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Abstract: In this work, we study the thermal stability of a hydrothermally treated stainless steel
(SS) selective solar absorber by annealing in air in a temperature range between 300 ◦C and 700 ◦C
for a soaking time of 2 h. Thermal stability testing in the presence of air is critical if the vacuum is
breached. Therefore, the SS was characterized by X-ray diffraction (XRD), mechanical, and optical
techniques. The XRD analysis shows that the grain size of the as-treated absorber is 67 nm, whereas
those of the annealed absorbers were found to be in the range between 66 and 38 nm. The phase of
the as-treated and annealed SS was further identified by XRD as Fe2O3. The EDS result shows that
the elemental components of the SS were C, Cr, Fe, and O. The strain (ε) and stress (σ) calculated
for the as-treated absorber are 1.2 × 10−1 and −2.9 GPa, whereas the annealed absorbers are found
in the range of 4.4 × 10−1 to 5.2 × 10−1 and −121.6 to −103.2 GPa, respectively, at 300–700 ◦C. The
as-treated SS absorbers exhibit a good spectra selectivity of 0.938/0.431 = 2.176, which compares with
0.941/0.403 = 2.335 after being annealed at 300 ◦C and 0.884/0.179 = 4.939 after being annealed at
700 ◦C. These results indicate a small improvement in absorptivity (0.941) and emissivity (0.403) after
annealing at 300 ◦C, followed by a significant decrease after annealing at 700 ◦C. The obtained analysis
confirms that the annealed SS absorber exhibits excellent selectivity and is suitable to withstand any
thermal condition (≤700 ◦C) in air. Thus, using a cost-effective approach as demonstrated in this study,
the as-treated and annealed SS absorber could be used for photo-thermal conversion applications.

Keywords: solar absorber; stainless-steel; absorptance; emittance; thermal stability; selectivity

1. Introduction

As a result of the global awareness of greenhouse gas emissions, air pollution, and
energy security issues, many governments and researchers around the world have been
motivated to search for alternative energies that must be environmentally friendly, clean,
affordable, and sustainable [1]. Seeking an ecofriendly, cost-effective, and feasible alter-
native to overcome the energy crisis is one of the most significant challenges humanity
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faces today [2]. Solar energy is one of the attractive solutions to replace fossil fuels, among
other diverse alternative energy sources, such as nuclear power, tides, hydro, and wind.
Due to the abundance of solar energy throughout the world, its low cost, and environ-
mental friendliness, it has piqued the interest of academia and industry [3]. Solar energy
is harnessed through photovoltaic and solar thermal collectors. The latter is a promising
solar energy harvesting technology that could be used for a variety of purposes, including
domestic hot water, solar thermal generation, industrial cooling, seawater desalination [4],
and electricity generation, among other things [5]. The solar selective absorber surface
is the vital component of the solar thermal collector because it absorbs high radiant en-
ergy in the UV–Vis–NIR range of the solar spectrum and exhibits low emittance in the
infrared range [6,7]. Photo-thermal conversion efficiency requires high temperature, and
hence operating temperatures of the collectors can rise up to 1100 ◦C. However, as the
temperature rises, the loss of thermal radiation energy increases, and the surface’s structure
and performance are affected to a large extent [8]. Zhiyan Yang et al. investigated the
solar selectivity and air thermal stability of a spray-fabricated cobalt–nickel–iron oxide
coating. The thermal stability of the two-layer Ni0.9Fe0.1Co2Oy coatings was evaluated
by continuously heating at 500 ◦C in the air for 48 h. According to this report, the solar
absorptance (α) remained unchanged at 0.93, while the emittance (ε) increased gradually
from 0.11 to 0.30 [9]. Xiang-Hu et al. reported the structure, optical properties, and thermal
stability of Al2O3-WC nanocomposite ceramic spectrally selective solar absorbers, which
exhibit α of 0.94 and ε of 0.08 at 600 ◦C. Based on their report, the absorber exhibits good
thermal stability in a vacuum at 600 ◦C for 5 h. The absorber seems to exhibit good ther-
mal stability in a vacuum at 600 ◦C for 5 h [7]. The operating temperature of the most
common solar absorbing coatings is between 200 and 600 ◦C. As a result, a type of solar
coating with exceptional thermal stability is sorely needed in environments with high
temperatures (T > 600 ◦C) [5].

The most commonly used methods in the world for preparing solar selective coatings
include magnetron sputtering, paint coating, and sol-gel [10,11]. Yuping Ning et al. used
DC magnetron sputtering to fabricate a NiCrAlO/Al2O3 solar selective coating, which
exhibits high absorptance and low emittance of 0.964 and 0.066 at 25 ◦C [12]. Vasiliy Pelen-
ovich et al. demonstrated the possibility of using non-equilibrium reactive RF magnetron
sputtering to deposit graded solar selective absorbers. The authors record the highest
absorptance and emittance at 0.909 and 0.0670, respectively [13]. To enhance the thermal
stability of the solar selective metal/dielectric multilayer, Ying Wu et al. employed a
multi-target magnetron sputtering method to form Cu, SiO2, and Cr layers, whereas the
Al2O3 layer was formed by atomic-layer-deposition (ALD). According to the authors, the
as-deposited sample showed α of ~0.954 and ε of ~0.196 (773 K), demonstrating its good
optical properties. After heat treatment at 500 ◦C for 72 h, α drops from ~0.033 to 0.951,
while ε decreases from ~0.028 to 0.168 [14]. Adiba et al. investigated the structural and
optical properties of sol-gel-synthesized NiO nanoparticles for selective solar absorbers and
transparent heat mirror applications. The authors determined the optical band gap of the
nanoparticles using UV-Vis absorption spectroscopy and discovered that their absorption
edge is in the ultraviolet region of the solar spectrum, confirming their potential for use as
selective solar absorbers and transparent heat mirrors [15]. Qihua et al. demonstrated that a
(sol-gel prepared) reduced-graphene-oxide-based, spectrally selective absorber (rGO-SSA)
has a low thermal emittance (ε = 0.04) and a high solar absorption of α = 0.92 at 800 ◦C [16].
The CoCuMnOx spinel ceramic film was deposited onto stainless steel 304 through the
sol-gel dip coating method to form a solar selective coating that exhibits a selectivity of
0.85 [17]. Tesfamichael et al. synthesized and characterized a FeMnCuOx particle-based
solar selective absorbing paint coating. Black carbon pigment was combined with silicone
and phenoxy resin to form the coating [18].

Magnetron sputtering technology produces a coating with excellent bonding and
optical properties, but it requires a vacuum environment, which in turns requires expensive
equipment for mass production [19]. Solar absorbers prepared using paint and sol-gel
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methods suffer from a lack of adhesion between the film and the substrate, and they exhibit
high emission, which has a significant negative effect on the absorber’s performance [20,21].

Therefore, the hydrothermal method may be a better alternative because it has several
advantages that overcome some of the above-mentioned challenges. These include low
process cost, simplicity, pollution-free operation, and ease of application on a large scale [3].
As a result, the method was used to treat the surface of the stainless steel (SS) in this study
in order to enhance its solar absorption property and to investigate the effect of annealing
temperatures on the structural and optical properties of the treated surface. Indeed, due
to its superior qualities compared to other metallic systems, SS is widely used in a wide
variety of applications [22]. Stainless steel (SS) is often used in the fabrication of solar
absorbers and can be rarely corroded under normal temperature and alkaline conditions. It
has been reported that the corrosion process of the SS can be accelerated by hydrothermal
conditions, leading to a special nano/microstructure oxide surface. The hydrothermal
condition is very sensitive to film preparation parameters, such as time and temperature,
which are very useful for obtaining the desired morphology and exploring an improved
new optical phase of the material. For this reason, the hydrothermal heat treatment has
been demonstrated to be a feasible technique to prepare solar selective absorbers for a
photo-thermal conversion application [3].

Thermal stability of selective solar absorber coatings is critical, as the absorber de-
grades over time at operating temperatures when exposed to vacuum or air, reducing the
life of the absorber and eventually resulting in failure [23–25]. Thermal stability testing in
the presence of air is critical if the vacuum is breached [26]. Herein, we report the thermal
stability of stainless steel (SS) solar absorbers that are hydrothermally treated and annealed
in the temperature range between 300 and 700 ◦C.

2. Materials and Methods
2.1. Materials

Six sheets of stainless steel (434-L. SAE Grade) with square shapes of size
2.00 cm × 2.00 cm, NaOH in pellet form (500 g, Semiconductor Grade, 99.99% Trace
metals basis) and solvents such as ethanol (200 Proof, Anhydrous, ≥99.5%) and acetone
(Laboratory Reagent, ≥99.5%) were obtained from Sigma Aldrich. Teflon-line autoclaves
(with 4 cm of diameter and 6 cm of height) used for hydrothermal treatment were ob-
tained from KIMIX Chemical & Lab Supplies (Ruco bank unit 13, Boston circle airport
Industrial north, Western Cape, 7525 South Africa). Chemical products such as ethanol,
acetone, and NaOH in pellet form were of analytical grade and hence used without any
further purification.

2.2. Methods

The hydrothermal technique was used to treat six sets of stainless steel (SS). The
treatment process of the SS is detailed elsewhere [3]. Briefly, the SS was cleaned in ethanol,
followed by acetone, and finally rinsed using deionized water. The sample in the autoclave
in the alkaline solution was heated in a laboratory oven for 1 h at 200 ◦C to modify its
surface layer, thus forming a film of different structure and composition.

To determine the thermal stability of the treated SS solar absorber, five specimens
with the obtained films were isothermally heated between 300 ◦C and 700 ◦C in air in a
furnace (Elite Thermal Systems Limited model TSH12/50/610-2416CG) for 2 h at each
selected temperature: 300, 400, 500, 600 and 700 ◦C. The temperature was raised from
room temperature to the required temperature at a rate of 9 ◦C/min and then cooled
at a rate of 10 ◦C/min after attaining the required duration. The used furnace has a
proportional–integral–derivative (PID) temperature control system to improve the accuracy
of the annealing process; we estimated an average of 0.1 ◦C in precision after performing
a number of experiments using the same furnace. One film was not annealed in order to
serve as the reference of the sample.
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2.3. Structural and Optical Characterization

The structural composition of samples was investigated by using X-ray diffraction
(Bruker AXS D8 X-ray diffractometer, Cu-Kα radiation of average wavelength ~1.54 Å,
operating at 40 kV and 35 mA in Bragg-Brentano geometry, Billerica, MA, USA). XRD
measurements provide significant information on the width and grain size of crystallites,
and phase’s identification [27]. The morphology and elemental composition of all samples
were studied by High Resolution–Scanning Electron Microscopy (HR-SEM: Hitachi X-650
electron microscopy unit with a resolution limit of 0.12 nm, coupled with the Energy
Dispersive X-rays Spectroscopy (EDS), Chiyoda City, Japan). The optical reflectance of the
samples was evaluated in the wavelength range of 0.25–2.50 µm by Cary series 5000 UV-Vis-
NIR double beam spectrophotometer, while the reflectance in the thermal wavelength zone
of 3.00–20.00 µm was characterized by Thermo-Nicolet 8700 Fourier transform infrared
(FT-IR) spectroscopy.

Solar absorptance (α) values for the samples were calculated using [8],

α =

∫ 2.5
0.2 [1− R(λ)]Isol(λ)dλ∫ 2.5

0.2 Isol(λ)dλ
(1)

where R, λ, and Isol denote reflectance, wavelength, and direct normal solar irradiance,
respectively, as defined by ISO standard 9845-1 (1992), with an air mass (AM) of 1.5. For
opaque materials, the absorptance (α) is expressed in terms of the total reflectance (Rλ).

α = 1− Rλ (2)

The thermal emittance (ε) was obtained using [28],

ε =

∫ 20
3.0[1− R(λ, T)]B(λ, T)dλ∫ 20

3.0 B(λ, T)dλ
(3)

where B (λ, T) denote radiance of a blackbody at temperature T.

3. Results and Discussion
3.1. X-ray Diffraction (XRD)

The X-ray diffraction profile of the as-obtained (Figure 1a) and annealed films
(Figure 1b–f) have been indexed to the Fe2O3 phases (JCPDS card no. 00-039-1346) and
(JCPDS card no. 00-033-0664). Figure 1 shows two different sets of peaks with different
structures of the (a) as-obtained and (b–f) annealed film within the temperature range of
300–700 ◦C. The crystal structures of the (a) as-obtained and (b–f) film annealed at different
temperatures were evaluated within the 2θ angular range of 15–90◦ by X-ray Diffraction.
The XRD analysis for the as-obtained and annealed films were tabulated in Tables A1–A6,
respectively (See Appendix A).

The results of the analysis, such as inter-planar distance (d), crystallites grain size (φ),
full width at half maximum (FWHM), lattice constant (a) and other XRD values for the
samples, were evaluated and are summarized in Table 1.
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Figure 1. XRD patterns of the (a) as-obtained (0 ◦C) and films annealed for 2 h in air at: (b) 300 ◦C,
(c) 400 ◦C, (d) 500 ◦C, (e) 600 ◦C and (f) 700 ◦C. The figure revealed the formation of the new
peaks and changes (width and height of the peaks) that occurred on them as the annealing
temperature increases.

Table 1. XRD results summarized for the (a) as-obtained (0 ◦C) and films annealed for 2 h in air at:
(b) 300 ◦C, (c) 400 ◦C, (d) 500 ◦C, (e) 600 ◦C and (f) 700 ◦C.

Sample t (◦) Dd/dbulk FW (Rad) φ (nm) ε (10−1) σ (GPa) δ (nm−2) a (Å)

a 0 0.020 0.024 67 1.2 −2.9 2.2 × 10−4 8.45
b 300 0.007 0.025 66 4.4 −103.2 2.3 × 10−4 7.27
c 400 −0.006 0.027 60 5.1 −119.2 2.8 × 10−4 7.61
d 500 0.002 0.032 51 4.6 −107.8 3.9 × 10−4 7.64
e 600 0.002 0.038 43 5.2 −121.6 5.3 × 10−4 7.66
f 700 0.002 0.043 38 5.2 −120.6 6.9 × 10−4 7.64

The inter-planer distances (d) were calculated for spectra using Bragg’s law [29],

d =
nλ

2sinθ
(4)

where λ~1.541 Å is the wavelength of Cu-K radiation, n = 1 and θ is the Bragg angle
(half of the measured diffraction angle). As shown in Table A1 (See Appendix A) the
average ratio of Dd/dbulk (where Dd = dexp − dbulk) is constantly positive, ranging from
0.002 to 0.007 for all hkl reticular plans, except for the film annealed at 400 ◦C, which
shows a negative value (−0.006). This indicated that the peaks of the film annealed at
400 ◦C are subjected to small compressive strain at the various crystallographic directions,
whereas the peaks of the film prepared and annealed at 300, 500, 600 and 700 ◦C are under
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tensile strain conditions. The average grain size of the crystallite (Ø) was evaluated using
Debye–Scherrer, expressed as [30],

〈Ø〉 = 0.9 λ

Dθ 1
2

cos θB
(5)

where λ, Dθ1/2 and θB are the X-ray wavelength (~1.541 Å), Full Width at Half Maximum
(FWHM) in radian, and Bragg’s diffraction angle, respectively. The FWHM of the treated
(as-obtained) film is 0.024 (rad), whereas the film annealed at different temperatures records
FWHM in the range of 0.025–0.043 (rad). The average grain size of the crystallite (Ø) for
the as-obtained film is 67 nm, whereas the annealed film at various temperatures records Ø
in the range of 66–38 nm, as shown in Table 2. Similarly, it is observed (Table 2) that as the
annealing temperature increases, the average grain sizes decreases, whereas the FWHM
tends to increase. The increment in FWHM can be attributed to island coalescence [31],
whereas the reduction in Ø can be attributed to reduction in surface roughness of the film [3].
Coalescence is a process whereby small crystallites combine to form larger crystalline
particles. The process causes major grain growth, which influences porosity and reduction
in surface roughness [32].

Table 2. Variation of the film pore’s diameter with increment in annealing temperature.

Sample Annealed Temp (◦C) Pore Diameter (µm)

a 0 0.47 ± 0.06
b 300 0.53 ± 0.07
c 400 0.49 ± 0.11
d 500 0.52 ± 0.10
e 600 0.59 ± 0.11
f 700 0.69 ± 0.11

The dislocation density (δ) was obtained from (Ø) using [33–36].

δ =
1
()2 (6)

where Ø is the average grain size of the crystallite. The δ was found to be 2.2 × 10−4 nm−2

for the as-treated film, while 2.3 × 10−4, 2.7 × 10−4, 3.9 × 10−4, 5.4 × 10−4, and
6.9 × 10−4 nm−2 were obtained for the films annealed at 300, 400, 500, and 700 ◦C, re-
spectively. It is observed that the film annealed at 700 ◦C exhibited a smaller value of
δ (6.9 × 10−4 nm−2), which implies that the film had fewer lattice defects and good crys-
talline qualities [37].

The lattice constants (a) were calculated using [3],

a = dexp
hkl ×

√
h2 + k2 + l2 (7)

where dexp
hkl is the experimental inter-planar spacing obtained from Bragg’s law, and h, k, and

l are the Miller indices denoting the plane. The bulk lattice constant (result obtained from
database) of the as-obtained film is ~8.35 Å (Fe2O3, JCPDS card no. 00-039-1346), whereas
the corresponding experimental average lattice constant for this film (annealed film) was
estimated to be ~8.45 Å, which is a little bit higher than the bulk value. The obtained
bulk lattice constant of the film annealed is ~5.04 Å (Fe2O3, JCPDS card no. 00-033-0664),
whereas the corresponding experimental lattice constant of this film annealed at various
temperatures (Appendix A Table A1) was estimated to be in the range of ~7.27 to 7.66 Å. The
small differences between the experimental lattice constant (aexp) and the corresponding
bulk lattice constant (abulk) may be due to the effects of tensile strains between the substrate
and film (Fe2O3).
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The strains (ε) and stress (σ) are given as,

ε =
aexp − abulk

abulk
(8)

σ = −2.33× 1011
[

aexp − abulk

abulk

]
(9)

where aexp and abulk are the calculated experimental and bulk lattice constant of the as-
obtained and annealed films.

The strains (ε) and stress (σ) along the a-axis in the as-treated film were found to
be 1.2 × 10−1 and −2.9 GPa, whereas the annealed film at 300, 400, 500, 600, 700 ◦C
records the values of the strain (ε) and stress (σ) at 4.4 × 10−1, 5.1 × 10−1, 4.6 × 10−1,
5.2 × 10−1, 5.2 × 10−1 and −103.2, −119.2, −107.8, −121.6, and −120.6 GPa, respectively,
using Equations (8) and (9). The stress (σ) negative sign obtained for the films annealed
shows that the film is in a state of compressive stress [29]. The presence of the compressive
stress can be attributed to the lattice mismatch between the bulk materials (~5.04 Å) and
films annealed (in the range of~7.27 to 7.66 Å). According to the reports, the lattice mismatch
between the film and the substrate results in a variety of strains of varying degrees [38].

However, examining the ε and σ in the film provides significant information on
the evolution of the defect, which is critical for better understanding and optimizing the
electrical and optical properties of the film. It has been reported that the band structure
of a material can change with the strain field, thereby changing its optical properties [39].
Therefore, the purpose of observing both ε and σ in this study is to determine the level of
cracks and other defects in the film treated (as-obtained film) and annealed in the range
of 300–700 ◦C. Fortunately, the obtained results of ε and σ in the films are not significant
enough to affect the optical performance of the films (absorber surface).

3.2. Scanning Electron Microscopy (SEM) Analysis

Figure 2 reports the surface morphology images of the (a) as-obtained and (b–f)
films annealed at 300, 400, 500, 600 and 700 ◦C, respectively. SEM images confirm the
presence of micropores distributed across the surfaces of all films. It has been reported that
micropores on the surface of a material minimize surface reflection, which in turn influences
photoabsorption by trapping the incident light and subjecting it to multiple reflections [3].
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cropores on the surface of a material minimize surface reflection, which in turn influences 
photoabsorption by trapping the incident light and subjecting it to multiple reflections [3]. 
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(c) 400 ◦C, (d) 500 ◦C, (e) 600 ◦C and (f) 700 ◦C. The insert figures revealed the size of the pores on
the film surfaces.

After the digitization of various HR-SEM images, the diameter of the average size
of the pores was found to be 0.47 ± 0.06 µm for the as-treated film, while 0.53 ± 0.07,
0.49 ± 0.11, 0.52 ± 0.10, 0.59 ± 0.11, and 0.69 ± 0.11 µm were obtained for the annealed
films at 300, 400, 500, and 700 ◦C, respectively. Table 2 shows that as the annealing
temperature increases, the size of the pores on the film increases. However, films annealed
at 400 and 500 ◦C (sample c & d) are not in trend, and this could be the effect of different
Teflon-line autoclaves used for film treatment via the hydrothermal technique.

3.3. Energy-Dispersive X-ray Spectroscopy (EDS) Analysis

The elemental composition of the (a) as-obtained and (b–f) films annealed at 300, 400,
500, 600, and 700 ◦C were determined using EDS. All samples contain similar elemental
components (i.e., C, Cr, Fe, and O) but have varying atomic percentages. The variation
in the atomic percentage (%) for each sample is summarized in Table 3, while Figure 3
illustrates the EDS analysis.

Table 3. EDS elemental analysis of the (a) as-obtained (0 ◦C) and films annealed for 2 h in air at:
(b) 300 ◦C, (c) 400 ◦C, (d) 500 ◦C, (e) 600 ◦C and (f) 700 ◦C.

Elements
Atomic Percentage (%)

a b c d e f

C 10.24 13.73 9.57 10.00 10.20 19.71
Cr 9.22 8.67 9.53 6.54 4.87 5.40
Fe 25.94 24.25 27.48 31.41 32.87 26.22
O 54.60 53.35 53.42 52.05 52.05 48.67

Total 100 100 100 100 100 100
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sition of the films as the annealing temperature varied.

It is observed that both as-obtained and annealed films contain Carbon (C), Chromium
(Cr), Iron (Fe) and Oxygen (O), but the atomic percentage (%) of these elements in the films
varies. It can be observed from Table 4 that the as-obtained film (a) contains the highest
atomic % of O (54.60%), whereas the film annealed at 700 ◦C (f) exhibits the lowest atomic
% of O (48.67%). This confirms that as the annealing temperature increases, the atomic %
of O decreases. Table 3 revealed that the film annealed at 600 ◦C (e) contains the highest
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atomic % of Fe (32.41%), whereas the film annealed at 300 ◦C (b) has the lowest atomic %
of Fe (24.25%). It is also observed that the atomic % of Cr in the film decreases from 9.22 to
8.67% when the film is annealed from 200 to 300 ◦C and later increases to 9.53% at 400 ◦C.

Table 4. Absorptance (α) and emittance (ε) of the (a) as-obtained and (b–f) film annealed for 2 h in air
at different temperature.

Sample T (◦C) α ε α/ε (η)

a 0 0.938 0.431 2.176
b 300 0.941 0.403 2.335
c 400 0.922 0.333 2.769
d 500 0.917 0.274 3.347
e 600 0.892 0.179 4.983
f 700 0.884 0.179 4.939

However, among the elemental components of the films, Cr and Fe, which are tran-
sitional metals, play a vital role in minimizing the thermal radiation from the material.
Indeed, the presence of transitional metal in a material helps to enhance its optical infrared
reflectance property, which is required to achieve high selectivity for photo-thermal conver-
sion applications. However, the element O also plays a significant role in the absorption
property of a metal. Metal atoms are composed of a metallic ion’s d-shell, which is partially
filled. When this metallic ion reacts with oxygen, the electrons become localized, forming
metallic oxide, a new material with a high absorption capacity. Transition metals’ high
infrared reflectance is due to the free electrons contained within their atoms, whereas their
absorption is influenced by the bonded electrons. Thus, the oxidized surface of the metal
exhibits a high absorption characteristic, whereas the transitional base metal exhibits a
high infrared property, which aids in minimizing thermal emission loss from the absorber
surface; thus, the combination of the two phases results in a good selective absorber with
the required optical properties for photo-thermal conversion applications [3].

3.4. UV-Vis-NIR Diffuse Reflectance Analysis

The optical reflectance of the (a) as-obtained and (b–f) films annealed for 2 h in air
at different temperatures was investigated by analyzing UV-Vis-NIR diffuse reflectance
data in the wavelength region of 0.25–2.50 µm, as illustrated in Figure 4. It is observed
that the film annealed at 300 ◦C (Figure 4b) exhibits the lowest reflectance of ~7%, whereas
the film annealed at 700 ◦C exhibits the highest reflectance of about 20%. Figure 4 further
shows that as the annealing temperature increases, the reflectance of the films also increases,
which confirms the negative effect of the high annealing temperature on the reflectivity
behavior of the film. It has been reported that the lower a surface’s reflectivity is in the
short wavelengths of the solar spectrum, the greater its absorptance value, whereas the
opposite is true in the longer wavelengths of the thermal spectrum; i.e., the higher the
reflectivity of a surface in the mid/long IR wavelength region, the lower the emissivity of a
material. Indeed, the two major requirements for achieving high selectivity of a material for
photo-thermal conversion application are the low reflectivity of the incident solar radiation
and the high reflectivity of the thermal radiation [3].
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Figure 4. UV-vis-NIR reflectance spectra of the (a) as-obtained (0 ◦C) and annealed films for 2 h in
air at: (b) 300 ◦C, (c) 400 ◦C, (d) 500 ◦C, (e) 600 ◦C, and (f) 700 ◦C. The variation of reflectance with
annealing temperature at UV-Vis region depicted in the figure implies an improvement in absorptance
as the temperature increases.

The decrease in the reflectance spectra (%R) of the films in the UV-Vis-NIR wavelength
zone can be attributed to surface oxidation induced by the NaOH used in the hydrothermal
treatment, as confirmed by EDS analysis. Another possible explanation for the decrease
in reflectance in this wavelength zone is the presence of micropores on the surface of the
films, as revealed by SEM analysis [3].

3.5. FT-IR Diffuse Reflectance Analysis

The optical reflectance of the (a) as-obtained and (b–f) films annealed for 2 h in air at
different temperatures was studied by analyzing the FT-IR diffuse reflectance data in the
wavelength zone of 3.0–20.0 µm, as shown in Figure 5. It is observed that the film annealed
at 700 ◦C (Figure 5f) exhibits the highest reflectance of ~90%, whereas the as-obtained film
exhibits the lowest reflectance of about 60%. Figure 5 further shows that as the annealing
temperature increases, the reflectance of the film also increases. The reflectivity reduction at
IR wavelength zone causes high emissivity to the absorber material, which in turn reduces
its selectivity. Hence, decrement in reflectivity in the IR region does not favor solar selective
absorber material for photo-thermal conversion application.

The decrease in reflectance spectra (%R) at the IR wavelength zone of the film can
be attributed to the increment in atomic % of oxygen (O), as revealed by EDS results.
The atomic % of the oxygen of the film annealed at 700 ◦C is 48.67%, and the value
keeps increasing up to 54.60% (film annealed at 0 ◦C) as the annealing temperatures
decrease, as revealed in Table 3. Indeed, increased oxidation has been shown to result in a
decrease in reflectivity in the mid/far-infrared wavelength region, causing high emissivity
on a material [3].
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Figure 5. FT-IR reflectance spectra of the (a) as-obtained (0 ◦C) and annealed films for 2 h in air
at: (b) 300 ◦C, (c) 400 ◦C, (d) 500 ◦C, (e) 600 ◦C, and (f) 700 ◦C. The variation of reflectance with
annealing temperature at IR region is revealed in this figure.

3.6. Absorptance (α) and Emittance (ε) Evaluation

Solar absorptance (α) was calculated for the films using Equation (1) and weighted by
solar irradiance based on the standard air mass 1.5 solar spectrum in the wavelength range
0.25–2.50 µm, while thermal emittance (ε) was calculated using Equation (3) and measured
Blackbody reflectance data [3]. The “α” and “ε” results of the films are shown in Table 4,
which reveals that as the annealing temperature increases, the absorptance increases first
from 0.938 (as-obtained SS) to 0.941 (annealed) at 300 ◦C and then continuously decreases
as the temperature proceeds to 700 ◦C, where the film exhibits the lowest absorptance
of 0.884. It is similarly observed that as the annealing temperature increases, the film
emittance decreases in the range from 0.431 to 0.179, as shown in Table 4. The decrease in
film absorptance is attributed to its low surface reflectivity in the UV-Vis-NIR spectrum,
whereas the decrease in emittance is attributed to high surface reflectivity in the mid/far-IR
wavelength zone, as illustrated in Figures 4 and 5. The error/standard deviation on these
data is ±0.11.

The increase in “α” is beneficial to the solar absorber’s properties, whereas the increase
in “ε” is detrimental to the solar absorber’s surface. This is because a high emittance value
results in a greater loss of energy absorbed by the surface [3].

However, Figure 6 has been plotted to show the variation of α, ε, and η of the films
with an increment in annealing temperatures. Figure 6 reveals that both the absorptance
(α) and emittance (ε) of the films tend to decrease as the annealing temperature increases,
whereas the selectivity factor (η) enclosed in Figure 6 tends to increase. The selectivity
factors (η) of the films were evaluated and found to vary from 2.176 to 4.983 ± 1.26, as
illustrated in Figure 6. This increment in η implies an improvement in the selectivity of the
film annealed at 700 ◦C.
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(0 ◦C) and annealed films at: (b) 300 ◦C, (c) 400 ◦C, (d) 500 ◦C, (e) 600 ◦C, and (f) 700 ◦C. The insert
figure depicts the improvement in the selectivity (α/ε) of the annealed films.

4. Conclusions

We have treated the surface of stainless steel to enhance its solar absorption property
using a hydrothermal technique. Following the thermal treatment at different annealing
temperatures, the SS absorber was characterized. The SEM images reveal micropores with
decreasing grain sizes and increasing full width at half maximum (FWHM) when annealing
temperature is increased, as confirmed by XRD analysis. The EDS spectrum indicates
the presence of the transitional elements Cr and Fe, which were evident in the optical
response. The SS absorber exhibited a lower reflectance at the UV-VIS-NIR wavelength
zone, and this can be attributed to the presence of micropores, which were evident in
the SEM images. The optical reflectance of the annealed films at the far-IR wavelength
zone were high (60 to 90%), resulting in the obtained minimum thermal emission of the
annealed SS absorbers. The major components of the as-treated and annealed film that
play a significant role in enhancing the selectivity of the SS absorber are Cr, Fe, and O,
as evidenced by the EDS result. Cr and Fe are transitional metals that help to enhance
the optical infrared reflectance property of a metal/film, whereas element O (deposited
on SS absorber through NaOH used during the hydrothermal treatment) enhances the
absorption property of the SS absorber. Thus, the oxidized surface (Fe2O3) of the SS exhibits
a high absorption characteristic, whereas Fe and Cr exhibit a high infrared reflectance
property, which aids in minimizing thermal emission loss from the absorber surface; thus,
the existence of these elements (Fe and Cr) in film results in a good selective absorber with
the required optical properties for photo-thermal conversion applications.

The as-obtained SS absorbers exhibit spectra selectivity of 2.176 (0.938/0.431), whereas
SS annealed at 700 ◦C exhibits 4.939 (0.884/0.179). These results indicate a significant
improvement in the selectivity (absorptivity/emissivity) of the SS annealed at 700 ◦C.
Hence, the annealed SS absorber could be a promising candidate for a photo-thermal
conversion application.
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Appendix A

Table A1. XRD values and crystallites size of the as-obtained film (Figure 1a).

Hkl θ bulk (◦) θ exp (◦) dbulk (Å) dexp (Å) Dd/dbulk
FWHM

(rad) Ø (nm) a (Å)

111 9.192 9.045 4.822 4.906 0.018 0.022 64.077 8.498
220 15.121 15.062 2.593 2.974 0.147 0.023 63.925 8.411
311 17.816 17.724 2.518 2.534 0.006 0.023 63.595 8.405
222 18.625 17.745 2.412 2.526 0.047 0.023 63.437 8.749
400 21.643 21.555 2.089 2.099 0.005 0.023 65.083 8.396
410 22.353 22.315 2.026 2.032 0.003 0.024 62.874 8.379
430 27.463 26.733 1.670 1.716 0.027 0.024 63.928 8.578
511 28.637 28.504 1.607 1.615 0.005 0.026 61.419 8.391
441 31.998 31.301 1.454 1.484 0.021 0.025 65.069 8.527
530 32.537 32.484 1.432 1.434 0.002 0.023 70.286 8.364
540 36.202 35.492 1.304 1.326 0.017 0.024 70.717 8.489
533 37.237 37.036 1.273 1.279 0.005 0.026 66.656 8.583
710 40.711 41.124 1.181 1.171 −0.009 0.028 66.206 8.278
642 43.654 43.395 1.116 1.121 0.005 0.027 70.052 8.390
731 45.115 45.013 1.087 1.089 0.002 0.023 83.796 8.369

Table A2. XRD values and crystallites size of the annealed film at 300 ◦C (Figure 1b).

Hkl θ bulk (◦) θ exp (◦) dbulk (Å) dexp (Å) Dd/dbulk
FWHM

(rad) Ø (nm) a (Å)

104 16.579 16.631 2.700 2.692 −0.003 0.024 61.648 11.097
110 17.806 17.759 2.519 2.526 0.003 0.024 60.604 3.572
202 21.759 21.644 2.078 2.105 0.013 0.025 60.934 5.954
116 27.046 26.941 1.694 1.700 0.004 0.025 63.404 10.479
122 28.715 28.651 1.603 1.607 0.002 0.025 64.543 4.819
300 31.996 31.395 1.454 1.479 0.017 0.025 63.921 4.436
125 33.014 32.429 1.414 1.436 0.016 0.026 63.522 7.867
1010 35.969 35.743 1.312 1.319 0.006 0.027 62.677 13.253
220 37.715 37.167 1.259 1.275 0.013 0.027 65.673 3.607
128 40.356 40.945 1.189 1.176 −0.012 0.025 73.594 9.764
226 44.271 43.129 1.104 1.127 0.021 0.026 74.046 7.473
042 45.673 45.114 1.077 1.087 0.009 0.028 71.089 4.862
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Table A3. XRD values and crystallites size of the annealed film at 400 ◦C (Figure 1c).

Hkl θ bulk (◦) θ exp (◦) dbulk (Å) dexp (Å) Dd/dbulk FWHM (rad) Ø (nm) a (Å)

012 12.068 12.079 3.684 3.680 −0.001 0.025 56.225 8.229
104 16.579 16.591 2.770 2.698 −0.026 0.026 56.139 11.124
110 17.806 17.829 2.519 2.516 −0.001 0.026 55.607 3.558
113 20.428 20.442 2.207 2.206 −0.001 0.026 56.317 7.316
202 21.759 21.855 2.078 2.069 −0.004 0.026 56.969 5.852
024 24.740 24.760 1.841 1.839 −0.001 0.027 56.223 8.226
116 27.041 27.037 1.694 1.695 0.0002 0.028 56.392 10.445
122 28.715 28.709 1.603 1.603 9.6 × 105 0.029 54.513 4.810
214 31.996 31.518 1.486 1.473 −0.008 0.028 57.595 6.752
300 33.014 32.478 1.454 1.435 −0.013 0.027 61.581 4.304

1010 35.969 36.059 1.312 1.309 −0.002 0.027 62.589 13.152
128 40.356 41.118 1.189 1.171 −0.015 0.029 62.641 9.730
134 42.458 42.624 1.141 1.138 −0.003 0.029 65.438 5.799
226 44.271 44.663 1.104 1.096 −0.007 0.025 78.051 7.269

Table A4. XRD values and crystallites size of the annealed film at 500 ◦C (Figure 1d).

Hkl θ bulk (◦) θ exp (◦) dbulk (Å) dexp (Å) Dd/dbulk FWHM (rad) Ø (nm) a (Å)

012 12.068 12.080 3.684 3.680 −0.001 0.031 46.557 8.229
104 16.579 16.578 2.700 2.699 −1.4 × 105 0.031 46.658 11.132
110 17.806 17.679 2.519 2.536 0.007 0.031 46.299 3.587
113 20.428 20.362 2.207 2.214 0.003 0.032 47.054 7.343
202 21.759 21.733 2.078 2.080 0.001 0.032 47.445 5.884
024 24.690 24.758 1.841 1.839 −0.001 0.032 47.134 8.228
116 27.046 27.057 1.694 1.693 −0.001 0.033 47.406 10.438
122 28.665 28.734 1.603 1.603 −0.001 0.034 46.185 4.807
300 31.996 31.372 1.454 1.479 0.018 0.034 48.511 4.439
125 33.014 32.396 1.414 1.438 0.017 0.032 51.432 7.874
208 34.801 34.845 1.349 1.349 −0.001 0.033 51.759 11.121

1010 35.969 36.085 1.312 1.308 −0.003 0.035 49.561 13.143
220 37.715 37.875 1.259 1.255 −0.004 0.034 51.616 3.549
223 39.380 40.258 1.214 1.192 −0.018 0.030 60.142 4.914
210 41.469 41.177 1.163 1.169 0.006 0.031 58.655 11.931
134 42.458 42.479 1.141 1.141 −0.0004 0.035 54.494 5.816
226 44.271 43.795 1.104 1.113 0.009 0.033 58.229 7.384

Table A5. XRD values and crystallites size of the annealed film at 600 ◦C (Figure 1e).

Hkl θ bulk (◦) θ exp (◦) dbulk (Å) dexp (Å) Dd/dbulk FWHM (rad) Ø (nm) a (Å)

12 12.068 12.077 3.684 3.682 −0.001 0.036 39.734 8.234
104 16.579 16.593 2.700 2.697 −0.001 0.036 39.917 11.121
110 17.806 17.818 2.519 2.518 −0.0003 0.037 39.720 3.561
113 20.428 20.444 2.207 2.205 −0.001 0.037 40.267 7.314
202 21.759 20.444 2.078 2.205 0.061 0.037 40.323 6.237
024 24.690 24.752 1.841 1.839 −0.001 0.038 40.575 8.228
116 27.046 27.064 1.694 1.693 −0.001 0.038 40.890 10.438
122 28.665 28.793 1.603 1.599 −0.003 0.039 40.081 4.797
300 31.996 31.265 1.454 1.485 0.021 0.039 41.900 4.454
125 33.014 32.474 1.414 1.435 0.015 0.037 44.226 7.858
208 34.801 34.598 1.349 1.357 0.005 0.038 44.468 11.187

1010 35.969 36.052 1.312 1.309 −0.002 0.039 43.028 13.155
220 37.715 37.758 1.259 1.258 −0.001 0.039 44.659 3.558
223 39.380 38.909 1.214 1.226 0.010 0.036 50.269 5.057
210 41.469 41.089 1.163 1.172 0.008 0.037 50.206 11.953
134 42.458 42.496 1.141 1.140 −0.001 0.039 47.325 5.815
226 44.271 44.345 1.104 1.102 −0.001 0.038 50.723 7.311
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Table A6. XRD values and crystallites size of the annealed film at 700 ◦C (Figure 1f).

Hkl θ bulk (◦) θ exp (◦) dbulk (Å) dexp (Å) Dd/dbulk
FWHM

(rad) Ø (nm) a (Å)

012 12.068 12.083 3.684 3.680 −0.001 0.041 34.647 8.229
104 16.579 16.579 2.700 2.699 −1.4 × 105 0.042 34.877 11.132
110 17.806 17.939 2.519 2.501 −0.007 0.042 34.778 3.537
113 20.428 20.466 2.207 2.203 −0.002 0.042 35.248 7.308
202 21.759 22.112 2.078 2.047 −0.015 0.042 35.688 5.788
024 24.690 24.766 1.841 1.839 −0.001 0.043 35.622 8.223
116 27.046 27.088 1.694 1.691 −0.002 0.043 35.955 10.427
122 28.665 28.826 1.603 1.598 −0.004 0.045 35.398 4.792
300 31.996 31.323 1.454 1.482 0.019 0.044 36.929 4.445
125 33.014 32.222 1.414 1.445 0.022 0.042 38.659 7.913
208 34.801 34.544 1.349 1.359 0.007 0.043 39.043 11.203
1010 35.969 35.799 1.312 1.317 0.004 0.045 37.909 13.236
220 37.715 37.671 1.259 1.261 0.001 0.045 39.360 3.565
223 39.380 39.611 1.214 1.208 −0.005 0.041 44.237 4.981
210 41.469 41.116 1.163 1.171 0.007 0.042 43.945 11.946
134 42.458 42.042 1.141 1.150 0.008 0.045 41.511 5.865
226 44.271 44.372 1.104 1.102 −0.002 0.044 44.629 7.307

List of Abbreviations, Symbols and Constants

SS Stainless steel
η Selectivity
FTIR Fourier Transform Infrared
UV-vis-NIR Ultraviolet-Visible-Near infrared
T Absolute temperature
a Lattice Constance
λ Wavelength
(α) Absorptance
(ε) Emittance
aexp Experiment results
abulk Results from database
d inter-planar distances
Dd Change in inter-planar distance
(Rλ) Total reflectance
AFM Atomic Force Microscopy
EDS Energy Dispersive Spectroscopy
XRD X-ray Diffraction
SEM Scanning Electron Microscopy
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