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Abstract: Iron-containing nickel sulfides, selenides, and sulfoselenides were synthesized via a simple
two-step hydrothermal reaction (temperature ≤ 160 ◦C) for their application as electrocatalysts in the
oxygen evolution reaction (OER) in an alkaline solution (1 mol L−1 KOH). The study demonstrated
that iron-containing nickel cobalt sulfides and selenides exhibit superior OER performance with
lower overpotentials compared to iron-free nickel cobalt sulfide and selenide, which highlights the
significant role of iron in enhancing OER nickel cobalt electrocatalysts: Fe0.1Ni1.4Co2.9(S0.87O0.13)4,
η50 = 318 mV; Fe0.2Ni1.5Co2.8(S0.9O0.1)4, η50 = 310 mV; Fe0.3Ni1.2Co2.5(S0.9O0.1)4, η50 = 294 mV;
Fe0.6Ni1.2Co2.5(S0.83O0.17)4, η50 = 294 mV; Fe0.4Ni0.7Co1.6(Se0.81O0.19)4, η50 = 306 mV compared to
Ni1.0Co2.1(S0.9O0.1)4, η50 = 346 mV; and Ni0.7Co1.4(Se0.85O0.15)4, η50 = 355 mV (all values at cur-
rent densities η50 of 50 mA cm−2). Furthermore, the iron-containing nickel cobalt sulfoselenide
Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 displayed exceptional OER performance with η50 = 277 mV, surpass-
ing the benchmark RuO2 electrode with η50 = 299 mV. The superior performance of the sulfoselenide
was attributed to its low charge transfer resistance (Rct) of 0.8 Ω at 1.5 V vs. the reversible hydrogen
electrode (RHE). Moreover, the sulfoselenide demonstrated remarkable stability, with only a minimal
increase in overpotential (η50) from 277 mV to 279 mV after a 20 h chronopotentiometry test. These
findings suggest that trimetallic iron, nickel and cobalt sulfide, selenide, and especially sulfoselenide
materials hold promise as high-performance, cost-effective, and durable electrocatalysts for sus-
tainable OER reactions. This study provides a valuable approach for the development of efficient
electrocatalytic materials, contributing to the advancement of renewable energy technologies.

Keywords: iron-containing material; nickel cobalt sulfide; nickel cobalt selenide; sulfoselenide;
oxygen evolution reaction (OER)

1. Introduction

According to the US Energy Information Administration (EIA) report, the total world
energy consumption will rise to 815 quadrillion Btu (British thermal units) in 2040, a 29%
increase compared to 2020 [1], demonstrating the increasing demand for energy in the near
future. Using clean and renewable energy is one of the main issues for societies. Green
hydrogen (H2), produced with renewable energy, is seen as an alternative fuel and energy
storage resource in the future [2]. Water splitting is one of the most studied ways to produce
H2. With electrocatalysis, this process includes the hydrogen evolution reaction (HER) and
the oxygen evolution reaction (OER) [3]. The anodic reaction (OER) involves a sluggish
four-electron/four-proton-coupled transfer reaction. It is the main obstacle to an economic
water-splitting process since it requires a much higher potential (1.6–2 V vs. the reversible
hydrogen electrode, RHE) than the theoretical equilibrium potential of E◦ = 1.23 V vs.
RHE [4–8].
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The well-known benchmark materials for OER are the oxides of iridium and ruthenium
(IrO2 and RuO2), while Pt-based materials are used as benchmarks for HER [9]. However,
the high cost, scarcity, and low stability of these precious noble metals limit their practical
large-scale application for water electrolysis [10,11]. Sustainable water splitting requires
utilizing non-precious metals as a catalyst. Using non-precious metals with high abundance,
durability, and catalytic activity, especially in OER, can effectively improve the scalability
of electrocatalytic hydrogen production. Therefore, in recent years, there has been an
impetus to develop high-performance, stable, and low-cost (non-noble) transition metal-
based electrocatalysts such as transition metal sulfides [12], hydroxides, oxides, oxide-
hydroxides [13–16], phosphides [17], nitrides [18], perovskites [19,20], and spinels [21]
for OER.

Transition metal sulfides possess good conductivity and excellent mechanical and
thermal stability, making them promising electrocatalysts for OER and HER and the oxygen
reduction reaction (ORR) [22]. Moreover, mixed-metal sulfides, MMSs, show even higher
electric conductivity and richer redox reactions through the synergistic effect of multi-
transition metal ions, leading to a notable enhancement in electrocatalytic performance
compared to monometallic sulfides [23,24].

Bimetallic nickel cobalt sulfide is one of the most studied and promising MMSs, and
is extensively studied for electrocatalytic energy conversion and storage devices [25]. For
example, the thiospinel NiCo2S4 with Ni(II) on tetrahedral (Td) sites and Co(III) ions
on octahedral (Oh) sites receives much attention in many electrocatalysis applications,
including water splitting, supercapacitors, and zinc-air batteries [26–29]. However, the
electrocatalytic activity and stability of NiCo2S4 remains lower than IrO2 and RuO2 in OER
and lower than Pt-based catalysts for HER [30]. To improve the electrocatalytic performance
of nickel cobalt sulfides, researchers have applied many different strategies, including
making composites with carbon materials [31–33], metal oxides [34,35], oxyhydroxides [15],
layer double hydroxide [15], metal sulfides [36,37], incorporating other active metals such
as Ru, Ir, and Pt in the structure [38,39] and also partially replacing sulfur ions with
nitrogen [40], phosphorous [41] or selenium ions [42].

The improved electrocatalytic performance of nickel cobalt sulfide in the presence of
anions such as Se and P can be attributed to effectively altering the surface electron density
by modulating the compound’s d-band [42–44]. Increased electrocatalytic activity in the
presence of other cations is mainly related to improving exposed active sites, reducing
the charge transfer resistance, enhancing structural stability, and synergistic interactions
between host and guest cations [45,46].

Although replacing anions or cations is widely used to upgrade the water-splitting
performance of nickel cobalt sulfides, only a few reports applied a simultaneous cation
and anion replacement to evaluate a possible synergistic effect. Recently, Deng et al.
synthesized the polymetallic sulfoselenide, Co0.31Ni0.22Ru0.05S0.46Se0.41, which showed an
overpotential of η10 = 261 mV (1.491 V vs. RHE) at 10 mA cm−2, while RuO2 needed
η10 = 254 mV (1.484 V vs. RHE) under the same conditions [47]. However, ruthenium
limits its classification as a completely non-precious metal electrocatalyst.

Here, we establish a facile two-step hydrothermal strategy to synthesize iron-containing
nickel cobalt sulfides, selenides, and sulfoselenide as non-precious polymetallic compounds.
A series of mixed-metal iron nickel cobalt carbonate hydroxide hydrates, (FexNi1−x)CoCH-(y),
were synthesized and used as a precursor for sulfurization, selenization, and sulfoselenization.

2. Materials and Methods
2.1. Materials

All commercial chemicals were used as received without any purification: cobalt
chloride hexahydrate CoCl2·6H2O (CAS: 7791-13-1 98% abcr GmbH, Karlsruhe, Germany),
nickel chloride hexahydrate NiCl2·6H2O (CAS: 7791-20-0 98%, ACS reagent, Roth, Karl-
sruhe, Germany), ammonium iron(II) sulfate hexahydrate (NH4)2Fe(SO4)2·6H2O
(CAS: 7783-85-9 BioUltra, 99% Sigma–Aldrich, St. Louis, MO, USA), sodium sulfide non-
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ahydrate Na2S·9H2O (CAS: 1313-84-4 98% Acros Organics, New Dehli, India), selenium
dioxide SeO2 (CAS: 7446-08-4 98%, Sigma–Aldrich, St. Louis, MO, USA), urea OC(NH2)2
(CAS: 57-13-6 ACS reagent 99.5%, Sigma–Aldrich, St. Louis, MO, USA), potassium hy-
droxide KOH (CAS: 1310-58-3,1N, Roth, Karlsruhe, Germany), N-methyl-2-pyrrolidone
NMP (CAS: 872-32-2 95%, abcr, Karlsruhe, Germany), hydrazine monohydrate N2H4·H2O
(CAS: 7803-57-8, Thermo Scientific, Kandel, Germany), polyvinylidene fluoride PVDF
(CAS: 24937-79-9, Sigma–Aldrich, Karlsruhe, Germany), and carbon black Vulcan XC-72R
(Fuelcellstore, Bryan, TX, USA). Nickel foam NF was purchased from Recemat BV, Cell
Material Engineering, The Netherlands. Ultrapure water was produced using the Sartorius
Arium mini device. Before using NF, it was cut into 1 × 2 cm2 pieces and cleaned with
acetone (CAS: 67-64-1, ACS reagent, ≥99.5%, Sigma–Aldrich, St. Louis, MO, USA), hy-
drochloric acid (CAS: 7647-01-0, 1 mol L−1, Geel, Belgium), ultrapure water, and ethanol
(CAS: 64-17-5, 98%, Th. Geyer, Renningen, Germany) for 15 min in an ultrasonic bath and
then dried at 100 ◦C in a vacuum oven for 15 min.

2.2. Preparation of Nickel Cobalt Carbonate Hydroxide (NiCoCH) and Iron Nickel Cobalt
Carbonate Hydroxide (FexNi1−x)CoCH-(y) Precursors

The NiCoCH sample was prepared according to the previously reported method
by Chen et al. [20]. The amount of 950 mg (4.00 mmol) CoCl2·H2O, 475 mg (2.00 mmol)
NiCl2·6H2O, and 1.1 g (18 mmol) urea was added to 40 mL of ultrapure water and stirred
for 10 min. Then, the obtained solution was transferred into a Teflon-lined stainless-steel
autoclave and heated to 120 ◦C for 6 h. The product was washed five times with ultrapure
water (50 mL each) and two times with ethanol (25 mL each), then dried in a vacuum oven
at 60 ◦C overnight. Yield = 860 mg. (FexNi1−x)CoCH-(y) precursors were synthesized
by the same method except that the amounts of 98, 196, 294, or 392 mg (0.25, 0.50, 0.75,
1.0 mmol) of (NH4)2Fe(SO4)2·6H2O were added. Yields = 875 mg, 900 mg, 917 mg, and
930 mg, respectively.

Thereafter, (FexNi1−x)CoCH-(y) was used to refer to the iron-containing nickel cobalt
carbonate hydroxide with y = 0.25, 0.50, 0.75, and 1.0 mmol of (NH4)2Fe(SO4)2·6H2O added
to the reaction mixture; (FexNi1−x)CoCH-(y) refers to all samples.

2.3. Preparation of Iron Nickel Cobalt Sulfides, Selenide, and Sulfoselenide

Iron-containing nickel cobalt sulfide samples were prepared by hydrothermal sulfida-
tion of the (FexNi1−x)CoCH-(y) precursors. A chosen amount of iron-containing precursor
(125 mg) was dispersed in 40 mL of ultrapure water in an 80 mL Teflon-lined autoclave and
stirred for 20 min. After that, 750 mg (3.125 mmol) of Na2S·9H2O was added. The resultant
suspension was transferred to the oven, and the temperature was kept at 160 ◦C for 12 h.
The obtained product was washed five times with ultrapure water (50 mL each) and two
times with ethanol (20 mL each), then dried in a vacuum oven at 60 ◦C overnight. Yield
was about 90 mg.

The iron-containing nickel cobalt sulfoselenide sample, Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4,
was synthesized via sulfidation and selenization of (FexNi1−x)CoCH-(1.0) in one step.
(FexNi1−x)CoCH-(1.0) (125 mg) was dispersed in ultrapure water and stirred for 20 min.
Then, 680 mg (2.70 mmol) of Na2S·9H2O and 50 mg (0.425 mmol) of SeO2 were added to
the suspension. Finally, 10 mL of N2H4·H2O was slowly added to the suspension. The
Teflon-lined stainless-steel autoclave was kept at 160 ◦C for 12 h. The resulting powder
was washed five times with ultrapure water (50 mL each time) and two times with ethanol
(20 mL each time) and dried at 60 ◦C overnight. Yield was 100 mg.

Iron-containing nickel cobalt selenide, Fe0.4Ni0.7Co1.6(Se0.81O0.19)4 was synthesized
by selenization of (FexNi1−x)CoCH-(1.0). (FexNi1−x)CoCH-(1.0) (125 mg) was dispersed
in 30 mL of ultrapure water and stirred for 20 min followed by adding 100 mg (0.9 mmol)
SeO2. Then, 10 mL of N2H4 was added to abovementioned suspension and stirred for
another 10 min. The resulting suspension was transferred to a stainless autoclave and
heated at 160 ◦C for 12 h. The obtained black powder was washed five times with ultrapure
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water (50 mL each) and three times with absolute ethanol (20 mL each), then dried at 60 ◦C
in the vacuum oven overnight. Yield was 110 mg.

For comparison, nickel cobalt sulfide, Ni1.0Co2.1(S0.9O0.1)4 and nickel cobalt selenide,
Ni0.7Co1.4(Se0.85O0.15)4, and were synthesized by sulfidation or selenization of NiCoCH
(Supplementary Materials, Section S1). The schematic illustration of the synthesis is shown
in Scheme 1.

Scheme 1. Schematic illustration of the preparation process for iron-containing Ni-Co sulfide, sulfos-
elenide, and selenide. (FexNi1−x)CoCH-(y) represents the precursor iron-containing nickel cobalt
carbonate hydroxide hydrate.

2.4. Material Characterization

Powder X-ray diffraction (PXRD) analysis was conducted at ambient temperature on a
Rigaku Miniflex 600 powder diffractometer (Rigaku, Tokyo, Japan) using Cu Kα1 radiation
with λ = 1.5406 Å (40 kV, 15 mA, 600 W) and a flat silicon low background with a small
indent in the range of 2θ = 5◦–100◦. The obtained PXRD data were evaluated with the
Match v3.11 software.

Scanning electron microscopy (SEM) was performed with Jeol JSM-6510LV QSEM (Jeol,
Akishima, Japan) advanced electron microscope (LaB6 cathode at 20 kV) equipped with a
Bruker Xflash 410 silicon drift detector for energy-dispersive X-ray (EDX) spectroscopy.

Transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy
(TEM-EDX) was carried out with a FEI Tecnai G2 F20 electron microscope (FEI Co.,
Hillsboro, OR, USA) operated at 200 kV accelerating voltage.

A Quantachrome Autosorb-6 automatic adsorption analyzer (Quantachrome Gmbh;
Odelzhausen, Germany) was used to determine nitrogen sorption isotherms for the BET
surface area determination of the samples at 77 K. The samples were degassed at 90 ◦C in a
10−2 mbar vacuum for 15 h before the gas sorption measurement.
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X-ray photoelectron spectroscopy (XPS) data were collected using a ULVAC-PHI
VersaProbe II microfocus X-ray photoelectron spectrometer (ULVAC-PHI, Chigasaki, Japan).
The spectra were recorded using a polychromatic aluminum Kα X-ray source (1486.8 eV)
and referenced to the carbon 1s orbital with a binding energy of 284.8 eV.

Quantification of the metal content of the samples was performed using a Perkin-Elmer
PinaAcle 900T atomic absorption spectrometer (Perkin Elmer LAS GmbH, Rodgau-Jügesheim,
Germany) (sample preparation described in Supplementary Materials, Section S2).

The sulfur content was determined with a VarioMICRO CHNS microanalyzer (Ele-
mentar Analysensysteme, Langenselbold, Germany).

2.5. Electrochemical Measurements

All electrochemical analyses were conducted on a three-electrode cell using an Inter-
face 1010E potentiostat from Gamry Instruments at ambient temperature. The reversible
hydrogen electrode, RHE, and Pt foil were used as a reference and counter electrode.
Coated nickel foam, NF, was the working electrode. A slurry containing 8:1:1 mass portions
of the active materials (mixed-metal sulfide, selenide, or sulfoselenide material), carbon
black, Vulcan XC-72R, and polyvinylidene fluoride, PVDF, respectively, in N-methyl-2-
pyrrolidone, NMP was prepared and carefully dropped on a 1 cm2 area of the NF surface,
and dried at 60 ◦C for 12 h in a vacuum oven to prepare the coated NF electrode. To prepare
the slurry, a weighted mass of 5 mg of the mixed-metal sulfide, selenide, or sulfoselenide
material was utilized. Additionally, the weight of the electrode before and after loading the
slurry was measured. The slurry was accurately applied to a 1 cm2 area of the electrode
surface. Throughout the OER, we ensured the presence of a 1 cm2 electrode immersed in
the KOH solution. Before starting the electrochemical analysis, an N2 gas flow was passed
through the electrolyte to remove dioxygen from the 1 mol L−1 KOH electrolyte.

Linear sweep voltammetry LSV measurement was applied to determine the catalytic
performance of the coated NF electrode at a scan rate of 5 mV s−1. Before starting the
LSV measurement, 20 cycles of cyclic voltammetry at a scan rate of 100 mV s−1 were
run to reach a stable electrocatalytic performance. The potentials of the LSV polarization
curves were corrected by iR compensation. The chronopotentiometry at the current density
of 50 mA cm−2 for 20 h was used to evaluate the stability of the selected electrocatalyst
in long-term performance. Moreover, to understand the electrode/electrolyte interface
behavior, electrochemical impedance spectroscopy, EIS, was performed in the frequency
range of 0.1–100 kHz at 1.5 V vs. RHE.

3. Result and Discussion
3.1. Synthesis and Analysis

Nickel cobalt carbonate hydroxide (NiCoCH) and iron-containing nickel cobalt car-
bonate hydroxides (FexNi1−x)CoCH-(y) were synthesized from CoCl2·6H2O, NiCl2·6H2O,
(NH4)2Fe(SO4)2·6H2O and urea as precursors in hydrothermal reactions (Step 1 in Scheme 1).
Four different amounts of (NH4)2Fe(SO4)2·6H2O were used to synthesize (FexNi1−x)CoCH-(y),
while keeping the NiCl2·6H2O and CoCl2·6H2O amounts constant. The samples were
named (FexNi1−x)CoCH-(0.025), (FexNi1−x)CoCH-(0.05), (FexNi1−x)CoCH-(0.075), and
(FexNi1−x)CoCH-(0.1), representing the use of 0.025, 0.05, 0.075, and 1.0 mmol of the iron
precursor. The sulfidation and selenization of the metal carbonate hydroxide precursors
were achieved through a hydrothermal sulfidation process with Na2S·9H2O and a seleniza-
tion process with SeO2 (Step 2 in Scheme 1). For the sulfoselenide sample, a mixture of
Na2S·9H2O and SeO2 was employed in the hydrothermal reaction.

Two different methods were used to determine the chemical formula of the as-prepared
samples, a combination of AAS for the metal and CHNS analysis for the sulfur content
(method 1) and SEM-EDX (method 2) (Supplementary Materials, Tables S2–S6). Method 1
provides more precise atomic ratios of metal and S content in the samples than EDX. In
EDX, the emitted X-rays give a 1–2 µm depth analysis but EDX as an X-ray spectroscopy
experiences matrix effects and would need standards of similar composition as the sample
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for peak identification and accurate quantification. For the sulfoselenide and selenide
sample, AAS for the metal content was combined with EDX for the Se content. Moreover,
the chemical formulae obtained from AAS + CHNS + EDX were much closer to charge
balance than the EDX-derived formulae. Based on the metal-to-sulfur ratios obtained
from method 1 and the charge balance calculation of the samples, oxygen should also be
incorporated into the structure of the samples. The presence of oxygen in the structure
of samples was also proven from the EDX and XPS spectrum. Therefore, the chemical
formulae are given here with their estimated oxygen content. The chemical formulas
resulting from methods 1 and 2 are provided in Table S6. The measured SEM-EDX data of
the samples are provided in Figures S1–S8.

The crystallinity of all sulfide samples was low, as evidenced by broad peaks of low
intensity in the powder X-ray diffractograms, PXRDs (Figure 1a). The crystalline phases in
the iron-containing nickel cobalt samples were verified as spinels by matching to the known
diffractograms of NiCo2S4 (ICDD no. 43-1477) and Co3S4 (ICDD no. 75-1561) (Figure 1). The
prominent diffraction peaks located at 26.8◦, 31.5◦, 38.1◦, 50.4◦, and 55.2◦ can be attributed
to the (220), (311), (400), (511), and (440) planes of the spinel lattice [24]. In addition, in
the PXRD patterns of NiCo2S4 and iron-containing nickel cobalt samples, the diffraction
peaks at 29.9◦ and 52.1◦ can be attributed to the (311) and (440) planes, respectively, of
Co9S8 (ICDD no. 73-1442). It should be mentioned that the presence of an Co9S8 impurity
in NiCo2S4 is reported in much of the previous literature, including the work of Chen
et al. [24], who first reported the formation of sea-urchin-like NiCo2S4 using metal carbonate
hydroxide as a precursor [33,40,47–51].

Figure 1. PXRD patterns of (a) as-prepared sulfide and (b) selenide and sulfoselenide samples
compared to simulated (sim.) patterns of different metal sulfides and selenides.

The content of the crystalline Co9S8 impurity decreases with increasing iron content
and is only barely visible in Fe0.3Ni1.2Co2.5(S0.9O0.1)4 and no longer visible in
Fe0.6Ni1.2Co2.5(S0.83O0.17)4. The corresponding selenides are of higher crystallinity
(Figure 1b). The prominent reflection peaks of NiCo2Se4 and Fe0.4Ni0.7Co1.6(Se0.81O0.19)4
match the simulation for NiCo2Se4 (ICDD no. 04-006-5241), where they correspond
to the (002), (311), and (−313) crystal plane located at 33.3◦, 44.9◦, and 51.4◦, respec-
tively [52]. By incorporating both sulfur and selenium in the structure, the crystallinity
of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 from the PXRD pattern became too low and no clear
crystalline phase analysis was possible anymore. Such low crystallinity was also seen in
the literature for nickel sulfoselenide, oxygen-containing cobalt sulfide, and nickel sulfide
nanoparticles, which were reported with excellent OER properties [53–55]. Previous reports
have demonstrated that incorporating or doping transition metal sulfides, such as nickel
cobalt sulfides with iron, induces lattice strain which results in peak broadening [56]. A
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small shift towards lower angles of the experimental diffractograms of selenium-containing
samples versus the simulated diffractograms of the sulfur-only analogues can be ascribed
to a larger lattice spacing which is caused by the larger radius of selenium compared to sul-
fur [57]. A shift in the peak positions between experimental and simulated diffractograms
is also obtained if the sample is not properly aligned with the goniometer axis, e.g., by
placing too thick a sample on the sample holder in the Bragg–Brentano geometry [58].

The morphology of the as-prepared samples was studied using scanning electron
microscopy, SEM. As shown in Figure 2a, Ni1.0Co2.1(S0.9O0.1)4 consists of needle-like struc-
tures combining parts with a sea urchin-like morphology. By increasing the iron content,
the morphology became more sea urchin-like (Figure 2b–f). In the selenides and the sul-
foselenide Fe0.6Ni1.2Co2.5(S0.83O0.17)4 sample, Figure 2e,f, agglomerations of needle-like
primary particles can be seen. The SEM-energy dispersive X-ray (EDX) mappings (Sup-
plementary Materials, Figure S9) support the AAS- and CHNS-based elemental analysis
for the chemical formulae, and SEM-EDX was the analysis of choice to determine the
selenium content.

Figure 2. SEM images of the as-prepared samples: (a) Ni1.0Co2.1(S0.9O0.1)4,
(b) Fe0.1Ni1.4Co2.9(S0.87O0.13)4, (c) Fe0.2Ni1.5Co2.8(S0.9O0.1)4, (d) Fe0.3Ni1.2Co2.5(S0.9O0.1)4,
(e) Fe0.6Ni1.2Co2.5(S0.83O0.17)4, (f) Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4, (g) Fe0.4Ni0.7Co1.6(Se0.81O0.19)4,
and (h) Ni0.7Co1.4(Se0.85O0.15)4.

To further investigate the sulfoselenide Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4, transition
electron microscopy, TEM-EDX, was performed. The TEM images, Figure 3, confirmed
the needle-like microstructure. EDX-mapping also proved the uniform presence of Fe,
Ni, Co, S, and Se in the sulfoselenide sample (see Supplementary Materials, Table S1 for
atom ratios).
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Figure 3. TEM images (a–e) of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 and (f–j) HAADF STEM-
EDX mapping results of Fe, Ni, Co, S, and Se, recorded from a nano needle section (e) of
Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4.

Nitrogen adsorption–desorption isotherms, and specific surface area (BET) of the
samples are given in Figure S10 and Table S7.

X-ray photoelectron spectroscopy (XPS) was conducted to determine the valence
state of the elements in Ni1.0Co2.1(S0.9O0.1)4 and Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4. As
shown in Figure S11, X-ray survey spectra indicate the existence of Ni, Co, and S in
Ni1.0Co2.1(S0.9O0.1)4 and of Fe, Ni, Co, S, and Se in Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4. The
high-resolution spectra of the metal atoms and of Se are shown in Figure 4 and those of S
2p and O1s of Ni1.0Co2.1(S0.9O0.1)4 in Figures S12a and S13a, respectively. The positions of
the XPS peaks are summarized in Tables S8 and S9. It should be noted that the analysis
depth of XPS is only 0.7–11 nm as the detected photoelectrons can only escape from such a
thin surface layer of the sample.

The metal ratios and the ratios between different oxidation states of nickel and cobalt
(Table 1) were calculated by integrating the fitted peak area for each metal valence state
using the Ni 2p3/2 and Co 2p3/2 regions. In Ni1.0Co2.1(S0.9O0.1)4, Ni2+ and Co3+ are the
prevalent oxidation states.

Based on element ratios obtained from AAS and CHNS analysis and also the metal
valence states for nickel and cobalt in the Ni1.0Co2.1(S0.9O0.1)4 sample, the chemical formula
can be given as ((Ni2+)0.72(Ni3+)0.28)1.0((Co2+)0.27(Co3+)0.72)2.1(S0.9O0.1)4 which is anion-
cation charge-balanced within rounding errors.

In contrast to the Ni1.0Co2.1(S0.9O0.1)4 sample, Ni3+ and Co2+ are the dominant va-
lence states in Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4, which might be one of the reasons for the
improved OER performance of this catalyst. It is believed that Ni3+ can improve elec-
trophilicity and oxygen adsorption, which can increase the amount of NiOOH active sites
during the OER reaction [59].
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Figure 4. High-resolution XPS spectra of (a) Ni 2p region and (b) Co 2p region of
Ni1.0Co2.1(S0.9O0.1)4 and Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4, (c) Fe 2p region and (d) Se 3d region
of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4.

Table 1. The metal ratios and the ratios between different oxidation states of nickel and cobalt in
Ni1.0Co2.1(S0.9O0.1)4 and Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4.

Sample At% (a) Ni/Co (a) At% (b) Position
(eV) M2+/M3+

Ni1.0Co2.1(S0.9O0.1)4
(c)

Ni 6.90

1/2

Ni2+ 35.6 853.3
2.59

Ni3+ 13.7 856.0

Co 13.90
Co2+ 17.0 780.3

0.37
Co3+ 45.9 778.7

Fe/Ni/Co (a)

Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4
(d)

Fe 2.30

1.0/2.5/4.1
Ni 5.70

Ni2+ 3.3 854.5
0.10

Ni3+ 32.9 856.5

Co 9.40
Co2+ 46.7 781.9

6.65
Co3+ 7.0 779.1

(a) From XPS survey spectrum (Figure S11, Supplementary Materials). (b) Based on the Ni 2p3/2 and Co 2p3/2
regions in XPS. (c) Element composition from AAS-CHNS. (d) Element composition from AAS-CHNS-EDX(Se)
(Tables S3–S6, Supplementary Materials).
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The Fe 2p spectrum (Figure 4c) for Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 represents two
broad peaks at 712.5 eV and 725.0 eV, which can be assigned to Fe 2p3/2 and Fe 2p1/2, re-
spectively [60]. Furthermore, two satellite peaks were detected at 717.5 and 734.5 eV [61,62].
The 2p3/2 spectrum range is 710 to 720 eV including the satellite peak, while the 2p1/2
spectrum range is 720−735 eV with the satellite peak. For iron, it should be noted that
the Fe 2p spectral background is contributed to from the CoLMM and NiLMM Auger peaks,
making an unequivocal deconvolution and peak assignment difficult [63,64]. The Se
3d XPS spectra of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 (Figure 4d) consist of two peaks cen-
tered at 55.0 and 57.0 eV, representing Se 3d5/2, and Se 3d3/2, respectively. The peak
at 59.5 eV was attributed to the SeOX forming on the surface due to exposure to air,
and to the overlap with the Co 3p signal [42]. The high-resolution spectrum of S 2p
and O 1s of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 are shown in Figures S12b and S13b (Sup-
plementary Materials), respectively. Based on the elemental ratios obtained from AAS,
CHNS, and EDX(Se) analysis, and also metal valence states for iron, nickel, and cobalt
in the Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 sample, the chemical formula can be given as
(Fe2+)0.5((Ni2+)0.1(Ni3+)0.9)1.0((Co2+)0.87(Co3+)0.13)2.0(S0.57Se0.25O0.18)4.

3.2. Oxygen Evolution Reaction Performance

The OER activity of the mixed-metal sulfides, selenides, and the sulfoselenide was
evaluated by a three-electrode setup in 1.0 mol L−1 KOH solution. The working electrode
was prepared according to a method used by Li et al. [33], a slurry containing 8:1:1 mass
portions of the active materials (mixed-metal sulfide, selenide, or sulfoselenide material),
carbon black, Vulcan XC-72R, and polyvinylidene fluoride, PVDF, respectively, in N-methyl-
2-pyrrolidone, NMP (further details in experimental section). As is shown in Figure 5a, the
polarization curves of the as-prepared electrodes revealed that the presence of iron could
reduce the overpotential of the Ni1.0Co2.1(S0.9O0.1)4 parent compound. In the polarization
curves, the peaks around 1.3–1.4 eV are attributed to the oxidation of Ni2+/Ni3+ [65].

The overpotential for Ni1.0Co2.1(S0.9O0.1)4 of 346 mV at 50 mA cm−2 was reduced with
increasing iron content in Fe0.1Ni1.4Co2.9(S0.87O0.13)4, Fe0.2Ni1.5Co2.8(S0.9O0.1)4,
Fe0.3Ni1.2Co2.5(S0.9O0.1)4, and Fe0.6Ni1.2Co2.5(S0.83O0.17)4 to 318, 310, 294, and 294 mV,
respectively (Figure 5a,b). The electronic interaction between Fe, Ni, and Co in the iron-
containing samples alters the electronic structure, making Ni2+ oxidation more difficult,
resulting in a positive shift in the Ni2+/Ni3+ anodic peak at 1.3–1.4 eV [33,40]. The reduc-
tion in the OER overpotential in iron-containing samples can be attributed to reducing the
charge transfer resistance through the synergistic electronic interaction between Fe, Co and
Ni from a charge redistribution between active sites within the samples. Density functional
theory (DFT) calculations in the literature traced the synergy to a decrease in the Gibbs free
energy for the formation of a MOOH intermediate, which not only enhanced the intrinsic
OER activity, but also significantly improved the intrinsic conductivity of iron-containing
samples, greatly facilitating the charge transfer process [66].

In the next step, the effect of the coexistence of sulfur and selenium was investi-
gated. The overpotential of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 (green line) of 277 mV at
50 mA cm−2 presents a 17 mV and 22 mV reduction compared to Fe0.6Ni1.2Co2.5(S0.83O0.17)4
(294 mV) and RuO2 (299 mV) (Figure 5c,d), indicating that the insertion of selenium im-
proves the performance of the transition metal sulfide. Moreover, the OER performance
of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 at 100 mA cm−2 only needed 299 mV while RuO2 re-
quired 341 mV overpotential, which demonstrates the excellent electrocatalytic activity
of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 even under a high current density. The boost of the
OER activity of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 can be attributed to the effect of selenide
incorporation that reduces the energy barrier of the OER reaction, optimizes the electronic
structure of active sites via modulating of the d-band of the compound, and also accelerates
the kinetics of the reaction [67].
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Figure 5. (a) OER LSV polarization curves and (b) bar chart of corresponding overpotentials at
50 mA cm−2 of iron-containing sulfides. (c) OER LSV polarization curves and (d) bar chart of
corresponding overpotentials at 50 mA cm−2 of different iron-containing sulfides, selenides, and
sulfoselenide.

The Tafel slopes of the samples were obtained from LSV polarization curves at a scan
rate of 5 mV s−1 using the Tafel Equation (1) [68]:

η = a + b × log(j) (1)

η is the overpotential, b is the Tafel slope, j is the current density, and c is the in-
tercept with the y-axis. The value of the Tafel slope is one of the most useful kinetic
parameters and is inversely proportional to the kinetics of the OER reaction. Hence, as
demonstrated in Figure 6a,b, Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4, with the lowest value of
the Tafel slope, presents the most favorable OER kinetics among the investigated sam-
ples. Furthermore, according to Krasil’shchikov’s mechanistic paths (Equations (2)–(5),
M = active site, b = Tafel slope) [68,69] with their corresponding Tafel slope values, the rate-
determining step of the OER reaction for Ni1.0Co2.1(S0.9O0.1)4 (b = 125 mV dec−1) is metal
oxidation with hydroxide formation (reaction (2)). By increasing the iron content in the
samples, the Tafel slope decreased and reached 85 mV dec−1 for Fe0.6Ni1.2Co2.5(S0.83O0.17)4,
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suggesting that metal oxidation with hydroxide formation (2), and deprotonation of a metal
hydroxide (3), both present rate-determining steps.

Figure 6. (a) Tafel plots and (b) bar chart of Tafel slopes of the samples. (c) Nyquist plots of selected
samples and Voigt circuit model. (d) Chronopotentiometry test of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4

and RuO2.

The lowest Tafel slope among the samples belongs to the sulfoselenide
Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 with 82 mV dec−1, which is again evidence for the role of
selenium in enhancing the kinetics of the OER reaction. The Tafel value of 82 mV dec−1

of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 is close to reaction (3) (b = 60 mV dec−1), being, then,
rate-determining in the overall OER process.

M + OH−� MOH + e−, b = 120 mV dec−1 (2)

MOH + OH−� MO− + H2O, b = 60 mV dec−1 (3)

MO− →MO + e−, b = 45 mV dec−1 (4)
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2MO→ 2M + O2, b = 19 mV dec−1 (5)

Electrochemical impedance spectroscopy (EIS) was conducted for the electron-transfer
kinetics during the OER reaction and to justify the obtained overpotentials [70]. Figure 6c
shows Nyquist plots of the samples at the potential of 1.5 V vs. RHE. The semicircle
diameter of Nyquist plots is inversely proportional to the charge transfer rate across the
electrode and the electrolyte that accelerates reaction kinetics. Hence, a smaller semicircle
diameter represents more favorable charge transfer kinetics [27].

The smaller semicircle diameter of the Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 Nyquist plot
indicates that the coexistence of iron and selenium in Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 can
reduce the charge transfer resistance (Rct). Furthermore, a Voigt circuit model was applied
to the Nyquist plots to evaluate the specific value for the charge resistance in the OER pro-
cess. As shown in Table 2, the value of charge resistance for Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4
is the lowest (0.8 Ω) compared to the other investigated samples. The results from the Rct
values are in line with the recorded OER overpotentials of the samples and the electrocat-
alytic performance.

Table 2. Overpotential at 50 mA cm−2, Tafel slopes, and estimated charge transfer resistance of
selected samples at 1.5 V vs. RHE.

Sample Overpotential
(mV)

Tafel Slope
(mV dec−1)

Charge Transfer
Resistance Rct (Ω)

Ni1.0Co2.1(S0.9O0.1)4 346 125 1.8

Ni0.7Co1.4(Se0.85O0.15) 355 97 1.7

Fe0.6Ni1.2Co2.5(S0.83O0.17)4 294 85 2.2

Fe0.4Ni0.7Co1.6(Se0.81O0.19)4 306 102 1.4

Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 277 82 0.8

(FexNi1−x)CoCH-(1.0) 330 98 2.5

RuO2 299 66 1.2

To elucidate the importance of sulfur and selenium in the OER electrocatalysis perfor-
mance, the (FexNi1−x)CoCH-(1.0) precursor for Fe0.6Ni1.2Co2.5(S0.83O0.17)4 and
Fe0.5Ni1.0Co2.0(S0.57 Se0.25O0.18)4 was investigated and found to have an OER LSV po-
larization curve with a higher overpotential of 330 mV vs. RHE to reach 50 mA cm−2 and
a Tafel slope of 98 mV dec−1, higher than the iron-containing sulfide and sulfoselenide
(Table 2, Figure S14). Furthermore, the larger Nyquist plot semicircle diameter and higher
charge transfer resistance (Rct = 2.5 Ω) of (FexNi1−x)CoCH-(1.0) imply the importance of
S and Se in facilitating the charge transfer through the electrode–electrolyte interface in
sulfide, selenides, and sulfoselenide samples (Figure S15).

One of the critical parameters to evaluate the performance of electrocatalysts in prac-
tical applications is their long-term stability. Hence, a chronopotentiometry test, at a
current density of 50 mA cm−2 for 20 h, was conducted to evaluate the long-term stability
performance of the Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 [50].

Figure 6d illustrates that, after 20 h of OER reaction, the overpotential for obtaining
50 mA cm−2 only increased from 277 mV to 279 mV, which is essentially constant and sup-
ports the excellent electrocatalyst stability of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 for practical
applications. Especially since for RuO2 the overpotential increased from 300 mV to 375 mV
during the same chronopotentiometry test for 20 h, at 50 mA cm−2. A recent study by Jiang
et al. [70,71] proved that a SeOx film on the surface could improve the catalyst stability in
the OER reaction, which can be the reason behind the high stability of Fe0.5Ni1.0Co2.0(S0.57
Se0.25O0.18)4 during the OER reaction (the overpotential increased from 277 to only 279 at
50 mA cm−1 after 20 h OER reaction).
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The superior OER activity and stability of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 material
can be attributed to several effects resulting from introducing Fe and Se2− in the structure of
the nickel cobalt sulfide base material; introducing Fe sites can enhance OER performance
(a) by optimizing bond energies for OER intermediates adsorbing on the electrode surface,
which facilitates the OER kinetics [72], (b) by overcoming the metal oxidation step and
facilitating O2 evolution [73], or (c) by improving the conductivity of the electrode film [74].
However, it is known that the surface of electrodes containing iron, nickel, and cobalt is
oxidized and amorphized in the course of oxygen evolution occurring at high positive
electrode potentials [75–77].

For comparison, the overpotential values of several high performance electrocata-
lysts at a current density of 50 mA cm−2 using nickel foam as substrate are presented in
Table 3. Notably, the results demonstrate that the OER performance of the sulfoselenide
Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 is on par with the best electrocatalysts reported in the
literature, highlighting its comparable effectiveness.

Table 3. Comparison of nickel- and cobalt-based electrocatalysts for OER.

Catalyst Overpotential (mV) Current Density (mA cm−2) Electrode Substrate (a) Ref.

Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 277 50 NF This work

Co3O4/NiCo2O4 407 50 NF [78]

NiO/α-Fe2O3 244 50 NF [79]

P-Ni3S2/CoFe2O4 254 50 NF [79,80]

PANI (b)/NiFe–OH 260 50 NF [81]

LaCoO3 420 50 NF [82]

Ce-doped Ni3S2 257 50 NF [83]

Porous Ni3S2 291 50 NF [84]

(Co1.2MoO4.21·3H2O)/Ni3S2 290 50 NF [85]

CoHPO4·H2O 350 50 NF [86]

NiSe@NiOOH 300 50 NF [87]

P-containing NiCo2S4 300 50 NF [41]

NiFe-LDH (c)/Co3O4 274 50 NF [88]

(a) NF = nickel foam; as we used a nickel foam electrode and current densities of 50 mA cm−2, this comparative
listing is restricted to the same conditions. (b) PANI = polyaniline. (c) LDH = layered double hydroxides.

During the course of our studies, we realized the number of parameters and that an
orthogonal experimental design would be beneficial [89]. We have suggested a theoretical
orthogonal experimental design for future work on iron-containing sulfides, selenides, and
sulfoselenides (Section S8, Supplementary Materials).

4. Conclusions

A novel trimetallic sulfoselenide, Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4, electrocatalyst was
synthesized via a two-step hydrothermal method. The mixed-metal sulfoselenide pos-
sessed higher OER activity than the bimetallic nickel cobalt sulfide Ni1.0Co2.1(S0.9O0.1)4,
the bimetallic nickel cobalt selenide Ni0.7Co1.4(Se0.85O0.15)4, the trimetallic iron-containing
nickel cobalt sulfides, Fe0.1Ni1.4Co2.9(S0.87O0.13)4, Fe0.2Ni1.5Co2.8(S0.9O0.1)4,
Fe0.3Ni1.2Co2.5(S0.9O0.1)4, and Fe0.6Ni1.2Co2.5(S0.83O0.17)4, and the iron-containing nickel
cobalt selenide, Fe0.4Ni0.7Co1.6(Se0.81O0.19)4. The trimetallic sulfoselenide required an over-
potential of only 277 mV at 50 mV cm−2 and had favorable OER kinetics, manifested by
a Tafel slope of 82 mV dec−1. The OER performance of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4
surpassed the well-known RuO2 benchmark material where the required overpotential
(300 mV to generate 50 mA cm−2) was 23 mV higher under the same condition (1 mol L−1

KOH). The 20 h chronopotentiometry analysis revealed that Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4
has remarkable stability during long-term operation in alkaline media (the overpotential
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increased only from 277 to 279 mV) while, under the same conditions, RuO2 showed a
considerable loss in activity (such that the overpotential increasing from 300 to 375 mV
during the generation of the 50 mA cm−2 current density).

Furthermore, the incorporation of selenium also significantly affected the OER activity
and stability by reducing the energy barrier of the OER reaction, optimizing the electronic
structure of active sites by modifying the d-band of the materials. Indeed, a SeOx film
on the surface of Fe0.5Ni1.0Co2.0(S0.57Se0.25O0.18)4 can enhance the long-term stability of
the catalyst. Considering the improvements in OER performance, this simple two-step
hydrothermal synthesis of trimetallic sulfoselenides, from transition metal carbonate hy-
droxide, (FexNi1−x)CoCH-(y), as precursors can be used as a facile and practical approach
to produce the next generation of non-precious polymetallic polychalcogenide materials
for the oxygen evolution reaction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/solids4030012/s1, Section S1: preparation of Ni0.7Co1.4(Se0.85O0.15)4
and Ni1.0Co2.1(S0.9O0.1)4; Section S2: Sample preparation for AAS; Section S3: Scanning electron
microscopy and energy dispersive X-ray spectroscopy (SEM/EDX) and TEM/EDX; Section S4: Ele-
mental analysis and atomic spectroscopy measurements; Section S5: Nitrogen sorption measurement;
Section S6: X-ray photoelectron spectroscopy; Section S7: Electrochemical characterization; Section S8:
Theoretical orthogonal experimental design. References [90–128] are cited in the Supplementary Materials.
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