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Abstract: This study explores the potential for co-locating floating photovoltaics (FPVs)
with existing hydropower plants (HPPs) in Ecuador. Ecuador’s heavy reliance on hy-
dropower for electricity generation, combined with recent blackouts caused by prolonged
dry seasons, underscores the importance of diversifying energy sources. The integration of
FPVs with HPPs offers a promising opportunity to enhance energy security by reducing de-
pendency on a single energy source and improving economic, electrical, and environmental
outcomes. In this paper, we assess all HPPs in Ecuador and quantify the potential perfor-
mance of FPV systems when installed at their sites. Our results show that FPV systems can
not only contribute additional electricity to the grid but also improve HPP performance by
reducing water evaporation from reservoirs and maintaining generation capacity during
dry seasons, when solar irradiation is typically higher. To model the energy production,
yield, and performance of the FPV systems, we applied RINA’s methodology to estimate
representative weather conditions for each site and simulate FPV performance, accounting
for system design loss factors. Additionally, we calculated the water savings resulting
from FPV installation. Our findings reveal that, out of approximately 70 HPPs in Ecuador,
11 present favorable conditions for large-scale FPV deployment. Among these, Cumbayá
HPP (40 MW) exhibited the most suitable conditions, supporting a maximum FPV capacity
of 17 MWp. Marcel Laniado de Wind HPP (213 MW) and Mazar HPP (170 MW) were
also identified as optimal candidates, each with potential FPV capacities equal to their
installed HPP capacities. While this study primarily aims to provide scientific evidence on
the potential of FPV-HPP co-location, the results and methodology can also guide Ecuado-
rian government authorities and investors in adopting FPV technology to strengthen the
country’s energy infrastructure.

Keywords: floating photovoltaics; hydropower plants; co-location assessment; electrical
performance; water savings

1. Introduction
Hydropower plants (HPPs) serve as a key source of electricity for many countries,

particularly those with favorable natural conditions such as high-altitude reservoirs or
regions where infrastructure has been developed to harness hydropower [1–3]. Ecuador,
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located in South America, is one such country, where HPPs play a central role in electricity
generation. By 2023, approximately 80% of Ecuador’s electricity was generated by HPPs [4],
underscoring the critical importance of these systems to the nation’s energy supply.

While HPPs are a renewable and reliable energy source, they have inherent limitations;
i.e., their availability is reduced significantly during dry seasons [5,6]. This limitation
became starkly evident recently when severe dry seasons led to multiple power outages
across the country. Since October 2023, planned blackouts have been implemented in
various provinces to conserve water in HPP reservoirs [7,8]. However, unforeseen blackouts
have also occurred, such as the nationwide outage on 19 June 2024, which lasted over three
hours. This disruption was attributed to a failure in the Milagro–Zhoray transmission line,
compounded by a storm that affected two of Ecuador’s largest hydropower plants—Coca
Codo Sinclair and Agoyán—during which sediment washed into the facilities, forcing the
turbines to shut down [9].

Ecuador’s current energy challenges highlight the urgent need to diversify its energy
sources to increase its robustness in different and extreme weather conditions, as well
as enhance grid resilience [10–14]. In this context, we explore the potential benefits of
installing floating photovoltaic (FPV) systems [15] on HPP reservoirs within Ecuador.

Photovoltaic (PV) systems were selected for this study due to their rapid global
deployment in recent years, driven by technological advancements and declining costs,
making them an attractive option for energy projects worldwide [16]. Moreover, Ecuador
has significant solar irradiance, further supporting the feasibility of solar energy systems.
Among the various PV installation types, e.g., [17–22], FPV systems were chosen for their
potential to complement HPPs. By installing FPV systems on hydropower reservoirs, both
energy sources stand to benefit—an idea that this study seeks to explore and quantify.
Details on the challenges associated with FPV can be found in [23].

While previous research have explored the potential of integrating multiple energy
sources including the combination of FPV systems with HPP [24–26], numerous studies
have primarily focused on specific geographic regions or limited datasets. Notable studies
have investigated the synergy between FPVs and HPPs in various contexts, demonstrating
the feasibility and advantages of such integration in optimizing renewable energy gener-
ation and resource use [27,28]. However, the scope of these studies has been somewhat
limited in terms of data diversity and regional application. In contrast, our study, to the best
of our knowledge, represents the first comprehensive attempt to evaluate the co-location of
FPV systems with hydropower plants using a complete and nationwide dataset of HPPs in
a country like Ecuador, employing state-of-the-art methodologies to predict the electrical
and water savings potential. Ecuador, which is heavily dependent on hydropower for its
electricity generation, offers a unique and valuable case for exploring how this combination
of technologies can enhance the country’s energy landscape.

Ecuador’s energy mix is primarily dominated by hydropower, with a significant
portion of the country’s electrical demand being met through its vast hydropower resources.
However, the nation also faces challenges such as seasonal variability in water availability
and periods of drought that can impact the reliability of hydropower. By integrating FPV
systems with HPPs, there is a potential to mitigate some of these challenges and increase the
overall efficiency and resilience of the national power grid. FPV systems, when deployed
on water bodies associated with hydropower plants, can not only contribute to power
generation but also improve the overall performance of the hydropower plants by reducing
water evaporation and increasing the energy yield from both sources.

In our research, we have employed industry-recognized software tools in combination
with RINA’s established methodology to simulate the performance of FPV systems with
high precision. This simulation framework has allowed us to assess the technical, economic,
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and environmental benefits of FPV installations in real-world scenarios, using reliable data
from Ecuador’s hydropower infrastructure. Through these simulations, we have quantified
several key impacts, including the potential for water conservation. FPV systems, by
shading the water surface, can significantly reduce evaporation rates, which is especially
crucial in regions where water scarcity and climate change pose growing threats to the
stability of hydropower generation.

Furthermore, this study goes beyond merely assessing the technical viability of FPV
integration. It also highlights the broader implications for energy security and sustainability.
By enhancing the capacity for power generation and improving the stability of hydropower
operations, FPV systems can help diversify Ecuador’s renewable energy portfolio, thereby
strengthening the country’s energy security. This becomes especially pertinent as global
energy markets face increasing pressure to transition to renewable sources, and nations like
Ecuador seek to reduce their dependence on fossil fuels while ensuring a reliable energy
supply.

Our research aims to provide valuable insights into how FPV systems can play a
pivotal role in enhancing the energy security, reliability, and sustainability of Ecuador’s
power sector. The findings of this study can offer crucial information for a wide range
of stakeholders, including government officials, policymakers, energy investors, and re-
searchers. Government bodies and policymakers can utilize this knowledge to develop
more informed, forward-thinking strategies to encourage the adoption of FPV technolo-
gies as part of the country’s broader energy transition goals. Investors can gain a clearer
understanding of the financial and environmental benefits of investing in FPV systems
in conjunction with existing hydropower assets. Moreover, the research contributes to
the global academic and scientific dialogue on renewable energy integration, offering a
valuable case study for other nations with similar hydropower-dominated energy systems.

Ultimately, the results of this study can serve as a springboard for future research
into the integration of FPV systems with other forms of renewable energy, exploring the
synergies and trade-offs involved in optimizing diverse energy resources for enhanced sus-
tainability. By focusing on real-world data and comprehensive simulations, our work sets
the stage for the widespread adoption of hybrid renewable energy systems that can address
both current and future challenges in energy production and environmental conservation.

The remainder of this paper is structured as follows: Section 2 provides a summary of
the HPPs located in Ecuador; Section 3 discusses the advantages of HPP-FPV co-location;
Section 4 outlines the methodology used to estimate weather conditions, FPV electrical per-
formance and water savings. Furthermore, Section 5 details the case study, and the results
are provided and discussed in Section 6. Finally, Section 7 summarizes the conclusions
from this study and future works.

2. HPPS Deployed in Ecuador
As highlighted in the Introduction, Ecuador is heavily reliant on hydropower plants

(HPPs) to meet its electricity demand. The country has approximately 70 HPPs [4], each
with distinct characteristics, such as turbine type and technology, reservoir size, and
transmission line interconnections. These HPPs vary widely in capacity, with the largest,
Coca Codo Sinclair, boasting a capacity of 1500 MW, while the smallest, Tanque Alto
Carcelén, has a capacity of just 0.06 MW.

According to the 2023 Annual Report from the Ecuadorian National Operator of
Electricity (CENACE) [4], Ecuador imported 1.3 TWh of electricity in 2023. Meanwhile,
domestic electricity production totaled 32 TWh, with 25 TWh generated by HPPs, 5 TWh
by thermal power plants, and 0.5 TWh from renewable sources such as wind, biomass, PV
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systems, and biogas. These figures underscore the central role that HPPs play in Ecuador’s
energy system.

Figure 1a illustrates the number of HPPs in Ecuador, categorized by their installed
capacity. It is evident that most of these plants are relatively small in size. However, as
shown in Figure 1b, the total energy production in 2023 reveals that the majority of the
country’s electricity generation is concentrated among a few large-scale HPPs.
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Figure 2 then shows the location of the HPP plants across Ecuador, where the size of
the circles represents their installed capacity. This figure highlights how most of the HPPs
are of small size, while only three are larger than 400 MW. In addition, this figure highlights
that most of the hydropower plants are installed in the Ecuadorian highlands, which is
expected, as this region is composed of reservoirs located at different altitudes and thus
can be used for HPP applications.
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3. Co-Location of FPV with HPP
FPV systems were selected in this study as a valuable addition to Ecuador’s energy

portfolio. Beyond generating electricity, FPV installations on HPP reservoirs offer several
key advantages. When FPV systems are deployed at sites where HPPs already exist and
operate independently, this arrangement, known as FPV-HPP co-location, presents the
following benefits:

• Infrastructure Efficiency: Since HPPs are already fully connected to the electrical grid,
the same infrastructure can be used by FPV systems to feed electricity into transmission
lines. This reduces FPV installation costs and optimizes the use of existing grid capacity
by increasing the total energy output. Additionally, other shared infrastructure, such
as access roads, can be utilized for both HPP and FPV systems, simplifying installation
and maintenance.

• Water Conservation: FPV systems, consisting of solar panels mounted on floating
platforms, partially block sunlight from reaching the water surface, reducing evap-
oration [29]. This helps retain more water in reservoirs, which can then be used to
generate electricity during times of need.

• Seasonal Synergy: HPPs often face challenges during prolonged dry seasons due
to reduced water availability in their reservoirs. FPV systems can help offset this
by generating more electricity during dry periods, which are typically associated
with high solar irradiance. Conversely, during the rainy season, while FPV energy
production may decline, HPPs can generate ample electricity due to increased water
availability. This seasonal complementarity enhances overall energy reliability.

• Increased Capacity: Expanding the energy production of HPPs often requires construct-
ing additional dams, which can raise environmental concerns. While FPV systems
also have environmental impacts that must be assessed, they may offer a more envi-
ronmentally friendly alternative for boosting total energy production by leveraging
existing water surfaces without the need for new infrastructure.

• Environmental Benefits: By shading parts of the water, FPV systems can reduce or
prevent algae blooms, which can improve water quality and the overall ecological
conditions of the reservoir [30].

4. FPV Modeling and Simulations
The objective of this paper is to analyze and quantify the impact of installing FPV

systems on water bodies utilized by existing HPPs. This section outlines the key factors con-
sidered in the simulations. We begin by detailing the process of acquiring critical weather
data, specifically solar irradiance and temperature, which are essential for predicting the
energy potential of FPV systems. Following this, we calculate the expected water savings
resulting from FPV installations, based on their ability to reduce evaporation from the
reservoirs.

4.1. Estimation of Weather Conditions

To predict the annual weather conditions for the selected locations, where FPV sys-
tems are assumed to be installed, we employ RINA’s weighted mean methodology. This
approach integrates multiple databases, assigning weights to each to derive a representa-
tive set of weather conditions, thereby minimizing potential inaccuracies associated with
individual sources.

The employed methodology utilizes two weighting factors for each database: one
based on spatial resolution and the other on temporal resolution. Specifically, databases
closer to the site of interest and those with a greater number of historical data years receive
higher weighting factors in the mean calculation. This process ultimately produces a
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Typical Meteorological Year (TMY) dataset, which will be used in the simulations detailed
in subsequent sections. Additional information on this methodology can be found in [31].

For this study, we selected three databases: Meteonorm (combining satellite and
ground-based data) [32], Solargis (satellite-based) [33], and the National Solar Radiation
Database (NSRDB) (also satellite-based) [34], as they are anticipated to provide a reliable
representation of weather conditions in the region. Table 1 below outlines their spatial and
temporal resolutions for locations in Ecuador:

Table 1. Spatial and temporal resolution per weather database for Ecuador.

Database Spatial Resolution (km) Number of Years

Meteonorm 8 20 (1996–2015)
Solargis 1 25 (1999–2023)
NSRDB 4 25 (1998–2022)

Figure 3 below illustrates the calculation process. It is important to note that while
combining multiple datasets offers advantages in reducing the impact of potential inaccu-
racies from individual datasets, the calculated irradiance is determined by considering the
weighted influence of spatial resolution and the number of years for each dataset. This
approach ensures that datasets providing more reliable insights into the studied site are
given greater priority in the final calculation.
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4.2. FPV Electricity Production

Once the representative Typical Meteorological Year (TMY) weather conditions are
established for each site of interest, the next step is to calculate the expected energy potential
from floating photovoltaic (FPV) systems. We simulated the performance using PVsyst
Version 7 [35], a commercial software widely recognized in both industry and research,
enhancing the reliability of our results for future implementations. Additionally, RINA’s
methodology was employed to define the various loss factors associated with the PV
system, supplemented by RINA’s in-house tool for more precise calculations of certain
system losses. RINA Consulting is a leading consulting firm that specializes in renewable
energy systems, including photovoltaic (PV) technologies, wind farms, battery energy
storage systems (BESS), and hydrogen solutions. Drawing on our extensive experience and
research and development efforts from numerous projects worldwide, we have estimated
the expected loss values to be used in these simulations considering large-scale PV systems.

For the FPV systems, the following criteria were considered:

• Tilt and Orientation: The general guideline for PV installations is to align the tilt
with the latitude of the location, facing the equator [36,37]. However, since Ecuador’s
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latitude ranges from 1.5◦ to −5.1◦, this guideline’s effectiveness diminishes. Many
module manufacturers recommend a minimum tilt of 10◦ to facilitate self-cleaning
during rainfall [38,39]. Therefore, we assume that the FPV systems will be installed at
a 10◦ tilt, oriented towards the direction yielding the highest irradiance collection as
determined by PVsyst (North/South/East/West).

• Bifacial Panels: This study will utilize bifacial panels, which can capture irradiance
from both sides. However, the additional rear-side irradiance gain is minimal for
FPV installations near the equator, due to low tilt angles, proximity to water, and low
water albedo [37,40,41]. Furthermore, rear-side irradiance is absorbed with a lower
conversion efficiency (typically between 65% and 85% for current industrial panels).
The sun’s path near the equator also limits the irradiance reaching the panel’s rear
side [36], leading us to neglect rear-side contributions in this analysis. Nonetheless,
bifacial panels are still advantageous in FPV systems due to their glass/glass con-
struction, which helps mitigate degradation compared to glass/backsheet monofacial
panels [21].

• Design Configuration: The simulations assume a landscape orientation for the FPV
system, featuring rows of single panels. Each row is positioned between floating
platforms to allow easy access for operation and maintenance. Given the installation
on water, the terrain is presumed flat, and the low panel tilt minimizes potential
shading losses from adjacent PV rows, which are therefore not considered in this
analysis.

• Cooling Effects: Research indicates that FPV systems may outperform land-based
PV systems due to enhanced cooling effects, which can reduce temperature-related
losses [42–44]. Factors contributing to this cooling include higher wind profiles above
water bodies and water evaporation, which can create cooling mist. For this study, we
assume a yield boost of 6% based on findings from [45].

• Mismatch Losses: Since the panels are mounted on floating platforms, their orientation
may shift over time due to water movement, causing panels in the same string to
receive varying amounts of irradiance. This leads to mismatch losses, which occur
when the panel with the lowest irradiance limits the power production of the others
from the same PV string. We estimate these losses at 3%, based on [46], considering
medium wave intensity to account for the water body behavior and HPP influence.

• Soiling Losses: We estimate soiling losses using RINA’s in-house tool, factoring in the
yearly rainfall profile and the assumption of one manual cleaning per year as part
of O&M services. While shading losses due to bird droppings are a concern [47,48]—
especially in natural areas—addressing this requires a detailed study of local bird
behavior, which is beyond the scope of this work. Further details on soiling studies
can be found in [49,50].

RINA’s methodology, grounded in extensive R&D activities and global industrial
experience with large-scale PV systems, is employed to characterize the loss factors im-
pacting the PV systems. This study calculates the performance of the FPV systems up
to the medium/high voltage transformer, where generated power will be injected into
the transmission line. The results provide a comprehensive overview of the expected
performance and energy production destined for the national grid.

The electrical performance assessment will focus on three key properties:

1. Energy Production (GWh/year): This represents the total energy expected to be
injected into the transmission line, calculated as:

E = ∑
i

Pi ∆t (1)
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where Pi [MW] is the power injected into the grid at time step i, and ∆t[h] is the duration of
the time step.

The power calculation is based on the weather and system characteristics for a given
time step. This can be expressed using the following equation, which serves as a general
reference for the power calculations in this manuscript. The power is calculated using
PVsyst software and RINA’s in-house tools:

Pi =
PPV I
1000

[1 + γ (Tc − 25◦C)] (1 − l1) (1 − l2) (1 − l3) · · · (1 − ln) (2)

In this equation, PPV [Wp] represents the total power output of the installed modules
under standard test conditions (STC), and I [A] denotes the total irradiance reaching the
solar panels. The second term accounts for the temperature effect on module performance,
where γ [%/◦C] is the power temperature coefficient, and Tc [◦C] is the cell temperature.
The remaining factors, l1, l2,. . ., ln, represent various loss factors, including those due to
reflection, degradation, ohmic losses, and losses from the inverter and transformer, among
others.

2. Performance Ratio PR (%): This metric measures the ratio of measured (or simulated)
energy production to ideal energy production, defined as:

PR =
∑i Pi ∆t

∑i PSTC
Ii ∆t

1000W/m2

100% (3)

where PSTC [MWp] is the installation capacity of the FPV system, and Ii [W/m2] is the
irradiance reaching the solar panels at time step i. PR serves as an indicator of the system’s
health.

3. Yield (kWh/kWp): This represents the annual electricity production injected into the
grid relative to the FPV installation capacity. It combines the previous two metrics
and is crucial for understanding the efficacy of the FPV system, calculated as:

Yield =
E

PSTC
(4)

Yield =
PR

100% ∑
i

Ii
1000W/m2 (5)

4.3. FPV Water Savings

Given that the FPV system is installed on water, we anticipate water savings resulting
from reduced evaporation. The system blocks a portion of sunlight that would otherwise
reach the water’s surface, potentially extending the operational capacity of hydropower
plants by maintaining higher water levels in their reservoirs.

To quantify the volume of water that does not evaporate due to the influence of the
FPV system, we define ∆Ev

[
m3] using the following equation:

∆Ev = Ev A ε (6)

where Ev [m/day] is the daily evaporation rate, A
[
m2] is the area of the FPV system, and

ε [%] represents the evaporation reduction efficiency attributable to the FPV installation. In
this study, ε is set at 60.2%, based on findings from [29].

To calculate Ev, we employ the equation proposed by Linacre [51]:

Ev =

700 (Ta+0.006 el)
100−Φ + 15 (Ta − Td)

80 − Ta
(7)
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where Ta [◦C] is the ambient temperature, el [m] is the site elevation, Φ [◦] is the latitude,
and Td [◦C] is the dew-point temperature.

5. Case Study
In this analysis, we consider a representative FPV system based on current market

conditions. The selected solar panel technology is crystalline silicon half-cell n-type bifacial,
paired with a central inverter—both of which are commonly utilized in large-scale PV farm
projects. The specific models for the solar panel and inverter were sourced from leading
manufacturers, recognized for their high shipping volume in 2024. The identity of the
manufacturers is not disclosed in this paper, as the focus is on the typical characteristics of
these technologies to create a representative system. The key electrical properties of the
selected equipment are summarized in Table 2 below:

Table 2. Properties of selected solar panel and inverter.

Solar Panel Properties Under Standard Testing Conditions

Power 625 Wp Bifaciality 80%
Maximum power voltage 46.1 V Maximum power current 13.56 A

Open circuit voltage 55.72 V Short circuit current 14.27 A
Power temperature coefficient −0.29%/◦C Efficiency 22.36%

Inverter properties

DC MPP voltage range 800–1300 V Maximum PV input current 7016 A
AC power 4950 kVA Maximum AC current 5200 A
AC voltage 10–35 kV Frequency 50, 60 Hz

Total harmonic distortion <3% Maximum/European efficiency 99.0/98.7%

The FPV system analyzed in this study is a typical pure-float FPV configuration, con-
sisting of high-density polyethylene floaters on which solar panels are mounted. Figure 4
illustrates this system. This type of FPV system is the one mostly employed in the industry
currently. For the calculation of the installed capacity of the FPVs, we assume that 1 hectare
is required to install 1 MWp of FPV. This ratio is expected to decrease over time as solar
panel efficiency improves and FPV design evolves, but it remains within the current range
for typical FPV installations.
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Ecuador currently has around 70 hydropower plants (HPPs) across the country. For
this study, we selected the HPPs most likely to benefit from co-locating with an FPV system,
based on the following criteria:

• HPPs must have an installed capacity of at least 15 MW to ensure that the FPV system
can achieve significant capacity, which may be implemented in multiple phases if
necessary. As the same transmission line capacity is shared, it is assumed that the
installation capacity of the FPV system shall not exceed the HPP capacity.
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• The water bodies associated with the HPPs should have sections at least 100 m wide,
as these areas will be designated for the FPV installation, and proper space needs to
be assured to deploy sizable FPV systems.

• The water bodies must be in close proximity to the HPP to minimize potential trans-
mission losses and costs associated with the FPV system.

Based on these criteria, we identified a total of 11 HPPs for this study, as detailed in
Table 3 below.

Table 3. Properties of selected HPPs with favorable conditions for FPV deployment. Negative
latitude values refer to the Western hemisphere, while positive longitude values refer to the Northern
hemisphere.

HPP Capacity (MW) Energy Production
in 2023 (GWh) Latitude (◦) Longitude (◦)

Coca Codo Sinclair 1500 8033 −2.591 −78.567
Paute 1100 4334 −3.317 −79.481

Minas San Francisco 270 995 −0.923 −79.752
Marcel Laniado de Wind 213 1123 −1.414 −78.270

Mazar 170 554 −1.398 −78.383
Agoyán 154 963 −1.082 −78.390
Pucará 70.6 188 0.215 −78.911

Manduriacu 65 343 −0.668 −79.426
Baba 42 187 −0.196 −78.429

Cumbayá 40 141 −1.430 −79.438
Sibimbe 15 94 −2.591 −78.567

6. Results and Discussions
The results regarding irradiance conditions, FPV system electrical performance, and

water savings capabilities are summarized in Table 4 below. The FPV installation capacity is
determined based on the available water space suitable for FPV deployment, as discussed
in Section 5, where the upper limit is defined by the installed capacity of the HPP. This
approach leverages the existing electrical transmission infrastructure of the HPP.

Table 4. Simulation results of HPP-FPV co-location for selected sites.

Coca
Codo

Sinclair
Paute

Minas
San

Fran-
cisco

Marcel
Laniado
de Wind

Mazar Agoyán Pucará Manduriacu Baba Cumbayá Sibimbe

HPP capacity (MW) 1500 1100 270 213 170 154 70.6 65 42 40 15
Inclined irradiance

(kWh/m2/year) 1343 1448 1576 1335 1599 1509 1538 1272 1252 1895 1321

Average ambient
temperature (◦C) 16.8 14.1 20.3 22.9 14.2 15.2 7.0 20.6 21.9 13.4 22.1

FPV capacity (MWp) 53 160 51 213 170 6 70.6 55 42 17 15
FPV energy production

(GWh/year) 58 182 61 6777 793 7 628 61 850 29 94

FPV contribution on
HPP (%) 0.7 4.2 6.1 22.1 36.8 0.8 51.7 17.8 24.6 20.3 18.5

PR (%) 81.6 78.7 75.8 87.3 75.1 82.7 89.4 87.4 87.6 88.6 87.4
Yield (kWh/kWp) 1096 1139 1195 1165 1201 1248 1375 1113 1097 1678 1155

Far shading losses (%) 10.2 13.2 12.1 0.6 17.0 9.5 1.5 2.3 1.3 0.8 0.4
Soiling losses (%) 0.5 1.5 5.5 3.0 1.5 0.5 1.0 1.0 2.0 1.5 3.0

Module temperature
losses (%) 2.4 1.7 3.2 3.6 1.9 2.1 0.0 3.2 3.3 2.2 3.5

Water savings (m/year) 0.69 0.74 0.84 0.78 0.76 0.70 0.70 0.73 0.71 0.80 0.73
Water savings
(gallons/year) 1394 4498 1616 6321 4870 159 1864 1515 1124 515 413

Based on the table, the following insights can be drawn:

• The maximum FPV capacity, constrained by the selected water area and HPP capacity,
indicates that the Marcel Laniado de Wind HPP offers the highest FPV installation
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potential at 213 MWp, followed by Mazar (170 MWp) and Paute (160 MWp). All other
installations are projected to have capacities below 100 MWp.

• In terms of weather conditions, the Cumbayá HPP experiences the highest overall
irradiance reaching the solar panels (1895 kWh/m2/year), significantly surpassing
other sites. Higher irradiance levels are expected to enhance the FPV yield.

• The most efficient system is located at the Pucará site, achieving a performance ratio
(PR) of 89.4%, while Mazar records the lowest with a PR of 75.1%. These PR val-
ues are influenced by various loss factors associated with FPV system performance.
Notably, far shading losses are significant at Mazar (17.0%) due to its mountainous
surroundings, whereas the Minas San Francisco site exhibits the highest soiling losses
(5.5%). Interestingly, Pucará shows the lowest module temperature losses (0.0%), likely
attributable to its cooler ambient temperatures.

• With respect to water savings, the Marcel Laniado de Wind site produces the highest
annual savings (6321 gallons/year), which is beneficial for HPP operations. Mazar
(4870 gallons/year) and Paute (4498 gallons/year) also demonstrate significant savings.
In terms of water savings per unit area, Minas San Francisco and Cumbayá exhibit the
highest potential, at 0.84 m/year and 0.80 m/year, respectively.

Additionally, Figure 5 provides a comparison between the installation capacities of the
hydropower plants (HPPs) and their corresponding floating photovoltaic (FPV) systems.
The figure shows that for HPPs such as Marcel Laniado de Wind, Mazar, Pucará, and Baba,
the FPV capacity was constrained to align with the HPP capacity to avoid exceeding the
limits of the existing electrical infrastructure. In contrast, HPPs like Coca Codo Sinclair,
Paute, Minas San Francisco, and Agoyán exhibit a significant gap between their potential
FPV capacities and the existing HPP capacity. This difference could be advantageous, as it
may help minimize any potential strain on the electrical infrastructure, ensuring that the
FPV systems do not exert excessive pressure on the grid.
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Figure 5. Installation capacity of FPV and HPP for the selected sites.

In Figure 6, the normalized values for energy production, performance ratio (PR), and
yield are presented. It is evident that Marcel Laniado de Wind leads in energy production
compared to the other systems, with Mazar and Paute following closely behind. This
can be understood, as these achieve the highest FPV installation capacity among all sites.
However, when assessing operational efficiency, Pucará stands out with the highest PR,
which is comparable to most other systems. In contrast, Mazar and Minas San Francisco
exhibit the lowest PR values, primarily due to significant losses from factors such as far
shading and soiling. In terms of yield, Cumbayá takes the top spot, outperforming all other
sites by a considerable margin. This exceptional performance is attributed to its high PR
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value and optimal site conditions, including one of the highest inclined irradiance levels,
which enhances the overall energy production potential.
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Figure 6. Normalized results for FPV energy production, performance ratio and yield.

Figure 7 presents the normalized water savings, both in terms of total volume (gallons)
and based on the height (m) of the saved water. In terms of total water savings, the figure
shows that Marcel Laniado de Wind, followed by Mazar and Paute, achieve the highest
results. This is primarily due to the extensive coverage of water by their FPV systems,
leading to the largest overall water savings. However, when evaluating the efficiency of
water savings based on the height of the water saved beneath the FPV systems, Minas San
Francisco ranks first, with the other systems falling within 17% of its performance. This
suggests that while site conditions play a role in water savings, the key determinant is
likely the extent of water covered by the FPV systems.
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While the above results quantify the potential benefits of co-locating FPV systems with
the analyzed HPPs, our goal is to rank these HPPs based on their overall FPV potential. We
have identified three key parameters for this ranking: (a) maximum FPV capacity, (b) yield,
and (c) water savings per unit area. An equal weighting index of 1/3 is applied to each of
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these parameters, calculated using a linear approach where the lowest parameter value is
set to 0% and the highest to 100%. The ranking based on this methodology is presented
in Table 5 below. We acknowledge that other factors, such as electrical infrastructure
conditions, proximity to population centers, and site accessibility, could also influence the
ranking. Different weighting indices could be applied to these parameters based on their
relative significance. However, a detailed analysis incorporating these additional factors
would require further information beyond the scope of this study. Thus, the table should
be regarded as a general guideline.

Table 5. Ranking of HPP sites based on their FPV advantage.

Ranking HPP Site FPV Capacity (MWp)

1 Cumbayá 17
2 Marcel Laniado de Wind 213
3 Mazar 170
4 Minas San Francisco 51
5 Paute 160
6 Pucará 70.6
7 Manduriacu 55
8 Sibimbe 15
9 Agoyán 6
10 Baba 42
11 Coca Codo Sinclair 53

Figure 8 then shows the geographical distribution of the 11 selected HPPs for FPV
deployment, highlighting both their potential FPV capacity and energy production.
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Figure 8. The map shows the locations of selected hydropower plants in Ecuador for potential FPV
deployment. The size of each circle is proportional to the FPV installation capacity, while the color
represents the FPV energy production potential. The names of the selected HPPs are also displayed,
with each number corresponding to the FPV ranking based on this study. The color of the text matches
the circle color for easy identification. Negative latitude values refer to the Western hemisphere while
positive longitude values refer to the Northern hemisphere.

Given that the simulation results rely on inputs and methodologies that inherently
carry uncertainties, we conducted an uncertainty analysis on the electrical performance of
the FPV systems to better assess potential deviations. In this analysis, we used percentile
calculations, where the P50 value represents the most likely outcome (also presented in
Table 4). The P75 and P90 values indicate the performance levels that are expected to be
exceeded, with probabilities of 75% and 90%, respectively. These estimations were made
using a normal distribution based on the identified uncertainty values. The distribution
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and corresponding percentile values are illustrated in Figure 9 below. Table 6 provides the
p values, which highlight the reduction in performance at the P75 and P90 levels compared
to the P50 value. These results offer additional insights into the range of expected FPV
system performance, contributing to more robust and reliable expectations.
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Table 6. Uncertainty results based on the P75 and P90 values.

Coca
Codo

Sinclair
Paute

Minas
San

Francisco

Marcel
Laniado
de Wind

Mazar Agoyán Pucará Manduriacu Baba Cumbayá Sibimbe

FPV
energy
produc-

tion
(GWh/year)

P50 58 182 61 6777 793 7 628 61 850 29 94
P75 55 168 56 6334 736 7 580 56 792 27 87
P90 52 156 52 5936 686 6 537 52 740 25 82

PR (%)

P50 81.6 78.7 75.8 87.3 75.1 82.7 89.4 87.4 87.6 88.6 87.4
P75 77.2 72.7 70.0 81.6 69.8 76.1 82.6 80.6 81.6 82.8 81.6
P90 73.2 67.4 64.7 76.4 65.0 70.1 76.4 74.5 76.3 77.6 76.4

Yield
(kWh/kWp)

P50 1096 1139 1195 1165 1201 1248 1375 1113 1097 1678 1155
P75 1036 1053 1103 1089 1116 1148 1270 1026 1022 1569 1078
P90 983 976 1020 1021 1039 1058 1176 948 955 1470 1010

7. Conclusions
This paper explored the potential for co-locating floating photovoltaic (FPV) systems

with hydropower plants (HPPs) in Ecuador. The findings highlight several advantages,
including enhanced grid reliability and the ability of FPV systems to support HPPs dur-
ing dry seasons, when hydropower generation is constrained. By sharing transmission
infrastructure, FPV systems can improve operational efficiency while also reducing water
evaporation, which benefits HPP performance.

Our analysis identified 11 HPPs in Ecuador with the capacity to host FPV systems
exceeding 15 MWp Based on the potential FPV installation capacity, electrical yield, and
water savings; Cumbayá HPP emerged as the most favorable site for FPV deployment,
with a maximum capacity of 17 MWp, followed closely by Marcel Laniado de Wind HPP
(213 MWp) and Mazar HPP (170 MWp).

Additionally, we suggest exploring the potential for hybridization, where FPV and
HPP systems operate together, optimizing energy output by coordinating FPV-generated
power with HPP turbine operation. Challenges such as designing an effective control

https://eepower.com/
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system and evaluating infrastructure should also be addressed in future studies to fully
realize the benefits of FPV-HPP integration.
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