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Abstract: The notion of median in one dimension is a foundational element in nonparametric
statistics. It has been extended to multi-dimensional cases both in location and in regression via
notions of data depth. Regression depth (RD) and projection regression depth (PRD) represent the
two most promising notions in regression. Carrizosa depth DC is another depth notion in regression.
Depth-induced regression medians (maximum depth estimators) serve as robust alternatives to
the classical least squares estimator. The uniqueness of regression medians is indispensable in
the discussion of their properties and the asymptotics (consistency and limiting distribution) of
sample regression medians. Are the regression medians induced from RD, PRD, and DC unique?
Answering this question is the main goal of this article. It is found that only the regression median
induced from PRD possesses the desired uniqueness property. The conventional remedy measure for
non-uniqueness, taking average of all medians, might yield an estimator that no longer possesses the
maximum depth in both RD and DC cases. These and other findings indicate that the PRD and its
induced median are highly favorable among their leading competitors.
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1. Introduction

Regular univariate sample median defined as the innermost (deepest) point of a data set is
unique (If the sample median is defined to be the point θ that minimizes the sum of its distances to
sample points (i.e., θ = arg minθ∈R1 ∑n

i=1 |θ − xi|, where xi, i = 1, · · · , n are the given n sample points
in R1), then it is not unique. However, to overcome this drawback, conventionally it is defined as
θ = Median{xi} := x(b n+1

2 c)
+ x(b n+2

2 c)
/

2, where x(1) ≤ x(2) ≤ · · · ≤ x(n) are ordered values of xi’s
and b·c is the floor function. Namely, it is the innermost point (from both left and right direction) or
the average of two deepest sample points. Hence, it is unique). The population median defined as
the 1

2 -th quantile (Recall, for any univariate distribution function F, and for 0 < p < 1, the quantity
F−1(p) := inf{x : F(x) ≥ p} is called the pth quantile or fractile of F (see page 3 of Serfling (1980) [1]))
of the underlying distribution (there are other versions of definition) is also unique. The most
outstanding feature of the univariate median is its robustness. In fact, among all translation equivariant
location estimators, it has the best possible breakdown point (Donoho (1982) [2]) (and the minimum
maximum bias if underlying distribution has a unimodal symmetric density (Huber (1964) [3]).
Besides serving as a promising robust location estimator, the univariate median also provides a
base for a center-outward ordering (in terms of the deviations from the median), an alternative to the
traditional left-to-right ordering.

To extend the univariate median to multidimensional settings and to share its outstanding
robustness property and an alternative ordering scheme is desirable for multidimensional data.
One approach, among others, is via notions of data depth. General notions of data depth have been
increasingly pursued and studied (Liu, et al. (1999) [4], Zuo and Serfling (2000) (ZS00) [5]) since the
pioneer proposal of Tukey (1975) [6] (see Donoho and Gasko (1992) [7]). Besides Tukey depth, another
prevailing depth, among others, is the projection depth (PD) [5] (Liu (1992) [8], and Zuo (2003) [9]).
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Abstract: The Rasch model is one of the most prominent item response models. In this article,
different item parameter estimation methods for the Rasch model are systematically compared
through a comprehensive simulation study: Different alternatives of joint maximum likelihood (JML)
estimation, different alternatives of marginal maximum likelihood (MML) estimation, conditional
maximum likelihood (CML) estimation, and several limited information methods (LIM). The type of
ability distribution (i.e., nonnormality), the number of items, sample size, and the distribution of item
difficulties were systematically varied. Across different simulation conditions, MML methods with
flexible distributional specifications can be at least as efficient as CML. Moreover, in many situations
(i.e., for long tests), penalized JML and JML with ε adjustment resulted in very efficient estimates
and might be considered alternatives to JML implementations currently used in statistical software.
Moreover, minimum chi-square (MINCHI) estimation was the best-performing LIM method. These
findings demonstrate that JML estimation and LIM can still prove helpful in applied research.

Keywords: Rasch model; estimation methods; nonnormality

1. Introduction

The Rasch model (RM; [1–3]) is one of the most popular item response theory (IRT)
models [4–9]. It is important to select appropriate estimation methods because the RM
is widespread in diverse applications (e.g., [10–16]). For the RM, a variety of estimation
methods has been proposed. In this article, a comprehensive comparison of different
estimation methods for the RM is conducted. We manipulate the factors’ test length (i.e.,
number of items), sample size, the type of ability distribution, and the distribution of item
difficulties. Recommendations for the choice of estimation methods can be drawn for
empirical applications that utilize the RM.

The article is structured as follows. In Section 2, the RM model is introduced. In
Section 3, several estimation methods are reviewed. In Section 4, we present the results of
a simulation study that compares a wide range of estimation methods. Finally, the paper
closes with a discussion in Section 5.

2. Rasch Model

The RM [1,2,17–27] is a statistical model for dichotomous item responses Xpi for
persons p = 1, . . . , N and items i = 1, . . . , I. It assumes the existence of a latent variable
θ (so-called ability) that accounts for the dependence among item responses. The item
response function for the Rasch model is given as

P(Xpi = x|θp; bi) =
exp(x(θp − bi))

1+ exp(θp − bi)
, x = 0, 1 , (1)

where θp is the ability of person p and bi is the item difficulty for item i. Abilities θp can
be either modeled as fixed effects or random effects [28,29]. In the treatment of fixed
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effects, every person is associated with an ability parameter that has to be estimated. In
the random effects situation, a distribution for the ability variable is posed; that is, θ ∼ G
and the unknown distribution G must be estimated in a parametric, semiparametric, or
nonparametric way. Note that the RM parameters are determined up to a constant. Hence,
either the mean of the abilities or the mean of item difficulties has to be fixed to zero for
reasons of identification [30]. The posed functional form of the item response function (1)
in the RM can be assessed by item fit statistics [31]. We would also like to emphasize that
the RM only places low requirements on sample sizes because only one parameter per item
(i.e., item difficulty bi) is estimated [9].

In addition to Equation (1), item responses Xpi are assumed to be locally independent:

P(Xp1 = x1, . . . , XpI = xI |θp) =
I

∏
i=1

P(Xpi = xi|θp) . (2)

This means that there does not exist residual associations among items after taking
the ability θp into account. Assumption (2) can be tested in empirical applications [32–34].
It can be argued that the unidimensionality assumption in Equation (2) is only a crude
approximation to real data and enables the extraction of a summary ability variable. The
local independence assumption can then be understood as an assumption that residual
associations among items cancel out on average. This means that there will always ex-
ist positive and negative residual associations after controlling for the extracted ability
variable θ.

An important property of the Rasch model is that the sum score Sp = ∑I
i=1 Xpi is a

sufficient statistic for θp [30]. Hence, θp is a nonlinear function of the sum score Sp, and it
does not matter in the computation of the ability which of the items have been solved by a
person. Moreover, with at least a moderate number of items, the nonlinear relation of Sp
and θp can be closely approximated by a linear function which explains the resemblance of
classical test theory [35] and the RM [36]. Moreover, note that the proportion correct for an
item is a sufficient statistic for the item difficulty bi.

In this article, the RM is a mixed effects logistic model with a random person effect θ,
and item difficulties bi are fixed effects [28,37–41]. The formulation of the RM as a mixed
effects model has the advantage that item difficulties can alternatively be considered as
random effects [28]. Moreover, more complex hierarchical structures (e.g., students nested
within schools) can also be accommodated [39,42].

In the remainder of the paper, we only focus on the estimation of item parameters. We
review several estimation methods for the RM in the next section.

3. Estimation Methods for the Rasch Model

A variety of estimation methods has been proposed for the RM [23,43,44]. In this
section, we contrast joint maximum likelihood, conditional maximum likelihood, marginal
maximum likelihood estimation, and limit information estimation methods.

3.1. Joint Maximum Likelihood (JML) Estimation

Joint maximum likelihood (JML; [25,45]) methods treat person abilities θp as fixed
effects. In JML, the vector of person parameters γ = (θ1, . . . , θN) is simultaneously esti-
mated with the vector of item parameters b = (b1, . . . , bI). The estimation JML algorithm
alternates between γ and b parameter estimation in one iteration. Note that the number
of estimated parameters grows with the number of observations (i.e., number of persons
times number of items). This property is also denoted as the incidental parameter problem,
resulting in the undesirable property that JML estimates are not consistent [46–48]. How-
ever, several bias correction methods can be utilized to circumvent this issue. The different
JML estimation variants are described in more detail in the following.
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3.1.1. JML with Bias Correction (JMLM and JMLW)

As mentioned above, the JML estimation algorithm cycles between the steps of esti-
mating person and item parameters. For persons that solved no or all items, no finite ability
estimate θp exist, which causes the incidental parameter problem. The JMLM method
eliminates the persons with these extreme scores from the JML estimation for estimating
item parameters. In contrast, a modified ability estimation method by Warm [49] can be
used (JMLW) that results in finite ability estimates and does not require the elimination of
persons in the analysis. Interestingly, the JMLW method can be interpreted as a Bayesian
estimation method with a Jeffrey’s prior for abilities [50]. The bias due to incidental param-
eters can be corrected (or at least reduced) in JMLM and JMLW by a subsequent adjustment
of estimated item parameters [51,52]. With obtained item parameters b̂i from the alternat-
ing estimating approach, the finally computed bias-corrected item parameter is given as
(I − 1)/I · b̂i. Note that the adjustment becomes negligible with an increasing number of
items I.

3.1.2. Penalized JML (PJML)

In penalized JML [53–55], a ridge penalty term is added to the log-likelihood function
with a regularization parameter λ. That is, a term Pen(θp) = −λθ2

p is added to the person-
specific log-likelihood. Including a ridge penalty is equivalent to a Bayesian approach
in which a normal prior distribution θ ∼ N(0, σ2

prior) with an appropriate choice of the
regularization parameter σprior > 0 is employed. PJML also circumvents the exclusion of
persons with extreme scores from the estimation. The optimal choice of σprior will typically
differ in the situations in which the precision in person or item parameter estimates should
be optimized.

3.1.3. JML with ε Adjustment (JMLε)

Another JML estimation approach that does not require eliminating persons with
extreme scores is JML with ε adjustment (JMLε; [56–58]). JMLε estimation employs a
modified likelihood by replacing the sufficient statistic Sp with a modified sufficient statistic
S∗p that is defined by

S∗p = ε +
I − 2ε

I
· Sp , (3)

using an appropriate ε > 0. As a consequence, while Sp takes values in the interval [0, I],
S∗p takes values in [ε, I − ε], and the latter statistic results in finite ability estimates.

Interestingly, the estimation methods PJML and JMLε tackle the issue of non-finite
ability estimates from different angles. The original JML approach (i.e., JMLM, that does
not allow persons with extreme scores) seeks ability estimates θp that solves the estimat-
ing equation

Sp = f (θp) . (4)

The PJML method adds a penalty Pen(θp) to the right side of Equation (4); that is,
Sp = f (θp) + Pen(θp). The JMLε method changes the left side of Equation (4), resulting in
the modified estimating equation S∗p = f (θp).

3.2. Conditional Maximum Likelihood (CML) Estimation

Conditional maximum likelihood (CML; [43,59–62]) estimation can handle the situa-
tions in which the ability variable is either treated as fixed or random. In CML estimation,
the vector of item difficulties b is only estimated. The ability variable θ is removed from
the estimation by conditioning on the sum score. One can show that the conditional distri-
bution of item responses Xp conditioned on the sum score Sp = ∑I

i=1 Xpi does not depend
on θp [30]:

P(Xp = xp|Sp = sp) = h(b) . (5)
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Hence, no distributional assumption about the ability variable has to be posed. In
addition, item parameter estimates are consistent. CML estimation is computationally
more demanding than JML, but efficient algorithms have been proposed [63,64].

CML estimation has also been discussed for mixed effects logistic models [65–67].

3.3. Marginal Maximum Likelihood (MML) Estimation

In marginal maximum likelihood estimation (MML; [68,69]), latent variables θ are in-
tegrated out by posing a distributional assumption Gγ for θ, where distribution parameters
γ are simultaneously estimated with b. The log-likelihood function l(b, γ) is maximized.
The log-likelihood contribution for person p is given by

lp(b, γ) = log

[∫ I

∏
i=1

P(Xpi = xpi|θ; bi)dGγ(θ)

]
. (6)

If the parametric specification Gγ differs from the data-generating distribution H,
biased item parameters can occur.

In the following subsections, different distributional specifications in MML are dis-
cussed. These MML variants differ in how deviations from normally distributed abilities
are handled (see [70,71]).

3.3.1. MML with Normality Assumption (MMLN)

In most applications and the default of most IRT software packages [72,73], a normal
distribution for θ is posed (MMLN). For identification of the parameters in the RM, the mean
is set to zero, and the standard deviation σ is estimated along with the item parameters
b. The integral in the log-likelihood function (6) is evaluated by numerical integration
techniques. The consequences of applying a misspecified normal distribution have been
frequently studied in the literature [74–77].

Different numerical approximations of the unidimensional integral involved in the
likelihood function (see Equation (6)) have been proposed in the literature [78–80]. In
our experience, numerical approximations defined as the default in IRT packages such as
mirt [72] occasionally provide more accurate than corresponding defaults in the popular
mixed effects R package lme4 [37].

3.3.2. MML with Multinomial Distribution (MMLMN)

MML with a multinomial distribution (MMLMN) estimates a discrete distribution
for the ability variable θ (see [81]). A fixed grid of θ points θ1, . . . , θC is chosen (e.g., on
a grid of equidistant θ points ranging from −4 to 4, see [82]). In MMLMN, probabilities
γc = P(θ = θc) are freely estimated. The number of estimated parameters increases with
larger number C of grid points. An appropriate number C of discrete grid points must be
chosen to ensure sufficiently stable item and distribution parameters estimation.

3.3.3. MML with Log-Linear Smoothing (MMLLS)

MML with log-linear smoothing (MMLLS) avoids estimating a large number of dis-
tribution parameters in MMLMN. In this estimation method, a log-linear smoothing on
the discrete probabilities γc = P(θ = θc) is performed [82,83] (see also [84,85]). If the first
two moments are smoothed, MMLLS corresponds to the estimation of discretized normal
distribution. In empirical applications, smoothing is typically performed up to the first
three or four moments [86–88]. These higher moments capture deviations from normality.
The log-linear smoothing approach can also be extended to handle nonlinear relations
among several latent variables [86].

3.3.4. MML with Located Latent Classes (MMLLC)

The estimation methods MMLMN and MMLLS presuppose the specification of the
discrete grid of θ points. In MML with located latent classes, for C latent classes, the values
of the grid points θc are estimated in addition to probabilities γc (MMLLLC; [89–92]). In
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the RM with a test of I items, at most I/2 located class models can be specified because
model parameters in larger models cannot be identified [89]. Notably, MMLLC poses the
weakest assumptions about the data-generating distribution G, but it relies on a possible
doubtful discrete representation of the θ distribution. Classifying persons into different
discrete ability levels might be conceptually appealing in empirical applications [93,94].

3.4. Limited Information Estimation Methods

So-called limited information methods (LIM) for estimating item parameters in the
RM do not rely on the full item response pattern xp. These methods are often simpler to
compute because they do not iterate through all item response patterns. LIM only consider
marginal univariate or bivariate frequency distributions of item responses.

3.4.1. Pairwise Marginal Maximum Likelihood (PMML)

Pairwise MML (PMML; [95–98]) is a composite likelihood estimation method for
which only pairwise item response probabilities P(Xpi = xpi, Xpj = xpj) are modelled. The
contributions of all item pairs (i, j) are taken into account. In principle, any distributional
assumption about θ can be posed, like in joint modeling of the probabilities as in MML.
However, a normal distribution is often assumed [95,99].

3.4.2. Pairwise Conditional Maximum Likelihood (PCML)

In pairwise CML (PCML; [100–104]), the conditional probabilities P(Xpi = xpi, Xpj =
xpj)/P(Xpi + Xpj = xpi + xpj) are used for defining an optimization function. Like for
CML that conditions on the sum score, PCML also removes θ from estimation equations
and does not pose distributional assumptions. The advantage of PCML compared to CML
is the strongly reduced burden in computational demand.

3.4.3. Minimum Chi-Square Method (MINCHI)

Minimum chi-square (MINCHI) estimation only relies on bivariate frequencies fij that
are defined as

fij = P(Xpi = 1, Xpj = 0) . (7)

In MINCHI, the following squared distance is defined that is minimized for determin-
ing item parameter estimates b (see [30,105,106]):

h(b) = ∑
i,j

(
ε−1

j fij − ε−1
i f ji

)2

ε−1
i ε−1

j ( fij + f ji)
, (8)

where εi = exp(−bi). Fixed-point estimation equations have been proposed for computing
the minimizer of Equation (8) (see [30]). Also, note that no distributional assumptions
about θ are required for MINCHI estimation.

3.4.4. Row Averaging Method (RA)

Like MICHI estimation, the row averaging method [107–109] relies on bivariate fre-
quencies fij (see Equation (7)). A matrix B with entries bij = log( fij/ f ji) is formed. The
row-wise average of entries in the matrix B is used as an item parameter estimate [107,110].
If some cells (i, j) are empty, B cannot be computed. An alternative estimation method
involving powers has been proposed. Let F denote the matrix consisting of all elements
fij (the so-called incidence matrix). The computation of B can then rely on entries of the
matrix F∗ = Fk, where k is an integer larger than one (e.g., 2 or 3).

3.4.5. Eigenvector Method (EVM)

The eigenvector method (EVM; [111–114]) relies on the same preprocessing steps
as RA. However, instead of row averaging, the first eigenvector of B is computed as the
estimate of the vector of item difficulties. In the case of empty cells, power matrices F∗ = Fk
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(see Section 3.4.4) can be used. Note that RA and EVM do not require iterations and only
require low computational demands that might be attractive for large-scale applications.

3.4.6. Log-Linear by Linear Association Models (LLLA)

Log-linear by linear association (LLLA; [115–118]) models estimate item parameters
through a pseudo-likelihood approach. It relies on the fact that a logistic regression for
P(Xpi = 1|Sp − Xpi) of the item response Xpi on the rest score Sp − Xpi can be specified
in which θ does not appear (assuming a normal distribution of θ; see [119]). The logistic
regression stacks data of all item responses and allows simultaneous estimation of all item
parameters [118,120].

4. Simulation Study

4.1. Purpose

Many simulation studies compare the performance of different item parameter esti-
mation methods for the RM. However, most studies only considered the main estimation
methods CML, JML, and MML (see, e.g., [44,77,110,121] for the RM and [122] for the mixed
effects logistic model). Moreover, they often only used limited variations of deviations from
normality in the ability variable. In this study, we provide a comprehensive comparative
simulation study that compares the performance of a large number of estimation methods
under a wide range of θ distribution. Moreover, sample size, the number of items, and
the distribution of item difficulties are systematically manipulated. This simulation study
systematically extends the simulation design employed in [123].

4.2. Design

In the simulation study, item response data has been generated for the RM. We
manipulated six factors in the simulation. First, the sample size (N) of persons was
manipulated, resulting in three levels N = 250, 500, 1000. These sample sizes reflect small-
scale to large-scale applications of the RM. Second, we varied the number of items (I) and
chose levels I = 10 and I = 30. In the simulation, a set of item difficulties was specified
for the I = 10 condition. In the condition I = 30, the item parameters for I = 10 were
used three times. The levels reflect a short and a long test in applications. Third, the
range of item difficulties was manipulated. In the condition of a test with a symmetric
item difficulty distribution, item parameters were chosen from the interval [−3, 3] for a
wide range, and from the interval [−1.5, 1.5] for a small range. Fourth, the skewness of
item difficulties was varied. In the symmetric case, item parameters were equidistantly
chosen from the intervals [−3, 3] and [−1.5, 1.5], respectively. In the case of a skew item
difficulty distribution, larger item difficulties appear more frequently than smaller item
difficulties. The precisely chosen item parameters can be found in Appendix A. Fifth, eight
data-generating distributions for the latent ability variable θ in the RM were simulated. All
distributions were standardized, that is, E(θ) = 0 and SD(θ) = 1. The eight simulated θ
distributions are:

1. NO: A normal distribution (N(0, 1)) with zero mean and a standard deviation of one
2. Chi2: A scaled chi-squared distribution with one degree of freedom
3. UN: A uniform distribution on the interval [−1.73, 1.73] (i.e., U(−1.73, 1.73))
4. BE: A scaled U-shaped beta distribution with shape and scale parameters of 0.5; that

is, θ ∼ 2.83 · (Beta(0.5, 0.5)− 0.5)
5. SM: A symmetric mixture distribution with θ = 0.898 · θ∗, and θ∗ ∼ 0.5 ·N(−0.8, 0.772)+

0.5 ·N(0.8, 0.772)
6. AM: An asymmetric mixture distribution with θ = 0.994 · (θ∗ − 0.479), and θ∗ ∼

0.2 ·N(−0.8, 0.772) + 0.8 ·N(0.8, 0.772)
7. LC2: A discrete distribution with θ points −2.0, 0.5 and corresponding probabilities

0.20 and 0.80
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8. LC3: A discrete distribution with θ points −0.790, 1.033, 2.248 and corresponding
probabilities 0.60, 0.35, and 0.05

In total, there were 3× 2× 2× 2× 8 = 192 conditions employed in the simulation. In
total, 1000 datasets were simulated and analyzed in each condition.

4.3. Analysis Models

Item parameters for the simulated datasets were estimated with the different methods
discussed in Section 3. Throughout the simulation, we only considered the estimation of
item parameters and did not consider person parameter estimation. To enable the compa-
rability of item parameter estimates, we centered estimated item parameters obtained from
each estimation method (i.e., they have zero mean).

For the PJML estimation (see Section 3.1.2), we chose normal priors N(0, σ2
prior) with

σprior = 1, 1.5, and 2. Notably, an optimal value of σprior could also be estimated by
cross-validation or empirical Bayes methods. For JMLε estimation (see Section 3.1.3), we
specified values ε = 0.1, 0.2, 0.24, 0.3, 0.4, 0.5. The value ε = 0.24 turned out to be optimal in
preliminary simulation studies. For MMLMN estimation (see Section 3.3.2), we specified
models with 5 equidistant θ grid points in [−2, 2], 7 equidistant θ grid points in [−3, 3]),
11 equidistant θ grid points in [−4, 4], and 15 equidistant θ grid points in [−4, 4]. For
MMLLS estimation (see Section 3.3.3), we used log-linear smoothing up to three and four
moments. The inclusion of moments larger than two allows deviations from normality. An
equidistant grid of 15 ability values in [−4, 4] was chosen. For MMLLC (see Section 3.3.4),
we specified analysis with 2, 3, 4, and 5 located latent classes. Notably, the data-generating
models LC2 and LC3 are expected to be properly handled by one of these models. For
RA estimation (see Section 3.4.4), we used powers 1,2, and 3 of the incidence matrix F for
the estimation (i.e., use F∗ = Fk with k = 1, 2, 3 as the basis for the computation of the
matrix B). For EVM estimation (see Section 3.4.5), powers 2 and 3 of the incidence matrix F
were utilized.

The whole simulation was carried out in the statistical software R [124] utilizing the
R packages immer [125] (CML, JMLε), pairwise [126] (LLLA), plRasch [118,127] (RA) and
sirt [128] (EVM, JMLM, JMLW, MINCHI, MMLLC, MMLLS, MMLMN, MMLN, PCML,
PJML). For PMML, a dedicated function was implemented in R.

4.4. Outcome Measures

The bias and root mean square error (RMSE) was computed for each estimated item
parameter b̂i. We consider two summary measures of item parameter recovery. First, the
mean absolute bias MAB (also labeled as bias in the Results Section 4.5)

MAB(b̂) =
1
I

I

∑
i=1
|Bias(b̂i)| (9)

quantifies the average bias of item parameters. MAB values near to zero indicate situations
with unbiased item parameter estimates.

Second, bias and variability are summarized in the average RMSE (ARMSE) defined by

ARMSE(b̂) =
1
I

[
I

∑
i=1

RMSE(b̂i)

]
. (10)

To ease the comparison of different estimation methods independent of sample size,
ARMSE values are normed with respect to the best-performing estimation method (with a
corresponding value ARMSEbest(b̂) in one replication cell in the simulation. The so-called
relative RMSE (RRMSE) is defined as

RRMSE(b̂) =
ARMSE(b̂)

ARMSEbest(b̂)
. (11)
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As a consequence, RRMSE values have an optimal value of 100, which are attained by
the best-performing estimation method.

To summarize the contribution of each of the manipulated factors in the simulation,
we conducted an analysis of variance (ANOVA) based on a linear regression model and
used a variance decomposition for assessing the importance (i.e., computed the eta square
effect size).

Moreover, we classified estimation methods whether they showed acceptable perfor-
mance in a particular condition. We defined acceptable performance for the bias if the bias
(i.e., the MAB) was smaller than 0.025. Assuming a symmetric item difficulty distribution
and that bias is proportional to the true item difficulty, this condition would correspond
to a maximum item parameter bias of 0.05. An estimator had satisfactory performance
concerning the RMSE if the relative RMSE was smaller than 107. This is equivalent to an
average loss in precision in estimated item parameters of about 15% (i.e., 1.072 = 1.144).

4.5. Results

In Table 1, the variance decomposition from the ANOVA of different simulation
factors in the simulation for bias and the (relative) RMSE is presented. All terms up to
three-way interactions were included. From the size of the residual variance, it can be
concluded that the first three orders capture the most important sources of variance of
simulation factors. It turned out that the estimation method (Meth) was the most important
first-order factor for bias and RMSE, followed by the range of item difficulties (Range)
and the number of items (I). The performance of estimation methods for bias and RMSE
depended on an interaction effect with the number of items. Interestingly, there was only
an interaction effect of estimation and sample size (N) for the RMSE and not for the bias.
Moreover, the performance of estimation methods was also moderated by the range of
the item difficulty distribution. Finally, there were also some important three-order terms
involving estimation methods (i.e., N×I×Meth, N×Range×Meth, I×Range×Meth). For a
selected number of cells, we present some results that demonstrate these interaction effects
in more detail.

In Table 2, the performance of the different estimation methods for bias and RMSE are
summarized across 192 conditions of the simulation. CML and the LIM MINCHI (being
the best estimation method with respect to bias), PCML, EVM, and RA (with powers of the
incidence matrix larger than 1) are approximately unbiased across simulation conditions.
For MML estimation methods, only those methods were unbiased that specified the ability
distribution flexible enough. For the multinomial modeling (MMLMN), a large number of θ
grid points (11 or 15; MMLMN(11) or MMLMN(15)) was needed for producing acceptable
performance in most of the simulation conditions. At least three located latent classes
(MMLLC) were needed for an acceptable estimation of item parameters with respect to bias.
Notably, estimation under the normal distribution (MMLN) or with only two latent classes
(MMLLC(2)) was unsuccessful in a variety of conditions. Furthermore, all JML variants
showed biased item parameter estimates. PJML with a prior of σprior = 1.5 turned out to
be the best-performing method with respect to bias throughout all simulation conditions.
Interestingly, the method JMLM that eliminates persons from estimation resulted in a
smaller bias than JMLW that does not remove persons.

For the RMSE, JMLε with ε = 0.24 performed best. Like for bias, only sufficiently
flexible distributional specifications in MML resulted in acceptable performance for the
RMSE. It was indicated to use four instead of only three moments for log-linear smoothing
(MMLLS). Again, located latent class models (MMLLC) produced relatively precise item
parameter estimates that were even superior to estimates obtained from CML. LIM showed
higher RMSE values compared to MML variants and CML. However, the best-performing
LIM MINCHI outperformed MML with normal distribution assumption (MMLN) and the
widely implemented JML variants JMLM and JMLW. In particular, MINCHI (and partly
PCML) should be preferred over EVM and RA estimation.
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Table 1. Variance proportions of different factors in the simulation study for (mean absolute) bias
and relative RMSE.

Source Bias Rel. RMSE

N 0.2 0.9
I 5.3 5.5
Skew 0.2 0.1
Range 6.3 6.5
Meth 51.6 29.3
Dist 0.4 0.1

N × I 0.0 0.6
N × Skew 0.0 0.0
N × Range 0.0 0.4
N ×Meth 0.7 9.2
N × Dist 0.0 0.1
I × Skew 0.0 0.1
I × Range 0.7 1.4
I ×Meth 17.5 21.3
I × Dist 0.0 0.0
Skew× Range 0.4 0.4
Skew×Meth 0.4 0.6
Skew× Dist 0.0 0.0
Range×Meth 7.9 7.3
Range× Dist 0.1 0.1
Meth× Dist 1.6 0.5

N × I × Skew 0.0 0.0
N × I × Range 0.0 0.0
N × I ×Meth 0.0 4.4
N × I × Dist 0.0 0.0
N × Skew× Range 0.0 0.0
N × Skew×Meth 0.1 0.3
N × Skew× Dist 0.0 0.0
N × Range×Meth 0.1 1.4
N × Range× Dist 0.0 0.0
N ×Meth× Dist 0.1 0.2
I × Skew× Range 0.1 0.1
I × Skew×Meth 0.2 0.3
I × Skew× Dist 0.0 0.0
I × Range×Meth 2.7 4.5
I × Range× Dist 0.0 0.0
I ×Meth× Dist 0.2 0.1
Skew× Range×Meth 1.0 0.7
Skew× Range× Dist 0.0 0.0
Skew×Meth× Dist 0.1 0.1
Range×Meth× Dist 1.1 0.7

Residual 1.0 3.0
Note. N = sample size; I = number of items; Dist = simulated trait distribution; Meth = estimation method;
Skew = Skewness of item difficulties; Range = Range in item difficulties. Percentage values larger than 0.5 are
printed in bold.
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Table 2. Summary of results for (mean absolute) bias and relative RMSE for different estimation methods across all
simulation conditions.

Bias Relative RMSE
Method

Rk %Acc Med Q90 MAD Rk %Acc Med Q90 MAD

MMLN 17 81.3 0.013 0.040 0.009 14 74.5 104.2 109.9 3.1
MMLLS(3) 14 90.1 0.008 0.023 0.007 11 81.3 103.5 109.1 3.0
MMLLS(4) 3 100.0 0.006 0.014 0.003 5 93.8 102.4 106.2 2.5
MMLMN(5) 21 62.0 0.016 0.080 0.015 18 68.8 104.4 125.4 4.2
MMLMN(7) 15 85.9 0.009 0.029 0.007 10 81.8 103.4 108.4 3.2
MMLMN(11) 12 96.9 0.006 0.016 0.004 6 91.7 102.5 106.3 2.5
MMLMN(15) 9 99.5 0.006 0.016 0.004 7 91.7 102.6 106.7 2.5
MMLLC(2) 26 40.1 0.028 0.061 0.020 17 72.4 104.2 116.5 4.0
MMLLC(3) 13 94.3 0.009 0.022 0.006 3 94.8 102.6 105.7 2.5
MMLLC(4) 6 100.0 0.007 0.015 0.004 2 94.8 102.1 106.0 2.2
MMLLC(5) 4 100.0 0.007 0.014 0.004 4 94.3 102.3 106.3 2.3

CML 2 100.0 0.006 0.015 0.004 8 91.1 103.0 106.8 2.3

JMLM 23 54.2 0.021 0.132 0.022 21 56.8 105.9 145.6 5.2
JMLW 27 35.4 0.035 0.077 0.025 22 53.1 106.4 125.2 6.8
PJML(1.0) 30 22.4 0.048 0.111 0.031 23 45.8 108.1 134.2 9.1
PJML(1.5) 16 84.9 0.010 0.032 0.007 9 85.9 103.4 107.6 3.0
PJML(2.0) 28 27.1 0.038 0.085 0.024 30 26.0 111.1 129.9 6.7
JMLε(0.1) 29 25.0 0.053 0.174 0.036 32 23.4 116.0 179.4 13.9
JMLε(0.2) 24 53.6 0.024 0.052 0.017 13 79.2 103.4 109.5 2.5
JMLε(0.24) 22 56.3 0.023 0.040 0.015 1 95.3 101.1 104.8 1.6
JMLε(0.3) 25 46.4 0.036 0.077 0.030 16 72.4 101.3 119.4 1.9
JMLε(0.4) 31 3.1 0.065 0.166 0.050 28 41.7 109.6 161.1 14.3
JMLε(0.5) 32 0.0 0.101 0.248 0.069 31 25.0 125.5 215.3 33.3

PMML 20 70.3 0.015 0.067 0.011 20 59.9 105.7 120.9 4.5
PCML 5 100.0 0.007 0.017 0.004 19 62.0 106.1 111.0 2.9
LLLA 19 80.7 0.013 0.042 0.007 15 74.5 104.2 110.4 2.8
MINCHI 1 100.0 0.005 0.012 0.003 12 80.7 104.9 108.6 2.2
EVM(2) 11 98.4 0.007 0.019 0.004 25 41.7 108.9 117.8 6.6
EVM(3) 8 100.0 0.007 0.019 0.004 27 41.7 108.8 118.1 6.6
RA(1) 18 81.3 0.019 0.028 0.010 29 34.4 110.0 123.0 6.1
RA(2) 10 99.5 0.007 0.019 0.004 24 41.7 108.9 117.8 6.6
RA(3) 7 100.0 0.007 0.019 0.004 26 41.7 108.8 118.1 6.6

Note. CML = conditional maximum likelihood; EVM = eigenvector method; JML = joint maximum likelihood; JMLε = JML with ε
adjustment; JMLM = JML with maximum likelihood ability estimator; JMLW = JML with Warm’s maximum likelihood ability estimator;
LLLA = log-linear by linear association method; MINCHI = minimum chi-square estimation; MML = marginal maximum likelihood;
MMLLLC = MML with located latent classes; MMLLS = MML with log-linear smoothing; MMLMN = MML with multinomial distribution;
MMLN = MML with normal distribution; PJML = penalized JML; PMML = pairwise MML; PCML = pairwise CML; RA = row-averaging
method; Rk = performance rank of the method; %Acc = percentage of conditions with acceptable performance; Med = median; Q90 = 90%
quantile; %Acc values larger than 90, biases smaller than 0.025 and RMSE values smaller than 107 are printed in bold.

Table 3 shows the bias and the RMSE for different estimation methods for a sample
size of N = 1000 and I = 10 items for a test with a wide range of symmetrically distributed
item difficulties as a function of the data-generating trait distribution. Six out of eight data-
generating models are depicted that demonstrate the most important differences among
estimation methods. The MML method that poses a normal distribution assumption
(i.e., MMLN) provides the least bias if the latent ability was generated with a normal
distribution. The largest bias was obtained if the located latent class model (LC(2) or LC(3))
generated the data. If θ was normally distributed, log-linear smoothing (MMLLS) and a
multinomial distribution (MMLMN) with at least 7 grid points provided approximately
unbiased estimates. Notably, located latent class models (MMLLC) have slightly increased
bias, but the efficiency with respect to RMSE is even higher than MMLN.
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Table 3. Bias and relative RMSE for different estimation methods for a sample size of N = 1000 and I = 10 items for a test
with a wide range of symmetrically distributed item difficulties as a function of the data-generating trait distribution.

Bias Relative RMSE
Method

NO AM UN BE LC2 LC3 NO AM UN BE LC2 LC3

MMLN 0.004 0.013 0.010 0.012 0.063 0.030 102.2 102.4 102.3 103.6 128.9 108.8
MMLLS(3) 0.003 0.006 0.007 0.010 0.029 0.015 101.6 101.0 101.5 102.7 112.2 103.9
MMLLS(4) 0.003 0.005 0.004 0.004 0.009 0.004 101.6 101.0 100.4 101.0 104.6 100.0
MMLMN(5) 0.008 0.005 0.005 0.005 0.023 0.011 101.0 100.4 100.6 102.4 106.2 105.3
MMLMN(7) 0.003 0.004 0.005 0.006 0.024 0.013 101.6 101.0 100.9 102.6 106.4 105.9
MMLMN(11) 0.003 0.004 0.005 0.005 0.006 0.005 101.7 101.2 100.2 100.5 100.0 101.1
MMLMN(15) 0.002 0.004 0.003 0.003 0.009 0.003 101.7 101.2 100.6 101.2 104.8 100.0
MMLLC(2) 0.054 0.055 0.044 0.037 0.019 0.033 118.5 118.0 111.1 108.1 102.8 106.0
MMLLC(3) 0.016 0.017 0.020 0.020 0.012 0.020 102.3 101.9 102.0 102.8 102.0 102.2
MMLLC(4) 0.009 0.011 0.012 0.011 0.007 0.008 101.7 101.2 101.0 101.4 101.8 100.5
MMLLC(5) 0.009 0.010 0.011 0.010 0.006 0.009 101.7 101.2 100.7 101.2 101.7 100.5

CML 0.004 0.003 0.003 0.004 0.003 0.004 102.6 101.8 101.2 101.9 102.6 101.4

JMLM 0.083 0.081 0.081 0.082 0.081 0.082 144.7 142.4 144.0 144.8 143.9 145.0
JMLW 0.036 0.034 0.037 0.039 0.036 0.038 113.4 111.8 113.5 114.8 113.5 114.3
PJML(1.0) 0.106 0.107 0.114 0.115 0.118 0.114 154.1 154.8 161.1 161.6 167.6 162.7
PJML(1.5) 0.002 0.010 0.009 0.011 0.047 0.024 100.0 100.0 100.0 101.0 116.6 103.9
PJML(2.0) 0.075 0.074 0.070 0.070 0.083 0.074 136.4 134.7 134.0 134.3 142.7 136.4
JMLε(0.1) 0.152 0.150 0.150 0.151 0.150 0.150 203.9 201.0 203.7 204.0 203.6 204.6
JMLε(0.2) 0.042 0.042 0.043 0.042 0.047 0.041 111.0 109.7 113.3 110.5 116.7 112.2
JMLε(0.24) 0.033 0.032 0.028 0.027 0.044 0.032 102.4 101.2 102.9 100.0 109.4 103.2
JMLε(0.3) 0.056 0.058 0.055 0.055 0.069 0.059 121.2 120.5 121.0 119.4 128.0 121.4
JMLε(0.4) 0.139 0.139 0.140 0.141 0.146 0.142 187.1 185.9 189.1 187.2 193.2 190.0
JMLε(0.5) 0.216 0.217 0.219 0.219 0.222 0.219 260.8 260.5 266.4 265.2 268.3 266.4

PMML 0.004 0.015 0.010 0.013 0.073 0.034 102.3 102.8 102.4 103.8 136.3 110.8
PCML 0.004 0.004 0.004 0.004 0.004 0.005 107.4 107.9 106.4 106.9 107.9 106.4
LLLA 0.004 0.014 0.010 0.013 0.066 0.031 102.0 102.2 102.2 103.6 130.4 109.2
MINCHI 0.003 0.004 0.004 0.003 0.003 0.002 106.5 107.1 105.7 106.1 107.1 105.4
EVM(2) 0.004 0.005 0.004 0.005 0.004 0.006 113.6 114.4 113.2 113.6 114.5 113.3
EVM(3) 0.004 0.005 0.004 0.005 0.004 0.006 114.0 114.9 113.7 113.9 114.9 113.7
RA(1) 0.019 0.020 0.018 0.020 0.019 0.021 126.9 128.5 127.2 127.2 127.6 128.0
RA(2) 0.004 0.005 0.004 0.005 0.004 0.006 113.6 114.4 113.2 113.6 114.5 113.3
RA(3) 0.004 0.005 0.004 0.005 0.004 0.006 114.0 114.9 113.7 113.9 114.9 113.7

Note. CML = conditional maximum likelihood; EVM = eigenvector method; JML = joint maximum likelihood; JMLε = JML with ε
adjustment; JMLM = JML with maximum likelihood ability estimator; JMLW = JML with Warm’s maximum likelihood ability estimator;
LLLA = log-linear by linear association method; MINCHI = minimum chi-square estimation; MML = marginal maximum likelihood;
MMLLLC = MML with located latent classes; MMLLS = MML with log-linear smoothing; MMLMN = MML with multinomial distribution;
MMLN = MML with normal distribution; PJML = penalized JML; PMML = pairwise MML; PCML = pairwise CML; RA = row-averaging
method; NO = normal distribution; AM = asymmetric mixture distribution; UN = uniform distribution; BE = U-shaped beta distribution;
LC2 = located 2-class distribution; LC3 = located 3-class distribution; Biases smaller than 0.025 and RMSE values smaller than 107 are
printed in bold.

LIM were unbiased or had only small biases, except in the case in which θ was
generated with located latent classes and PMML and LLLA estimation. This finding could
be explained by the fact that these two estimation methods rely on the incorrect normal
distribution assumption. Moreover, note that using powers 2 or 3 of the incidence matrix
in RA (and EVM) improved estimates for bias and (to a larger extent) RMSE. Estimation
methods PCML and MINCHI outperformed EVM and RA in terms of the RMSE. The
additional computational burden in the iterative methods PCML and MINCHI compared
to EVM and RA might be acceptable in practical applications.

The results in Table 3 also indicate that flexible MML estimation methods are competi-
tive to CML estimation for nonnormally distributed abilities. Among the JML estimation
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methods, the bias of PJML with prior σprior = 1.5 (i.e., PJML(1.5)) was smallest, Across data-
generating models, the RMSE for this estimation method was smallest in three of the six
data constellations, while in the other three constellations, JMLε with ε = 0.24 performed
best. However, it should also be emphasized that JMLε(0.24) introduced non-negligible
bias in item parameters. The JMLW estimation method is preferred over JMLM in terms of
bias and RMSE, but both methods were strongly inferior to PJML and JMLε.

Table A1 in Appendix B shows the bias and the RMSE for different estimation methods
for a sample size of N = 1000 and I = 10 items for a test with a small range of symmetrically
distributed item difficulties as a function of the data-generating trait distribution. In general,
biases in estimated item parameters were smaller than those with a wide range of item
difficulties (presented in Table 3). This finding illustrates that item parameters with large
true |bi| values (i.e., extremely small or extremely large) were more prone to bias than item
difficulties with true parameters close to zero. It is also evident that the difference between
the CML and MML methods from LIM was much smaller. Consequently, practitioners
might prefer LIM for tests in which item difficulties do not have extreme values. In this
case, the difference between PCML and MINCHI from RA and EVM also turned out to
be smaller, although the former two methods might also be preferred. Interestingly and
in contrast to a test with a wide range of item difficulties, JMLM outperformed JMLW.
Moreover, note that PJML(1.5) resulted in less biased and more precise estimates than
JMLε(0.24).

Table A2 in Appendix B shows the bias and the RMSE for different estimation methods
for a sample size of N = 250 and I = 10 items for a test with a wide range of symmetrically
distributed item difficulties as a function of the data-generating trait distribution. For a
smaller sample size of N = 250 (compared to the large sample of N = 1000 in Table 3),
JMLε(0.24) consistently resulted in the least RMSE but produced a slightly biased estimate.
Surprisingly, more flexible MML estimation methods were not firmly inferior to MMLN
if the θ followed a normal distribution. In particular, the located latent class model (MM-
LLC(2)) provided the most precise estimates among the MML methods for the sample size
N = 250. Also, note that CML was not superior to all MML methods. Interestingly, the
performance of LIM compared to MML and CML was even worse than for larger samples.
Researchers should only probably opt for the computationally simpler LIM for sufficiently
large sample sizes and tests with a smaller range of item difficulties.

Table 4 shows the bias and the RMSE for different estimation methods for a sample
size of N = 250 and I = 30 items for a test with a wide range of symmetrically distributed
item difficulties as a function of the data-generating trait distribution. For a longer test
containing 30 items, biases for all estimation methods were substantially smaller than
for 10 items. Notably, differences among estimation methods also turned out to be small.
For example, assuming a misspecified normal distribution (i.e., MMLN) only introduced
small biases. For a sufficiently long test, the differences between MML methods and CML
from LIM were only modest, and practitioners might opt for the computationally simpler
methods in this case. Again, PCML and MINCHI have slightly better performance than
the EVM and RA methods. It is also important to note that JMLε required a larger ε value
of 0.4 or 0.5 compared to a short test for realizing the maximum precision.
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Table 4. Bias and relative RMSE for different estimation methods for a sample size of N = 250 and I = 30 items for a test
with a wide range of symmetrically distributed item difficulties as a function of the data-generating trait distribution.

Bias Relative RMSE
Method

NO AM UN BE LC2 LC3 NO AM UN BE LC2 LC3

MMLN 0.008 0.012 0.015 0.012 0.020 0.006 106.9 105.2 105.9 105.1 107.2 105.0
MMLLS(3) 0.007 0.008 0.014 0.011 0.011 0.009 106.7 104.4 105.7 105.1 105.8 105.4
MMLLS(4) 0.007 0.008 0.011 0.008 0.015 0.010 106.7 104.4 105.1 104.3 104.7 104.6
MMLMN(5) 0.011 0.012 0.009 0.009 0.030 0.030 106.2 104.2 104.5 103.4 105.5 107.0
MMLMN(7) 0.008 0.008 0.011 0.008 0.029 0.031 106.8 104.6 105.2 104.4 106.0 107.3
MMLMN(11) 0.008 0.008 0.011 0.007 0.027 0.014 106.7 104.5 105.1 104.3 105.5 105.6
MMLMN(15) 0.008 0.009 0.011 0.007 0.014 0.011 106.7 104.6 105.1 104.2 104.6 105.2
MMLLC(2) 0.029 0.025 0.017 0.014 0.004 0.018 103.8 102.0 102.6 102.1 104.2 102.4
MMLLC(3) 0.006 0.004 0.008 0.005 0.006 0.004 105.2 103.4 104.4 103.7 104.7 104.1
MMLLC(4) 0.005 0.006 0.010 0.007 0.007 0.005 106.1 104.1 104.9 104.0 104.8 104.6
MMLLC(5) 0.005 0.007 0.010 0.007 0.006 0.006 106.3 104.2 104.9 104.0 104.5 104.8

CML 0.008 0.009 0.012 0.008 0.009 0.008 106.9 104.8 105.3 104.4 105.6 105.1

JMLM 0.010 0.010 0.012 0.009 0.010 0.010 107.1 104.8 105.4 104.5 105.4 105.3
JMLW 0.007 0.005 0.007 0.007 0.004 0.007 105.2 103.1 103.5 102.7 104.0 103.3
PJML(1.0) 0.015 0.012 0.016 0.017 0.012 0.025 104.6 103.0 103.3 102.5 105.4 102.8
PJML(1.5) 0.010 0.013 0.014 0.010 0.021 0.005 107.1 105.4 105.6 104.7 107.6 104.7
PJML(2.0) 0.020 0.022 0.023 0.019 0.027 0.017 109.2 107.3 107.6 106.6 109.0 106.8
JMLε(0.1) 0.022 0.021 0.023 0.021 0.023 0.021 108.9 106.5 107.2 106.3 107.3 107.0
JMLε(0.2) 0.011 0.011 0.011 0.011 0.015 0.008 103.5 103.8 102.9 103.5 104.4 103.1
JMLε(0.24) 0.011 0.011 0.010 0.010 0.013 0.008 102.4 102.7 101.9 102.6 103.4 102.0
JMLε(0.3) 0.015 0.013 0.014 0.015 0.015 0.015 102.2 101.1 101.1 101.2 101.7 101.2
JMLε(0.4) 0.026 0.026 0.028 0.032 0.027 0.030 100.0 100.3 100.0 100.9 100.9 100.0
JMLε(0.5) 0.045 0.042 0.041 0.044 0.038 0.046 102.5 100.0 100.3 100.0 100.0 101.1

PMML 0.005 0.010 0.013 0.013 0.018 0.009 107.6 105.7 107.0 106.2 106.5 105.6
PCML 0.009 0.010 0.013 0.009 0.009 0.009 108.1 105.9 106.7 105.8 106.1 107.3
LLLA 0.013 0.016 0.019 0.016 0.019 0.014 107.6 105.8 106.6 105.7 106.9 106.1
MINCHI 0.005 0.006 0.009 0.006 0.006 0.005 107.2 104.9 105.7 104.8 105.3 106.4
EVM(2) 0.009 0.010 0.013 0.009 0.009 0.008 108.9 106.6 107.6 106.5 106.5 108.4
EVM(3) 0.009 0.010 0.013 0.009 0.009 0.009 108.9 106.6 107.6 106.5 106.4 108.4
RA(1) 0.018 0.019 0.021 0.017 0.017 0.019 111.2 108.8 109.9 108.9 108.4 110.9
RA(2) 0.009 0.010 0.013 0.009 0.009 0.008 108.9 106.6 107.6 106.5 106.5 108.4
RA(3) 0.009 0.010 0.013 0.009 0.009 0.009 108.9 106.6 107.6 106.5 106.4 108.4

Note. CML = conditional maximum likelihood; EVM = eigenvector method; JML = joint maximum likelihood; JMLε = JML with ε
adjustment; JMLM = JML with maximum likelihood ability estimator; JMLW = JML with Warm’s maximum likelihood ability estimator;
LLLA = log-linear by linear association method; MINCHI = minimum chi-square estimation; MML = marginal maximum likelihood;
MMLLLC = MML with located latent classes; MMLLS = MML with log-linear smoothing; MMLMN = MML with multinomial distribution;
MMLN = MML with normal distribution; PJML = penalized JML; PMML = pairwise MML; PCML = pairwise CML; RA = row-averaging
method; NO = normal distribution; AM = asymmetric mixture distribution; UN = uniform distribution; BE = U-shaped beta distribution;
LC2 = located 2-class distribution; LC3 = located 3-class distribution; Biases smaller than 0.025 and RMSE values smaller than 107 are
printed in bold.

Finally, Table A3 in Appendix B shows the bias and the RMSE for different estimation
methods for a sample size of N = 1000 and I = 30 items for a test with a wide range of sym-
metrically distributed item difficulties as a function of the data-generating trait distribution.
Again, flexible MML specifications can compete with JML. PJML and JMLε(0.24) produced
highly precise estimates, while the bias was almost negligible. It should be emphasized
that these JML variants are at least as efficient as CML or MML variants. LIM resulted in
more variable estimates. However, PCML and MINCHI almost achieve optimal efficiency
of JMLε or MML variants. Surprisingly, PMML produced biased item parameter estimates
and might not be recommended. Further research is needed whether this observation
relied on the particular implementation of the authors.
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5. Discussion

In this article, we compared several estimation methods for the Rasch model. It has
been shown that the choice of the ability distribution impacts the precision of estimated
item parameters. The differences between estimation methods appear larger for shorter
(i.e., 10 items) than for longer (i.e., 30 items) tests. It turned out that MML with a flexi-
ble distribution can handle a nonnormally distributed trait well and can compete with
CML. Interestingly, JML variants PJML and JMLε outperformed conditional and marginal
maximum likelihood as well as LIM in many situations in terms of the RMSE. Moreover,
these improved JML methods resulted in approximately unbiased estimates for long tests
and larger sample sizes. These findings could stimulate research to consider JML methods
PJML and JMLε instead of the widely implemented JMLM or JMLW variants. LIM are
attractive for practitioners because they are not computationally demanding. It turned
out that PCML or the MINCHI method outperformed the more widely used EVM or RA
estimation methods.

Future research could investigate item parameter estimation in the RM for very short
scales (e.g., I = 5 or I = 7 items). We suppose that differences among methods will
appear larger in this situation. Moreover, optimal tuning parameter σprior in PJML and
ε in JMLε depending on sample size, number of items, and item difficulty distribution
have to be determined. We expect that optimal tuning parameters for individual ability
estimates do not necessarily coincide with those that are optimal with respect to the RMSE
of estimated parameters.

Throughout the simulation study, we assumed that the RM holds in the data. However,
there might be situations where RM is intentionally a misspecified IRT model [129]. First,
the two-parameter logistic model [130] might have generated the item responses, but the
misspecified RM is used as a fitting model. In the case of misspecified IRT models, different
estimation functions differently quantify model deviations (see also [110]). Future research
might evaluate the appropriateness of estimation methods with respect to robustness
from the assumption of the 1PL model. Notably, any estimation method defines its own
set of item difficulties in the population of students because estimated difficulties are
determined by a particular discrepancy function between the posed misspecified RM
and a true IRT model that might involve very complex item response functions. Second,
local dependence [34] is also often found in empirical data. LIM MINCHI, PCML, EVM
and RA only rely on bivariate frequencies and not marginal frequencies. According to
preliminary experience of the authors of this paper, these methods can result in less biased
item parameter estimates than CML, MML methods, or JML methods. Studying the effects
of local dependence for different estimation methods in the RM might be an exciting topic
for future research.

In many applications, missing item responses often occur [131–133]. It can be expected
that the studied estimation methods in this article can also be applied in situations in which
data is missing completely at random (MCAR). It would be interesting whether MML has
increased efficiency for MCAR data compared to LIM. For missing at random data, LIM
(and ordinary CML) will likely fail (see [134]), and MML or JML will usually be preferred
(see [87,135]).

Finally, we only considered frequentist estimation methods. In Bayesian estimation,
prior distributions of item parameters can be included in the analysis, which can further
stabilize the estimation of item difficulties [136–141]. We would like to note that when
priors are normally distributed, a penalty function is added (or subtracted) in the estimation
function. These penalties can be used not only for MML or JML but also CML [142] or
LIM [143].
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Abbreviations
The following abbreviations are used in this manuscript:

CML conditional maximum likelihood
EVM eigenvector method
IRT item response theory
JML joint maximum likelihood
JMLε JML with ε adjustment
JMLM JML with maximum likelihood ability estimator
JMLW JML with Warm’s maximum likelihood ability estimator
LIM limited information methods
LLLA log-linear by linear association method
MAB mean absolute bias
MCAR missing completely at random
MML marginal maximum likelihood
MMLLLC MML with located latent classes
MMLLS MML with log-linear smoothing
MMLMN MML with multinomial distribution
MMLN MML with normal distribution
MINCHI minimum chi-square estimation
PJML penalized JML
PMML pairwise MML
PCML pairwise CML
RA row-averaging method
RM Rasch model
RMSE root mean square error

Appendix A. Item Parameters Used in the Simulation Study

The following sets of 10 item difficulties were used in the simulation study:

wide range of difficulties, symmetric difficulty distribution:
−3.000, −2.333, −1.667, −1.000, −0.333, 0.333, 1.000, 1.667, 2.333, 3.000

wide range of difficulties, asymmetric difficulty distribution:
−2.111, −2.037, −1.815, −1.444, −0.926, −0.259, 0.555, 1.518, 2.630, 3.889

small range of difficulties, symmetric difficulty distribution:
−1.500, −1.167, −0.833, −0.500, −0.167, 0.167, 0.500, 0.833, 1.167, 1.500

small range of difficulties, asymmetric difficulty distribution:
−1.055, −1.019, −0.907, −0.722, −0.463, −0.130, 0.278, 0.759, 1.315, 1.945

In the simulation condition with 30 items, each of the item difficulties is used three
times. For example:

wide range of difficulties, symmetric difficulty distribution:
−3.000, −2.333, −1.667, −1.000, −0.333, 0.333, 1.000, 1.667, 2.333, 3.000, −3.000, −2.333,
−1.667, −1.000, −0.333, 0.333, 1.000, 1.667, 2.333, 3.000, −3.000, −2.333, −1.667, −1.000,
−0.333, 0.333, 1.000, 1.667, 2.333, 3.000

Appendix B. Additional Results for Simulation Study

Table A1 shows the bias and the RMSE for different estimation methods for a sample
size of N = 1000 and I = 10 items for a test with a small range of symmetrically distributed
item difficulties as a function of the data-generating trait distribution. Table A2 shows
the bias and the RMSE for different estimation methods for a sample size of N = 250 and
I = 10 items for a test with a wide range of symmetrically distributed item difficulties as a
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function of the data-generating trait distribution. Table A3 shows the bias and the RMSE
for different estimation methods for a sample size of N = 1000 and I = 30 items for a
test with a wide range of symmetrically distributed item difficulties as a function of the
data-generating trait distribution.

Table A1. Bias and relative RMSE for different estimation methods for a sample size of N = 1000 and I = 10 items for a test
with a small range of symmetrically distributed item difficulties as a function of the data-generating trait distribution.

Bias Relative RMSE
Method

NO AM UN BE LC2 LC3 NO AM UN BE LC2 LC3

MMLN 0.002 0.005 0.007 0.010 0.013 0.004 100.7 101.5 102.0 102.8 105.8 101.1
MMLLS(3) 0.003 0.002 0.002 0.004 0.004 0.004 100.3 100.4 100.9 101.3 104.7 101.1
MMLLS(4) 0.003 0.003 0.004 0.004 0.004 0.005 100.3 100.4 100.3 100.4 105.7 100.0
MMLMN(5) 0.017 0.021 0.022 0.026 0.030 0.016 102.8 105.2 105.4 108.6 130.5 102.5
MMLMN(7) 0.003 0.004 0.004 0.004 0.028 0.004 100.3 100.5 100.1 100.1 113.1 100.1
MMLMN(11) 0.004 0.004 0.005 0.003 0.003 0.005 100.4 100.4 100.2 100.2 100.0 101.2
MMLMN(15) 0.004 0.003 0.004 0.004 0.003 0.004 100.4 100.5 100.4 100.6 106.0 100.8
MMLLC(2) 0.032 0.026 0.023 0.019 0.005 0.028 104.4 102.4 101.6 100.8 102.5 102.9
MMLLC(3) 0.015 0.013 0.013 0.012 0.004 0.016 100.3 100.1 100.1 100.1 102.6 100.3
MMLLC(4) 0.011 0.009 0.009 0.008 0.003 0.012 100.0 100.0 100.0 100.0 102.6 100.0
MMLLC(5) 0.010 0.008 0.008 0.007 0.004 0.011 100.0 100.1 100.1 100.0 102.4 100.1

CML 0.002 0.003 0.002 0.002 0.002 0.003 100.8 101.0 100.9 101.0 103.5 100.8

JMLM 0.015 0.014 0.014 0.013 0.015 0.014 104.3 103.9 104.0 103.7 106.2 104.2
JMLW 0.052 0.047 0.052 0.052 0.035 0.060 115.9 113.6 116.6 117.1 110.2 120.6
PJML(1.0) 0.045 0.035 0.045 0.044 0.009 0.063 112.1 107.7 112.7 113.0 103.7 123.1
PJML(1.5) 0.002 0.009 0.005 0.008 0.033 0.013 100.3 101.9 100.9 101.4 114.9 100.4
PJML(2.0) 0.030 0.037 0.032 0.032 0.053 0.021 112.0 114.9 112.1 112.6 129.9 107.0
JMLε(0.1) 0.047 0.049 0.048 0.048 0.052 0.044 122.2 122.6 122.1 122.4 128.7 120.1
JMLε(0.2) 0.027 0.027 0.024 0.022 0.030 0.025 104.4 102.9 102.3 102.8 107.8 100.6
JMLε(0.24) 0.036 0.035 0.032 0.032 0.034 0.038 107.4 105.4 104.6 105.0 108.4 104.6
JMLε(0.3) 0.060 0.058 0.057 0.056 0.053 0.063 120.5 117.8 117.6 117.5 117.5 120.0
JMLε(0.4) 0.101 0.099 0.097 0.096 0.088 0.105 153.4 150.0 149.2 149.9 146.3 153.7
JMLε(0.5) 0.139 0.135 0.137 0.135 0.124 0.144 189.9 184.7 186.5 186.5 179.7 191.9

PMML 0.002 0.005 0.007 0.011 0.012 0.004 100.8 101.3 101.9 102.7 105.3 101.3
PCML 0.002 0.003 0.003 0.003 0.002 0.003 103.2 102.7 103.0 102.6 105.1 102.6
LLLA 0.004 0.007 0.010 0.014 0.014 0.008 101.1 102.0 102.9 103.9 105.8 102.2
MINCHI 0.002 0.002 0.002 0.002 0.002 0.003 103.0 102.5 102.8 102.4 104.9 102.4
EVM(2) 0.002 0.003 0.002 0.003 0.002 0.003 104.4 103.5 104.1 103.4 106.0 103.6
EVM(3) 0.002 0.003 0.002 0.003 0.002 0.003 104.3 103.5 104.1 103.4 105.9 103.6
RA(1) 0.003 0.004 0.004 0.004 0.004 0.004 104.8 104.1 104.7 104.1 106.4 104.3
RA(2) 0.002 0.003 0.002 0.003 0.002 0.003 104.4 103.5 104.1 103.4 106.0 103.6
RA(3) 0.002 0.003 0.002 0.003 0.002 0.003 104.3 103.5 104.1 103.4 105.9 103.6

Note. CML = conditional maximum likelihood; EVM = eigenvector method; JML = joint maximum likelihood; JMLε = JML with ε
adjustment; JMLM = JML with maximum likelihood ability estimator; JMLW = JML with Warm’s maximum likelihood ability estimator;
LLLA = log-linear by linear association method; MINCHI = minimum chi-square estimation; MML = marginal maximum likelihood;
MMLLLC = MML with located latent classes; MMLLS = MML with log-linear smoothing; MMLMN = MML with multinomial distribution;
MMLN = MML with normal distribution; PJML = penalized JML; PMML = pairwise MML; PCML = pairwise CML; RA = row-averaging
method; NO = normal distribution; AM = asymmetric mixture distribution; UN = uniform distribution; BE = U-shaped beta distribution;
LC2 = located 2-class distribution; LC3 = located 3-class distribution; Biases smaller than 0.025 and RMSE values smaller than 107 are
printed in bold.
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Table A2. Bias and relative RMSE for different estimation methods for a sample size of N = 250 and I = 10 items for a test
with a wide range of symmetrically distributed item difficulties as a function of the data-generating trait distribution.

Bias Relative RMSE
Method

NO AM UN BE LC2 LC3 NO AM UN BE LC2 LC3

MMLN 0.014 0.021 0.020 0.018 0.070 0.032 108.6 104.0 107.0 108.0 116.1 109.0
MMLLS(3) 0.012 0.013 0.020 0.017 0.045 0.023 108.6 103.6 107.3 108.1 115.9 109.1
MMLLS(4) 0.011 0.011 0.017 0.014 0.024 0.015 108.5 103.4 106.3 106.7 110.1 106.8
MMLMN(5) 0.011 0.011 0.020 0.020 0.037 0.019 107.8 102.7 106.8 108.5 108.3 108.9
MMLMN(7) 0.015 0.014 0.022 0.021 0.038 0.022 109.0 104.0 107.6 109.0 109.1 110.7
MMLMN(11) 0.014 0.014 0.020 0.017 0.023 0.019 109.0 104.0 106.7 107.2 107.4 108.3
MMLMN(15) 0.015 0.015 0.019 0.016 0.026 0.017 109.0 104.0 106.8 107.1 110.7 107.2
MMLLC(2) 0.029 0.028 0.014 0.011 0.011 0.010 106.2 101.1 103.1 104.5 106.9 104.4
MMLLC(3) 0.007 0.008 0.013 0.009 0.020 0.010 107.9 103.0 105.8 106.3 108.5 106.1
MMLLC(4) 0.010 0.012 0.016 0.012 0.023 0.012 108.5 103.5 106.3 106.6 109.0 106.7
MMLLC(5) 0.011 0.013 0.016 0.012 0.022 0.013 108.7 103.7 106.4 106.8 108.9 106.8

CML 0.014 0.015 0.017 0.013 0.016 0.013 109.0 104.1 106.5 106.8 108.6 106.9

JMLM 0.093 0.095 0.097 0.094 0.096 0.091 128.8 123.7 127.3 126.7 128.5 126.8
JMLW 0.046 0.048 0.052 0.049 0.050 0.047 115.4 110.2 114.0 114.3 114.9 113.8
PJML(1.0) 0.099 0.098 0.103 0.107 0.110 0.107 116.9 112.5 115.4 117.9 121.1 118.4
PJML(1.5) 0.009 0.016 0.014 0.013 0.054 0.025 106.4 101.8 104.0 105.0 110.5 105.6
PJML(2.0) 0.084 0.085 0.083 0.079 0.095 0.082 122.5 117.7 120.2 120.0 124.0 120.4
JMLε(0.1) 0.160 0.162 0.163 0.160 0.162 0.158 150.0 145.1 148.8 148.0 149.0 148.1
JMLε(0.2) 0.053 0.051 0.050 0.050 0.047 0.047 107.0 106.5 106.5 106.9 105.1 106.4
JMLε(0.24) 0.034 0.035 0.032 0.027 0.043 0.029 100.0 100.0 100.0 100.0 100.0 100.0
JMLε(0.3) 0.049 0.053 0.049 0.050 0.066 0.056 102.7 100.8 101.3 101.8 104.0 102.5
JMLε(0.4) 0.132 0.133 0.135 0.136 0.146 0.140 123.4 122.5 123.8 123.9 126.0 125.2
JMLε(0.5) 0.213 0.211 0.213 0.216 0.218 0.217 156.9 152.5 154.1 156.6 155.8 157.6

PMML 0.014 0.022 0.020 0.019 0.081 0.035 108.7 104.2 107.1 108.1 118.9 109.7
PCML 0.017 0.018 0.021 0.016 0.019 0.016 115.2 109.8 112.8 113.2 114.4 112.3
LLLA 0.013 0.021 0.020 0.018 0.073 0.032 108.4 103.9 106.9 107.9 116.5 109.0
MINCHI 0.008 0.008 0.006 0.010 0.008 0.010 111.4 106.2 108.8 109.6 110.6 108.8
EVM(2) 0.020 0.021 0.024 0.019 0.022 0.018 122.9 117.2 120.9 121.4 122.6 119.9
EVM(3) 0.020 0.021 0.024 0.019 0.022 0.018 123.0 117.3 121.1 121.5 122.7 120.0
RA(1) 0.026 0.028 0.027 0.026 0.027 0.026 115.8 111.3 114.0 114.8 114.6 114.2
RA(2) 0.020 0.021 0.024 0.018 0.022 0.018 122.9 117.2 120.9 121.4 122.6 119.9
RA(3) 0.020 0.021 0.024 0.019 0.022 0.018 123.0 117.3 121.1 121.5 122.7 120.0

Note. CML = conditional maximum likelihood; EVM = eigenvector method; JML = joint maximum likelihood; JMLε = JML with ε
adjustment; JMLM = JML with maximum likelihood ability estimator; JMLW = JML with Warm’s maximum likelihood ability estimator;
LLLA = log-linear by linear association method; MINCHI = minimum chi-square estimation; MML = marginal maximum likelihood;
MMLLLC = MML with located latent classes; MMLLS = MML with log-linear smoothing; MMLMN = MML with multinomial distribution;
MMLN = MML with normal distribution; PJML = penalized JML; PMML = pairwise MML; PCML = pairwise CML; RA = row-averaging
method; NO = normal distribution; AM = asymmetric mixture distribution; UN = uniform distribution; BE = U-shaped beta distribution;
LC2 = located 2-class distribution; LC3 = located 3-class distribution; Biases smaller than 0.025 and RMSE values smaller than 107 are
printed in bold.
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Table A3. Bias and relative RMSE for different estimation methods for a sample size of N = 1000 and I = 30 items for a test
with a wide range of symmetrically distributed item difficulties as a function of the data-generating trait distribution.

Bias Relative RMSE
Method

NO AM UN BE LC2 LC3 NO AM UN BE LC2 LC3

MMLN 0.003 0.009 0.008 0.010 0.040 0.018 101.2 101.4 102.3 105.1 112.3 103.8
MMLLS(3) 0.003 0.003 0.007 0.009 0.035 0.011 100.4 100.2 101.6 104.7 110.6 101.9
MMLLS(4) 0.003 0.005 0.004 0.004 0.008 0.007 100.3 100.2 100.5 102.5 101.5 100.9
MMLMN(5) 0.010 0.006 0.006 0.005 0.024 0.016 100.4 100.0 100.5 103.6 107.6 102.2
MMLMN(7) 0.003 0.004 0.006 0.005 0.024 0.016 100.3 100.2 100.5 103.6 107.5 102.8
MMLMN(11) 0.003 0.004 0.005 0.005 0.009 0.013 100.3 100.2 100.4 102.4 100.9 101.3
MMLMN(15) 0.002 0.004 0.004 0.003 0.008 0.007 100.4 100.2 100.5 102.7 101.7 100.0
MMLLC(2) 0.083 0.082 0.065 0.052 0.016 0.040 136.7 135.7 123.3 117.0 101.4 108.5
MMLLC(3) 0.031 0.030 0.024 0.021 0.008 0.019 105.5 104.9 103.1 104.3 100.6 101.8
MMLLC(4) 0.013 0.012 0.014 0.013 0.006 0.009 100.9 100.7 101.2 103.2 100.6 100.0
MMLLC(5) 0.008 0.007 0.009 0.009 0.007 0.010 100.6 100.3 100.8 102.9 100.5 100.2

CML 0.003 0.003 0.005 0.005 0.004 0.002 101.3 101.0 101.4 103.7 101.3 100.6

JMLM 0.024 0.025 0.025 0.026 0.025 0.023 105.9 105.8 106.5 109.1 106.1 105.0
JMLW 0.015 0.015 0.016 0.018 0.016 0.014 103.1 102.9 103.7 106.3 103.1 102.5
PJML(1.0) 0.052 0.051 0.056 0.055 0.062 0.058 115.1 114.8 117.4 118.8 122.8 118.8
PJML(1.5) 0.007 0.008 0.008 0.008 0.024 0.011 101.4 101.3 102.0 104.6 105.2 101.9
PJML(2.0) 0.035 0.036 0.034 0.036 0.039 0.033 110.6 110.5 111.2 114.0 111.7 109.7
JMLε(0.1) 0.050 0.051 0.051 0.052 0.050 0.049 117.8 117.8 118.9 121.5 117.7 116.5
JMLε(0.2) 0.019 0.019 0.018 0.020 0.020 0.020 102.7 104.2 102.5 103.0 102.3 103.3
JMLε(0.24) 0.013 0.012 0.013 0.011 0.015 0.014 100.0 101.4 100.0 100.0 100.0 100.5
JMLε(0.3) 0.016 0.016 0.015 0.013 0.021 0.016 100.1 100.8 100.1 100.7 100.7 100.0
JMLε(0.4) 0.039 0.040 0.041 0.039 0.044 0.041 109.3 109.9 109.9 108.3 110.1 108.9
JMLε(0.5) 0.067 0.067 0.068 0.067 0.072 0.070 125.6 125.5 125.6 126.2 126.6 126.0

PMML 0.049 0.045 0.105 0.112 0.079 0.097 161.5 158.1 210.7 217.0 182.8 202.4
PCML 0.004 0.004 0.005 0.006 0.004 0.003 104.6 104.5 104.5 106.7 104.2 103.9
LLLA 0.003 0.010 0.008 0.010 0.042 0.019 101.0 101.3 102.2 105.0 113.2 103.9
MINCHI 0.004 0.004 0.004 0.002 0.003 0.005 103.9 103.8 103.7 105.8 103.4 103.4
EVM(2) 0.004 0.004 0.005 0.006 0.004 0.003 109.2 109.2 109.1 111.3 108.4 108.6
EVM(3) 0.004 0.004 0.005 0.006 0.004 0.003 109.2 109.2 109.2 111.3 108.5 108.7
RA(1) 0.020 0.020 0.020 0.022 0.019 0.019 117.1 117.0 117.2 120.0 115.5 116.5
RA(2) 0.004 0.004 0.005 0.006 0.004 0.003 109.2 109.2 109.1 111.3 108.4 108.6
RA(3) 0.004 0.004 0.005 0.006 0.004 0.003 109.2 109.2 109.2 111.3 108.5 108.7

Note. CML = conditional maximum likelihood; EVM = eigenvector method; JML = joint maximum likelihood; JMLε = JML with ε
adjustment; JMLM = JML with maximum likelihood ability estimator; JMLW = JML with Warm’s maximum likelihood ability estimator;
LLLA = log-linear by linear association method; MINCHI = minimum chi-square estimation; MML = marginal maximum likelihood;
MMLLLC = MML with located latent classes; MMLLS = MML with log-linear smoothing; MMLMN = MML with multinomial distribution;
MMLN = MML with normal distribution; PJML = penalized JML; PMML = pairwise MML; PCML = pairwise CML; RA = row-averaging
method; NO = normal distribution; AM = asymmetric mixture distribution; UN = uniform distribution; BE = U-shaped beta distribution;
LC2 = located 2-class distribution; LC3 = located 3-class distribution; Biases smaller than 0.025 and RMSE values smaller than 107 are
printed in bold.
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