies suggested
organic P mineralization that may have released and supplied inorganic P for plant uptake, although
they did not exclude transport losses (i.e., leaching and runoff). Although the fate of organic P species
was not determined, these studies suggest that organic fertilizers are not likely to build up organic
legacy P in mineral soils in a matter of years or decades. Moreover, their results indicate that inherent
or native soil organic P species in bulk soils are relatively more stable against mineralization (and/or
transport) in comparison to newly added organic P forms that appeared to be rapidly transformed to
inorganic P in the soil.

Indeed, native organic P has been found stable in soils even after cessation of external P additions.
For inorganically P-fertilized soils in Canada without history of manure additions, halting chemical P
fertilization for 15 years increased organic P and orthophosphate diesters and decreased most of the
IHP isomers including myo-IHP, although total IHP remained unchanged relative to continuously
P-fertilized soils [23]. Build-up of organic P when inorganic P decreased has been attributed to
drawdown or crop utilization of inorganic legacy P [95] from 28 years of prior inorganic fertilizations
before stopping P inputs [23]. Although Liu et al. [23] demonstrated crop utilization of inorganic legacy
P from soils, mineralization and consequently crop utilization of organic P appeared to be limited
in these soils. In another experiment in Northern Ireland, Cade-Menum et al. [97] reported similar
findings when orthophosphate decreased, but neither total organic P nor specific organic P forms
changed between various P-fertilized treatments from zero-P controls 5 years after P fertilizations
had stopped. Liu et al. [91] also found similar levels of accumulated organic P for both P-fertilized
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and non-P-fertilized soils in China after 27 years of cropping relative to baseline soils, except that
phosphodiesters considerably accumulated more in P-fertilized soils. Liu et al. [91] suggested that P
deficits induced degradation of phosphodiesters in soils not receiving P. Taken together, these studies
suggest that native organic P forms are not likely to mineralize or contribute to bioaccessible P for soils
with prolonged inorganic P fertilization history when soil test P is still sufficient.

Based on the reviewed studies above, organic P may be constituting a minor portion of legacy
P. Moreover, existing non-fertilizer-derived soil organic P may contribute less to plant uptake than
inorganic P in soils highly enriched with inorganic legacy P (i.e., soil test P above optimum) (Figure 3).
Organic P mineralization by microorganisms or plant roots may not be promoted when sufficient levels
of bioaccessible inorganic P exists. Conversely, mineralization of organic P into inorganic P may occur
to a greater extent than desorption and solubilization of inorganic P when bioaccessible inorganic P is
deficient (i.e., soil test P is below optimum). This is consistent with the work of Recena et al. [98], who
observed greater contribution of organic P to actual plant P uptake more in low-P than in high-P soils.
Mineralization of organic P forms under deficient soil P conditions could arise from stimulation of
microbial growth when C and N levels are not limiting [99,100], meaning when sufficient C supply is
present and soil C/N ratios are lower. Hence, balanced nutrient and organic matter management may
be required for releasing bound orthophosphates from natural organic P reserves in P-deficient soils.
More work is needed to better track the transformations of added organic P compounds from organic
P fertilizers under different fertilizer management scenarios and field conditions over different periods
of time. Building off this knowledge, the following section reviews the current literature on potential
plant, microbial, and biochemical strategies for accessing soil legacy P.
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4. Approaches for Accessing Native Soil P and Associated Challenges

4.1. Plant-Based Strategies

Plants can possibly utilize soil legacy P through naturally evolved strategies, such as induction of
root architectural changes and exudation of organic acids and enzymes, as well as possibly through
scientific pursuits for improving internal P use efficiency (i.e., plant yield per unit P uptake) [101,102].
Another way that plants can thrive on legacy P is through facilitation of symbiotic and beneficial
fungi and other soil microbes. However, the role of microorganisms will be discussed separately in the
ensuing section.

Root architectural response is a well-recognized plant mechanism for alleviating soil conditions of
low bioaccessible soil P [103], making it likely adaptable for extracting legacy P. Examples of efficient
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root configurational changes include highly branched root systems, increased production and length of
lateral roots, proliferation of root hairs, and formation of cluster roots among various crops [101,104–109].
However, these adaptations vary among crop species and genetic varieties [110–113]. Moreover, most
of root architectural studies have been performed on seedlings, which do not necessary correspond
to root architecture of mature plants grown in the field [114,115]. With limited field measurements
in this area [116], soil factors, particularly those associated with low soil P availability (i.e., soil pH),
could potentially restrict efficient root architectural responses in field settings. For instance, foraging
traits of maize cultivars characterized by greater root surface correlated well with improved P uptake
in neutral field soil, but not in alkaline soil [117]. Furthermore, root architecture has been found to
vary depending on the chemical forms and supply patterns of P [118], highlighting the importance for
understanding soil legacy P speciation and likely distributions across agricultural soils. Interestingly,
genotypes of common bean bearing more adaptive root architectures effectively grew in an unfertilized
low-P Ultisol, showing comparable P uptake with P-fertilized commercial varieties [111]. Together
these studies emphasize that, while efficient root systems can potentially mine soil legacy P, there is a
need for a field-based approach for identifying and matching efficient root systems with soil legacy
P and other soil conditions. Moreover, soil properties need to be considered in breeding programs
aiming for plants with high P uptake efficiencies.

Another plant adaptive means for potentially exploiting soil legacy P is root exudation of organic
acids and phosphatases. Organic acids are known to increase dissolved P by rhizosphere acidification,
competition for P adsorption sites, complexation of P-precipitating metals, and provision of C source
for P-mobilizing microorganisms [119–123]. However, organic acid production is highly specific to
certain plant species [121]. For instance, legumes are known to produce more root exudates than
grasses [2,22,124,125], which could be advantageous for P acquisition when legumes are intercropped
with cereals. However, increasing evidence exists regarding the minor role of organic acids on actual
plant P uptake compared to phosphatase activities or root architectural changes. For instance, legacy P
uptake was positively correlated with rhizosphere acid phosphatases, but not with organic anions, with
wheat (Triticum aestivum), oat (Avena sativa), potato (Solanum tuberosum), and canola (Brassica napus) in
low bioaccessible P soils [126]. Using statistical redundancy analysis, Sun et al. [127] also found that P
uptake of field-grown maize and alfalfa was explained more by root architectural changes (58–87%)
than total organic anion concentrations (<0.2–24%). This observation emphasizes the importance of
root architecture in acquiring P as compared to other mechanisms (e.g., strategic placement of organic
acids [128]), although experimental variables also present challenges in understanding organic anions
effects [120]. Nevertheless, these studies suggest that enhanced root exudation could effectively allow
plants to utilize soil legacy P when combined with highly adaptive root systems.

Apart from natural plant adaptations, genetic engineering can also be used to increase plant
uptake capacity and internal use efficiency of soil legacy P. Efforts related to this field have included
increasing P uptake by overexpressing P transporters responsible for root P uptake and P transport
to shoots, driving crop resilience to P deficiency [129]. For example, overexpression of transporter
TaPht1.4 in wheat promoted growth and P accumulation [130]. Similarly, modulating the expression of
OsPHT1 transporters in rice has shown to directly impact P uptake [131–136]. Phosphorus transporters
are regulated by genes and transcription factors, which are altogether induced under P-deficient
conditions [129,137]. Phosphorus-related genes have already been identified in major agronomic
crops, such as rice (Oryza sativa), maize (Zea mays), and soybean (Glycine max) [138–141]. Candidate
gene overexpression is a powerful approach to enhance nutrient uptake under conditions of low P
availability. It is also foreseeable that a combination of both increased uptake capacity and internal
P-use efficiency will be equally desirable for crops that have adapted and developed better P uptake
and efficiency use strategies.

Whereas natural plant adaptations (i.e., root architectural changes and root exudation) to mobilize
legacy P can be highly specific to plant species or varieties as noted above, genetic engineering can
increase legacy P acquisition and internal use efficiency for any desired crops. However, this work
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continues to be a long-term research trajectory. Consequently, much is still unknown as to whether
genetically engineered plants may successfully utilize soil legacy P and reduce, if not eliminate,
dependence of mineral P fertilizers. As with natural adaptative plant mechanisms, there is an added
uncertainty that these plants could address other soil stresses associated with low bioaccessible P (i.e., Al
toxicity in highly acidic soils). To this end, material science, microelectronics, and nanotechnology
should develop and deploy several sensor platforms (chemical, electromagnetic, optical, and genetic)
for detecting real-time below-ground root development and plasticity response to bioaccessible legacy
P. Genetic and genomics approaches should complement this sensor approach and will hone in on the
identification of the genes regulating P uptake, use efficiency, and tolerance to other soil conditions.
For example, the systems level understanding of the many genes, and their regulation, associated with
phosphate deficiency once unveiled would allow for predictive and prescriptive interventions. It would
be foreseeable to use genome editing technologies, such as CRISPR (clustered regularly interspaced
short palindromic repeats) technologies [142,143], to genetically test the functional relevance of
known (e.g., OsPSTOL1, AVP1, PHO1 and OsPHT1;6) [141,144–146] and unknown genes identified
in molecular studies. At the same time, it will be important to consider and incorporate stakeholder
perceptions and socio-economic considerations of genetically engineered crops for increased legacy P
mobilization and crop utilization to ensure adoption by end-users.

4.2. Phosphate-Solubilizing Microorganisms

A diverse genera of microorganisms including bacteria, fungi, actinomycetes, and cyanobacteria
have been reported to solubilize native soil P [147], making them potentially capable of solubilizing
legacy P. Phosphate-solubilizing microorganisms (PSM) dissolve or mineralize soil P largely through
the production of organic acids and phosphatases [148], and recent reviews have reported generally
increased crop growth and yield from the use of PSMs [147,149–151]. In general, most studies in this
field have focused on effects of PSMs on crop performance, but information is lacking on how PSMs
transform legacy P species during or after plant growth, Hence, in the following studies reviewed
below, we discuss PSM effects mostly on plant P uptake and growth and suggest research directions
for ascertaining the roles of PSMs in impacting legacy P.

Mycorrhizal fungi are perhaps the longest known microorganisms capable of accessing native
soil P owing to their capacity for symbiotic associations with 72% of vascular plant roots that began
450 million years ago [152] and could likely be used to access legacy P. Arbuscular mycorrhiza (AM)
scavenge greater soil volumes than plant roots for soluble P and rapidly transport acquired P to roots
via arbuscules, thereby minimizing the impact of naturally slow replenishment of dissolved P in soil
solution [153]. However, AM fungi are diverse; different taxa do not produce the same response from
the same plant species, and that the same fungus does not yield the same effects across different plant
species or varieties [154]. These effects could range from positive to negative with unknown reasons for
these inconsistencies, although elevated C expense by the plant to maintain the symbiotic relationship
has been suggested as being detrimental [126,155]. This suggests that compatibility between the plant
host and colonizing AM are required for a beneficial outcome of the symbiosis. However, interspecific
compatibility between the host plant and the fungi may also vary depending on soil chemical conditions
such as soil pH and associated occurrence of different forms of legacy P. Research is therefore needed in
understanding t legacy P speciation impacts symbiotic mycorrhizal associations, and vice-versa.

Inoculation of other PSMs to soils has also shown inconsistent effects on plant P uptake and
production. For instance, maize increased P uptake by 10% without P addition after 28 d on acidic soil
(pH 5.6) with Enterobacter radicincitans DSM 16,656 and Pseudomonas fluorescens DR54 inoculations [156].
However, the observed increase in P uptake had no effect on plant growth. In contrast, Bacillus mucilaginosus
inoculation to acidic soil (pH 5.2) did not improve shoot P uptake in maize [157], but Aspergillus FS9
and Bacillus FS-3 increased strawberry (Fragaria x ananasa cv. Fern) yield by 7% and 30%, respectively,
in a calcareous soil (pH 7.6) without added P [158]. Although PSM inoculations have been shown to
increase water- and resin-extractable P [156], future research needs to focus on how PSMs transform
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actual soil legacy P species. Direct information on solubilization or mineralization of soil legacy P
forms could serve as a tool in matching appropriate PSMs for the a given soil. Moreover, these data are
needed both in the short- and the long-term to explore sustainability issues with the use of PSMs in the
context of potentially minimizing mineral P fertilizer applications.

PSMs may not thrive on soil legacy P alone and thus may not completely eliminate dependence to
external P inputs. The need for supplemental P with PSMs is expected, considering that microorganisms
also need bioaccessible P and other essential nutrients for their metabolic processes to establish
and sustain microbial activity in soil. Supplementing PSMs with P fertilizers has improved shoot
production [156], increased P uptake [157], or exceeded yield of plants from uninoculated P-fertilized
control soils by 54–71% [158]. However, inoculating PSM with co-added P not improving plant P uptake
and yield has also been reported. This has been observed with Pseudomonas fluorescens Pf153 inoculations
to soils (pH 4.8 to pH 6.6) after 8 weeks of maize growth compared to uninoculated controls, despite
supplemental rock phosphate [159]. In this respect, future research needs to evaluate compatibilities
between supplemental P fertilizers and individual or combinations of various PSM species for a given
soil. Considering how mineral and organic fertilizers transform soil legacy P (Section 3.1), co-adding
mineral and manure with PSM inoculations may enhance utilization of existing P in soils. On one
hand, supplementing PSMs with inorganic P may provide for the immediate nutrient need of both the
microorganisms and the plants during PSM establishment in soil. On the other hand, supplementing
PSMs with organic P fertilizers may alter legacy P speciation into predominantly less sparingly soluble
forms. However, given that external P inputs may unavoidably add more to soil legacy P stocks, more
work is needed in finding the right balance between minimizing supplemental P additions while
maximizing solubilization/mineralization and consequently crop utilization of existing soil legacy P.
Moreover, additional research is needed in evaluating any potential combination among PSM species
capable of solubilizing P exclusively outside the roots with those capable of solubilizing P within the
roots (e.g., endophytic bacteria [160]) with particular application to agricultural crops. Finally, PSM
studies involving inoculations to actual test soils require molecular investigation of mechanisms of
action to ascertain utilization of legacy P.

4.3. Immobilized Organic P Hydrolyzing Enzymes

Loading organic P-hydrolyzing enzymes onto clay or nanoclay supports has also been explored as
a potential biofertilization strategy to mineralize organic P that could likely be applied to hydrolyze
organic legacy P. Menezes-Blackburn et al. [161] loaded phytases to either montmorillonite or allophane,
found that phytases produced by different microbial species differed in their activities. In their study,
phytase activity derived from Escherichia coli showed peak activity at pH 5 in water, representing
roughly 85% of free phytase activity at the same pH. However, phytase from Aspergillus niger showed
considerably reduced phytase activity at pH below 5.5 with the tested nanoclay supports [161].
Contrary to decreased activities of immobilized enzymes compared to their freely dissolved forms,
Calabi-Floody et al. [162] reported increased activities of up to 48% with allophane-immobilized
compared to freely dissolved acid phosphatases. Using the Michaelis–Menten equation to describe
degradation of p-nitrophenolphosphate as model organic P substrate, maximum rate of substrate
degradation by the enzymes reportedly increased from 33 to 38% with the allophanic compared to
montmorillonitic support. However, when composted cattle dung was used as the organic P source, none
of the immobilized or the free acid phosphatase showed significant differences from the unamended
dung in increasing dissolved inorganic P, which they attributed to high inorganic P concentrations
contained in the dung. In contrast, Menezes-Blackburn et al. [163] treated cattle manure with phytases
stabilized in allophanic nanoclays and found a significant increase in NaOH-EDTA P (commonly used
to extract organic P) and Olsen-extractable inorganic P in soil. However, they did not observe significant
hydrolysis of freshly added phytate with soil or manure amended with the immobilized phytases.
The stability of these nanoclay-supported enzymes in soils is also of concern, as greatly reduced enzyme
activity was also observed after merely 2 h of exposure to high temperature and after 1 d of exposure



Soil Syst. 2020, 4, 74 14 of 22

to protein degradation [161]. Overall, while immobilizing enzymes inside in carrier materials are
promising under laboratory conditions, this approach appears to be challenged by limited accessibility
of substrates and the interference of other dissolved compounds in the soil solution. Moreover, with
a short lifespan, the capacity of nanoclay-immobilized enzymes to release organically bound legacy
P in soils and sustain crop P needs would be highly challenged. Future research needs to focus on
finding new approaches to adding these enzymes using other carrier materials [164] without negatively
affecting their activities when added to soil or when combined with organic fertilizers.

5. Conclusions

Repeated P fertilizer applications over time has led to build-up of soil legacy P, which theoretically
could be utilized to substitute for, if not eliminate dependence on, mineral P fertilizers. However,
crop recovery of legacy P varies considerably across soils and duration. This paper reviewed (1) the
occurrence and factors controlling bioaccessibility of different soil P forms, (2) transformation of different
legacy P species with P fertilizer additions, and (3) currently studied strategies that could possibly be
used for exploiting soil legacy P for crop use. We found that soil legacy P exists predominantly as
inorganic P in either adsorbed or precipitated forms, and secondarily as organic P, mainly as monoester
or diester forms. Bioaccessibility of different chemical P forms is predominantly controlled by soil
pH either directly (e.g., desorption/dissolution of inorganic P species) or indirectly (e.g., enzymatic
degradation of organic P). We also found that inorganic legacy P could transform into more bioaccessible
forms with fertilizer applications, but this effect is highly specific to soil and fertilizer type and may
diminish away from the point and time of fertilizer application. In contrast, transformation of native
soil organic P forms does not appear to be impacted by fertilizer applications and cessations, suggesting
lesser accumulation of organic legacy P in soils, as well as lower potential for crop utilization of native
organic P in soil particularly when bioaccessible inorganic legacy P is sufficient.

Most currently pursued approaches for possibly increasing crop utility of legacy P are biological
in nature. These range from natural to genetically engineered plant adaptations for enhanced soil P
uptake and use efficiencies to the use of symbiotic or beneficial P-solubilizing microorganisms and
immobilized organic P-hydrolyzing enzymes. However, plant- or microorganism-based strategies
are limited by the high specificity of acquired adaptation mechanisms capable of solubilizing soil
P, whereas immobilized enzyme efficacy is mainly limited by physical and chemical constraints.
Moreover, studies investigating these approaches typically do not elucidate the mechanism of actions
for utilization of soil legacy P largely due to lack of molecular soil P speciation component.

As scarcity of P resources becomes a more pressing global issue, mining legacy P from soils may
emerge as a more pressing societal need. Harnessing this resource will require not only development of
new and existing technologies for improved legacy P utilization but also holistic management strategies
that incorporate multiple approaches tailored to specific soil environments. Overall, enhancing our
ability to access soil legacy P for croplands will require a multidisciplinary approach to establish soil
and crop management systems that enhance complementary use of the different chemical forms, spatial
variability, and temporal changes of legacy P. A systems approach should integrate many of the strategies
identified above, as well as future technologies, for accessing native soil P. As multidisciplinary advances,
for example in genetic engineering and material sciences, are combined with molecular soil P speciation
tools in addressing each approach’s limitations, it is foreseeable that prospects for widespread utilization
of legacy P as a partial or complete substitute for mineral P fertilizer may increase in the future.
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