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Abstract: Monitoring training load using acute:chronic workload ratio (ACWR) enables coaches to
maximize fitness potential while mitigating injury risks by maintaining an optimal ACWR range.
There are two methods of determining ACWR: rolling average (RA) and exponentially weighted
moving average (EWMA). This study aimed to (1) compare weekly changes in kinetic energy (KE)
output in female youth athletes (n = 24) during the high school (HSVB) and club volleyball (CVB)
seasons and (2) evaluate the agreement in RA and EWMA ACWR calculations during the HSVB and
CVB seasons. Weekly load was measured using a wearable device, and RA and EWMA ACWRs were
calculated using KE. The HSVB data showed spikes in ACWR at the onset of the season and during
one week mid-season (p = 0.001–0.015), but most weeks were in the optimal ACWR range. The CVB
data had greater weekly variations throughout the season (p < 0.05), and many weeks were outside
of the optimal ACWR range. There were moderate correlations between the two ACWR methods
(HSVB: r = 0.756, p < 0.001; CVB: r = 0.646, p < 0.001). Both methods can be used as a monitoring
tool for consistent training like that in HSVB, but more research is needed to investigate appropriate
methods for an inconsistent season like that of CVB.

Keywords: athlete monitoring; youth athletes; team sports

1. Introduction

Monitoring athlete conditioning and maintaining a balance between fitness and fatigue
are at the forefront of sports research and training. One of the most common methods
of managing athlete workload is using the acute:chronic workload ratio (ACWR). The
purpose of this tool is intended to reduce the risk of injuries while maximizing fitness
and balancing recovery [1]. ACWR is calculated as the acute workload divided by the
chronic workload. Acute workload is typically measured daily over a seven-day period
and represents fatigue in an athlete. Chronic workload is generally the average of 28 days
of the workload and represents the fitness of an athlete [1,2]. The optimal ACWR is a range
between 0.8 and 1.5—an ACWR above 1.5 increases the risk of injury, and a value below
0.8 may result in loss of fitness [1].

ACWR can be calculated using the rolling average (RA) model or the exponentially
weighted moving average (EWMA) model. The RA model weighs chronic and acute
workloads equivalently and does not account for variations in training schedules [1]. This
method allows for a simple ratio calculation because the RA model does not consider the
compounding effect of recent training volume. The EWMA model has been shown to be
a better indicator of performance and injury because this model places greater emphasis
on the most recent work an athlete performed and accounts for the decline in athlete
fitness [3,4]. The EWMA calculation weighs the most recent weeks’ chronic workload
more than that of the workload performed three weeks prior. This weighting allows for a
reduced mathematical impact of the declined physiological work from three weeks prior.

Currently, most ACWR studies have been derived from professional, adult male
athletes [1–7]. While ACWR has proven helpful in male sports, the research on female
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adolescent athletes is limited [5]. Studies have shown that using ACWR is effective in
managing injury and training load in non-elite intercollegiate female soccer and rugby
players (18–24 years) and in preventing load spikes that may result in injury in professional
elite female basketball players (mean age: 21 years) [8,9]. Previous literature on elite female
volleyball athletes showed that the ACWR EWMA stayed in the optimal performance
zone for the duration of a competitive season [10]. These data are useful as foundational
knowledge that may be applied to other volleyball populations but provide no insight
into the training load endured by the athletes over an entire training year. Many studies
investigating female sports rely on other monitoring methods (e.g., heart rate variability,
ratings of perceived exertion) or suggest altering training methods (e.g., incorporating
prevention exercises) over monitoring objectively measured training load [11–14]. While
there is nothing inherently wrong with any of these methods, it is staggering that a well-
known monitoring tool such as ACWR, in combination with objective measures, is rarely
applied to female sports, much less adolescent, developing female athletes.

Volleyball is a sport that has been steadily growing in participation in the United States.
In 2019, there were nearly half a million female adolescents participating in volleyball, with
many of these athletes participating in both the high school and club volleyball seasons [15].
Athletes are expected to miss school as needed to attend tournaments, creating a stressful
student–athlete relationship. Many high school–aged (14–18 years old) volleyball players
play approximately 48 weeks a year between the high school season, club season, and
summer training camps. In Texas (the state with the highest number of high school
volleyball athletes), the high school season is about four months long, and athletes train
or play games about six days a week [16]. During the club season, athletes typically
train two days a week for almost eight months. Three of those months consist of heavy
tournament play where athletes play 9–12 matches over a three-day period for several
weeks. The remaining five months consist of light tournament play where athletes play six
to eight matches over two days during each tournament, but tournaments are less frequent.
Club tournaments often require traveling to a different city or state to compete against
teams from all over the United States. As these athletes play volleyball almost year-round,
measuring training volume will likely be very beneficial to ensure that they are not being
overtrained and at risk for injury. Professional female volleyball players have an overall
injury rate of 2.6 per 1000 playing hours, with ankle sprains cited as the most common
injury [17]. In addition, volleyball is the eighth most injury-prone sport for young adults
ages 14–20 years [18]. As most youth volleyball players are involved in both club and high
school, overuse injuries are a great concern and exemplify the need for an accurate model
of monitoring workload.

In Texas, high school girls’ volleyball is a year-round sport because of the demands
from the club and high school [16] and incorporating ACWR as a tool for managing training
and game volume may be beneficial to coaches and athletes. The primary aim of this study
was to compare changes in external load, measured via kinetic energy, in female youth
athletes during the high school and club volleyball seasons. Weekly load is evaluated
using both the RA- and EWMA-ACWR calculations. The secondary aim is to evaluate the
agreement in RA- and EWMA-ACWR calculation methods during the high school and
club seasons. We hypothesized that ACWR would remain in the optimal zone for the high
school season but would follow a more volatile pattern during the club season. We also
hypothesized that RA and EWMA ratios would have a higher correlation during the high
school season than the club season. To our knowledge, this is the first study to provide
insight related to longitudinal training and game loads in high school volleyball athletes.
This is also the first study to apply the concept of ACWR to this population. Further, this is
the first study to provide objective data for a consistent training and game schedule (high
school) and inconsistent schedule (club) within the same sport. The schedule differences
are expected to produce variations in ACWR between the two types of seasons.
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2. Materials and Methods
2.1. Study Design

This study utilized two different datasets that were prospective observational studies.
The high school volleyball (HSVB) dataset was conducted with a 6A high school volleyball
team in the 2021 University Intercollegiate League in Texas. The club volleyball (CVB)
dataset was conducted with a Texas club volleyball team competing in USA volleyball
tournaments during the bulk of the 2021–2022 season—the first 20 weeks of the 29-week
season. Athletes participated in either the HSVB portion or the CVB portion, not both.
This study was approved by the Sam Houston State University institutional review board
(IRB-2021-202) and was conducted in alignment with the Declaration of Helsinki. All
participants provided their assent, and their parents or legal guardians provided consent
for study participation.

2.2. Participants
2.2.1. HSVB Data

The included athletes were members of the high school varsity volleyball team par-
ticipating in the team camp in July 2021 and had parent/guardian approval. An athlete
was excluded from the study if the coach did not indicate them as a top-12 player on
the team because of the limited number of devices used for measurement. A total of
12 athletes consented to this portion of the study. Athletes participated from July 2021
through October 2021. The season was divided into four phases: pre-season, tournament
play, conference play, and playoffs. The two-week long pre-season (weeks 1–2) included
a total of 9 practices and 12 sets played. Tournament play lasted five weeks (weeks 3–7)
and included 13 practices and 68 played sets. Conference play spanned seven weeks
(weeks 8–14), with 27 practices and 43 sets played. The playoff portion of the season lasted
two weeks (6 practices and 18 sets played) but was not included in the dataset because of
the inconsistent data collection. In total, the team participated in 40 matches and finished
the season in the top eight in their division of 244 teams.

2.2.2. CVB Data

The included athletes were members of the top team of the age group within the club,
began the season in November 2021, and had parent/guardian approval for the study. One
athlete was excluded from the study, owing to a late-season start related to an injury. A
total of 12 athletes participated in this portion of the study. Athletes participated from
November 2021 through April 2022. The season was divided into four phases: pre-season,
prep tournaments, qualifier phase, and nationals. Pre-season was approximately six weeks
long (weeks 1–6), with two practices per week and two one-day tournaments held locally
on the weekend. The prep phase was also six weeks (weeks 7–12), with two practice
per week, two two-day tournaments, and one three-day tournament. The qualifier phase
was eight weeks long (weeks 13–20) and included two practices per week, one two-day
tournament, and three three-day tournaments. The three-day tournaments in this phase
were all USAV events where the team aimed to achieve a qualifying spot for nationals in
the summer. The last nine weeks of the season—the nationals phase—were not included
because of a less predictable schedule and the team competed in two tournaments.

2.3. Measures

Data were collected in both datasets using VERT model KMT devices (VERT Team
System, Fort Lauderdale, FL, USA). These devices had been verified by third-party analysis
for the accuracy of jump count and vertical jump [19]. Each athlete wore the device
during all practices and games in which they participated. The devices were worn and
used according to best practice standards developed by the device company. All data
were processed by the VERT Team System App on an iOS device and uploaded to the
myVERT cloud.
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The data collected by VERT included session totals for the number of jumps, jumps
completed greater than 50 cm, maximum jump height, movements per minute, stress
percentage upon landing, and kinetic energy (J/lb). Kinetic energy was calculated within
VERT according to the methods provided by Charlton et al. and included the final velocity
of an athlete after an acceleration and the athlete’s mass [20]. This value represented the
external workload of an athlete for a given session and was the primary variable used for
analysis in the present study. Kinetic energy was selected as the primary variable because
these data were longitudinal and included a total of 34 weeks observed, and it provided
a concept of the overall training volume based upon movements and not jumps alone. It
served as an optimal variable for evaluating both jumping and non-jumping positions
across the game. This variable has been positively compared to the PlayerLoad amalgam
variable used by Catapult Sports [21].

The ACWR for kinetic energy was calculated weekly in the HSVB and CVB datasets
using the RA and EWMA. Both methods utilized a 7-day period for the acute workload
and a 28-day period for the chronic workload. The calculation of the acute workload
was the average workload during the most recent 7-day period, and ACWR values were
calculated for the end of each week. The chronic workload using the RA method averaged
the preceding 28-day workloads [1,2,4,7]. The chronic workload using the EWMA method
utilized time decay to account for the most recent workload when calculating the chronic
workload [4,22]. A time decay constant was determined using a 7-day workload and a
28-day workload to account for the acute and chronic workloads. The workload of the
current day was multiplied by the degree of decay and then added to a value that enhanced
the most recent training load. This method allowed time to be considered in the chronic
workload by placing a greater emphasis on the most recent workloads of the 28-day cycle.
The calculations were performed in Microsoft Excel. The target range of ACWR, regardless
of the calculation method, was between 0.8 and 1.5 [1].

2.4. Statistical Analysis

All statistical analyses were performed using SPSS version 27.0 (IBM, Armonk, NY,
USA). An α level of <0.05 was used to determine significance. To determine if there was
a difference between the weekly totals in kinetic energy output, the RA-ACWR and the
EWMAACWR, a repeated-measures analysis of variance (RM-ANOVA) was performed
for both the HSVB and CVB datasets. Partial eta-squared effect sizes (ESs) were calculated
to determine the magnitude of the effect. The ES values were interpreted as small (0.01),
moderate (0.06), and large (0.14) [23]. If there was a main effect difference, then univariate
analyses were used to evaluate specific differences within the main effect. Upon significance
for a given variable, subsequently paired t-tests were used to assess weekly differences for
adjacent weeks (e.g., week 3 was compared only to weeks 2 and 4) to evaluate for workload
spikes and dips that would affect the fitness of the athletes. A repeated-measures correlation
tests were used to evaluate the agreement between the RA-ACWR and EWMA-ACWR for
the HSVB and CVB datasets [24].

3. Results
3.1. HSVB Data

The weekly average RA-ACWR, EWMA-ACWR, and workload were calculated and
are shown in Figure 1. The RM-ANOVA showed a main effect difference in the weekly
averages of kinetic energy, RA-ACWR, and EWMA-ACWR with a large ES—Lambda
(39, 225) = 3.7, p < 0.001, ES = 0.552. The univariate analysis revealed a significant weekly
difference and a large ES of the EWMA-ACWR (p = 0.001, ES = 0.40) and the RA-ACWR
(p = 0.008, ES = 0.395). There was no significant difference in weekly averages of kinetic
energy output (p = 0.141, ES = 0.288).
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Figure 1. Means and standard deviations of the weekly average kinetic energy (KE, gray bar), weekly
exponentially weighted moving average ACWR (EWMA, square, blue line), and weekly rolling
average ACWR (RA, circle, red line) of HSVB. Kinetic energy is associated with the primary y-axis,
and both ACWR lines are associated with the secondary y-axis. Dagger (†) represents significance to
the week following; the asterisk (*) represents significance to the week prior.

Paired t-tests showed a difference in the EWMA-ACWR between week 1 and week 2
(t(10) = −5.177, p < 0.001), week 2 and week 3 (t(10) = −6.376, p < 0.001) and week 7
and week 8 (t(10) = −3.004, p = 0.015). Paired t-test identified a significant difference in
RA-ACWR between week 1 and week 2 (t(10) = −10.063, p < 0.001), week 2 and week 3
(t(10) = 6.827, p < 0.001). Figure 1 highlights the peak in workload in the second week of
the season, followed by minor oscillations throughout the remainder of the season. The
workload peak occurred in the final week of pre-season training. EWMA- and RA-ACWRs
fell below the 0.8 optimal range in weeks 3 and 4 in reaction to the peak noted in week 2
and the start of the tournament phase in week 3. EWMA then increased into the optimal
range by week 5, but RA did not increase until week 6.

Figure 2 shows the correlation between weekly RA- and EWMA-ACWR values for
the HSVB data. The repeated-measures correlation analysis showed a strong correlation
between the two metrics—r = 0.756, p < 0.001. Overall, the EWMA values tended to be
lower than the RA values in calculating ACWR.
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Figure 2. Correlation between the two ACWR metrics for the HSVB data—r = 0.756, p < 0.001. Rolling
average (RA) vs. exponentially weighted moving average (EWMA).
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3.2. CVB Data

The weekly average RA-ACWR, EWMA-ACWR, and workload were calculated and
are shown in Figure 3. The RM-ANOVA showed a main effect difference in the weekly
averages of kinetic energy output, RA-ACWR, and EWMA-ACWR with a large ES—Lambda
(42.0, 244.017) = 7.273, p < 0.001, ES = 0.553. The univariate analysis revealed a significant
weekly difference and large ES of EWMA-ACWR (p < 0.001, ES = 0.642), RA-ACWR
(p < 0.001, ES = 0.448), and kinetic energy (p < 0.001, ES = 0.468). All ESs were interpreted as
large. The paired t-tests showed differences in the average kinetic energy output between
week 3 and week 4 (t(7) = 3.660, p = 0.008), week 7 and week 8 (t(8) = −3.423, p = 0.009),
week 12 and week 13 (t(8) = 2.845, p = 0.022), and week 13 and week 14 (t(8) = −2.308,
p = 0.05). The EWMA-paired samples t-test revealed a significant difference between
week 3 and week 4 (t(7) = 3.614, p = 0.009), week 7 and week 8 (t(8) = −3.403, p = 0.009),
week 12 and week 13 (t(8) = 3.392, p = 0.009), week 14 and week 15 (t(8) = −2.343, p = 0.047),
and week 18 and 19 (t(8) = 4.957, p = 0.001). The paired-sample t-tests demonstrated a
significant difference in the RA-ACWR between weeks 3 and 4 (t(7) = 3.175, p = 0.016),
week 13 was different from 12 (t(8) = 3.632, p = 0.007) and 14 (t(8) = −2.628, p = 0.03), and
week 18 was different from week 17 (t(8) = −5.632, p < 0.001) and 19 (t(8) = 7.754, p < 0.001).
Figure 3 shows that weeks 4 and 13 saw a significant decrease in workload, and in both
cases, RA- and EWMA-ACWRs dropped below the 0.8 threshold to maintain fitness. This
occurred a third time in week 19. Week 4 fell near the holidays, so there were likely fewer
practices that occurred, and weeks 13 and 19 were during the qualifier section of the season.
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Figure 3. Means and standard deviations of the weekly average kinetic energy (KE, gray bar), weekly
exponentially weighted moving average ACWR (EWMA, square, blue line) and weekly rolling
average ACWR (RA, circle, red line) of CVB. KE is associated with the primary y-axis, and both
ACWR lines are associated with the secondary y-axis. Dagger (†) represents significance to the week
following, and the asterisk (*) represents significance to the week prior.

Figure 4 shows the correlation between RA- and EWMA-ACWR calculations for the
CVB data. The repeated-measures correlation analysis indicated a moderate correlation
between the two metrics—r = 0.646, p < 0.001. Like the HSVB data, EWMA values tended
to be lower than RA values.
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4. Discussion

This study investigated the fluctuations in ACWR and kinetic energy load in high
school–aged volleyball players, examining both the RA and EWMA methods of calculation
during the high school volleyball season and the club season. HSVB demonstrated a
baseline level of ACWR that was kept in the optimal range for the season, while CVB
displayed many peaks and valleys that were outside of the optimal range of 0.8–1.5 [1].
The results support the use of ACWR in managing load during both volleyball seasons
and that the two calculations for ACWR show higher agreement with a more consistent
competition and training schedule.

4.1. ACWR in High School Volleyball Season

It is important to maintain fitness while preventing overtraining because the high
school season is four months long, with training or games six days a week. While there was
no significant difference between weekly kinetic energy averages, there were weekly differ-
ences for both RA and EWMA with large effect sizes. This suggests the need to evaluate
training load in absolute terms—kinetic energy—and in reference to the chronic workload
accrued through ACWR to provide a holistic view of the athlete’s load. Both methods of
ACWR calculations demonstrated that coaches maintained an effective training schedule by
maintaining the ACWR values within the optimal range (0.8–1.5), and the different ACWR
methods were strongly correlated. The weekly ACWR values were similar to those from
research on elite female volleyball players [10]. The EWMA method detected a significant
spike in ACWR training between the seventh and eighth week of the season (Figure 1),
while the RA method did not. The EWMA method is known for being more sensitive to
spikes in training, leading to better load monitoring and possibly injury prevention [4].
Spikes in training are important to monitor to prevent injury from overtraining [1]. In
addition, the EWMA method tended to result in lower values, suggesting that the RA
method gives too much weight to workloads that no longer have the same effect as more
recent workloads. This negatively limits the calculation’s ability to account for fitness
and fatigue over time [4,22,25]. This also suggests that using the RA method can lead to
erroneously lighter workload training sessions, which can result in loss of fitness and cause
spikes during competition [4]. For these reasons, the EWMA method appears to be a more
appropriate ACWR for a season with consistent training and competition.

4.2. ACWR in Club Volleyball Season

Club volleyball is typically a seven-month season. This dataset only investigated the
first five months of the season because of increased training and competition inconsistency



Sports 2023, 11, 51 8 of 11

in the final two months of the season. The club season is distinguished by the two practices
per week and tournament-style matches, where athletes typically compete Friday–Sunday
with three to four matches per day. Additionally, these athletes might also be participating
in other high school sports or an off-season volleyball program at their high school, which
would also contribute to the athletes’ overall physiological load. With this type of training,
it is very important to monitor workload because this is the longest season and overuse
injuries can result from rapid fluctuations in workload.

The club volleyball season showed weekly differences in kinetic energy, RA, and
EWMA. All three metrics showed a decline in workload between weeks 3 and 4 and
weeks 12 and 13. Week 4 was very low comparatively because it aligned with a holiday
break in training. A spike in training was detected based on kinetic energy and the EWMA
method between weeks 7 and 8. Kinetic energy and the RA method indicated a significant
spike in workload between weeks 13 and 14, while the EWMA method showed a spike
between weeks 14 and 15. As EWMA is more sensitive to determining spikes, this was
an expected result [4]. Both methods exhibited ACWRs that fell below the optimal range
during week 4 and achieved very similar values for week 15, nearing the high end of the
optimal value, indicating that the athletes could have been at risk of fatigue and injury [1].
This was most likely due to the inconsistent schedule of the club volleyball season, which
is different from an elite volleyball schedule that produces a more consistent training
regimen [10,26]. The EWMA method did not identify week 13 as a potential area of losing
fitness, while the RA method did. This was most likely explained by the fact that the
RA method weighs each weekly workload equally, causing the estimates to be linear and
unable to accurately account for the variations that occur during the club schedule [4,22,25].
Interestingly, the RA method identified week 9 as possibly going over the optimal range,
while the EWMA method identified the increase in week 10. This is significant because,
looking at the kinetic energy, we can see that there was an increase in workload during
week 9, which correlates with the RA method. However, when the kinetic energy output
decreased during week 10, the EWMA picked up on the near-injury possibility level
because of an increased weight on the week 9 workload. This exemplifies the EWMA’s
ability to apply the time decay, allowing it to better understand the workload [4]. The
moderate correlation between the two ACWR measures suggests that the methods are
useful in monitoring athlete workload but provides few answers as to which method
is more effective. However, when considering the formulas for each method and the
inconsistent club season schedule, the importance of a time constant increases because
there are many off-days during the week. Because the EWMA is more sensitive when
detecting spikes and the schedule is inconsistent, it is important to be able to account for
decaying fitness and fatigue when monitoring players’ workload. These results indicate
the EWMA method may be a better monitoring method, but more research on seasons with
inconsistent schedules needs to be conducted.

4.3. Application of ACWR in Girls’ Volleyball

Currently, there is no similar study that uses ACWR in female youth volleyball players,
and there is no standard for load monitoring in this population. These data add to the
little research available for workload assessment in volleyball across a season [11,13]. An
important finding of this study is that ACWR can and should be used to monitor female
athletes. The consistency of training in a high school volleyball season lends itself to
the EWMA calculation, while there is not a definitive answer to which method is more
appropriate for the inconsistent season of club volleyball. Future research should focus
on this season type because there are many youth athletes that participate in club sports.
Ratings of perceived exertion are a valid, simple, and inexpensive method of evaluating
workload that can be employed with an inconsistent season [27]. While there is reliability
to these methods, perception is not consistent within or between subjects, teams, or sports,
and it is hard to determine validity [28,29].
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Using the EWMA method for girls’ volleyball during the high school season is con-
sistent with the current ACWR literature and is most likely due to the similar training
schedule [4,5,30]. However, the club season is less predictable and consistent. While it is
appropriate and consistent with the current literature that ACWR is an effective method
of monitoring workload [31–33], there is a staggering lack of evidence for girls’ sports in
general and particularly girls’ club sports.

4.4. Limitations

Limitations in this study were related to data availability. The final two months of the
CVB season were not included in this study because of inconsistent data. This decision
was made because it was the slowest training period of the season, and the data that were
included in analyses comprised the densest training and playing portion of the season.
In addition, compliance with the VERT monitoring system precipitated incomplete data
capturing. This was controlled by removing athletes that had less than 50% participation.
Another limitation of this study was that different athletes were followed through the two
seasons. Ideally, the same athletes would have been followed during the training year, but
this was a significant logistical challenge. Lastly, there is virtually no comparable study of
girls’ volleyball players using ACWR as a workload monitoring tool. Future investigations
of ACWR should include this as an important population of interest.

5. Conclusions

This is a novel research project that is a first attempt at characterizing the workload
of girls’ youth volleyball using ACWR. These results demonstrate that, for high school
volleyball, ACWR is a useful method of load monitoring and EWMA may be a more
appropriate calculation method. The club volleyball season also demonstrated that ACWR
is an insightful method for evaluating workload, but future research should focus on further
elucidating which ACWR method is more appropriate. The inconsistent training schedule
may be part of the reason there is not a definitive answer to which ACWR method seems
more sensitive and a more useful monitoring tool.
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