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Abstract: Model-based estimation of small area means can lead to reliable estimates when the area
sample sizes are small. This is accomplished by borrowing strength across related areas using models
linking area means to related covariates and random area effects. The effective selection of variables
to be included in the linking model is important in small area estimation. The main purpose of
this paper is to extend the earlier work on variable selection for area level and two-fold subarea
level models to three-fold sub-subarea models linking sub-subarea means to related covariates and
random effects at the area, sub-area, and sub-subarea levels. The proposed variable selection method
transforms the sub-subarea means to reduce the linking model to a standard regression model and
applies commonly used criteria for variable selection, such as AIC and BIC, to the reduced model.
The resulting criteria depend on the unknown sub-subarea means, which are then estimated using
the sample sub-subarea means. Then, the estimated selection criteria are used for variable selection.
Simulation results on the performance of the proposed variable selection method relative to methods
based on area level and two-fold subarea level models are also presented.

Keywords: Fay–Herriot model; information criterion; transformation; two-fold subarea model;
variable selection

1. Introduction

Sample surveys are designed to provide reliable estimates of the overall means of a
finite population and means for large domains or sub-populations (areas). For areas with
small sample sizes (called small areas), direct area-specific estimators from the survey data
are unreliable, and it is necessary to use model-based methods based on models linking area
means to related covariates and random area effects. Resulting model-based estimators can
lead to a significant increase in precision relative to direct estimators. Rao and Molina [1],
in Chapter 6, provide a detailed account of model-based estimation under area level models.
The effective selection of auxiliary variables to be included in the linking model is important
for the success of model-based small area estimation (SAE).

A basic area level model, due to Fay and Herriot [2], is widely used for SAE in
practice. Suppose that we have m areas with direct estimators yi of the area means θi
(i = 1, . . . , m) and associated candidate covariate vectors xi. The area level model consists
of two components: a sampling model given by

yi = θi + ei, i = 1, . . . , m (1)

and a linking model given by

θi = xᵀi β + ui, i = 1, . . . , m, (2)

where ei denotes sampling errors assumed to be independent N(0, Ψi) with known sam-
pling variance Ψi, and ui denotes random area effects independent of ei that are assumed
to be independent and identically distributed (iid) as N(0, σ2

u) with unknown variance σ2
u .

In practice, the sampling variances are obtained by smoothing the estimators of sampling
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variances using the Generalized Variance Function (GVF) method [3] and treating the
smoothed estimators as the sampling variances Ψi. It is clear from (2) that it has a standard
linear regression model form, and standard variable selection methods, such as Akaike In-
formation Criterion (AIC) or Bayesian Information Criterions (BIC), can be applied to select
variables, provided the area means θi are known. Lahiri and Suntornchost [4] estimated
the resulting selection criteria using the sampling model (1) and proposed to use them for
variable selection (see Section 2.1 for details). We refer the reader to Rao and Molina [1],
Chapter 6, for details of empirical best linear unbiased prediction (EBLUP) estimators of
area means from the models (1) and (2) for specified covariate vectors xi. The EBLUP
estimator of θi is a weighted average of the direct estimator yi and a synthetic regression
estimator xᵀi β̂, where β̂ denotes an estimator of the regression parameter vector β. For a
non-sampled area, direct estimator is not available. Hence, the synthetic estimator xᵀi β̂ is
used to estimate small area mean, provided the associated xi is known. Fay and Herriot [2]
obtained EBLUP estimates of per-capita income for small places in the USA, using the basic
area level model given by (1) and (2).

Estimation of means for subareas nested within areas is of considerable interest.
Mohadjer et al. [5] studied adult literacy for counties (subareas) sampled from states (areas),
using data from the 2003 U.S. National Assessment of Adult Literacy. A two-fold subarea
model is used to estimate subarea means θij from ni subareas j sampled from m areas i. A
two-fold linking model on the subarea means θij is given by

θij = xᵀijβ + vi + uij, j = 1, . . . , ni; i = 1, . . . , m, (3)

where xij is the vector of covariates associated with θij, and vi is random area effect inde-

pendent of random subarea effect uij. Furthermore, vi
iid∼ N(0, σ2

v ) and uij
iid∼ N(0, σ2

u). The
linking model (3) is combined with the sampling model for the direct estimators yij, and it
is given by

yij = θij + eij, j = 1, . . . , ni; i = 1, . . . , m, (4)

where eij are sampling errors independently distributed as N(0, Ψij) with known sampling
variances Ψij, and assumed to be independent of vi and uij. Torabi and Rao [6] obtained
EBLUP estimators of subarea means for sampled subareas as well as non-sampled subareas.
An advantage of the two-fold model is that the EBLUP estimator of a non-sampled subarea
involves both the synthetic estimator of θij and the direct estimators for the sampled
subareas within the same area. For a non-sampled subarea within a non-sampled area,
a synthetic estimator is used under the two-fold model. For variable selection under the
two-fold model, Cai et al. [7] transformed the linking model to a standard regression model
and applied variable selection criteria to the reduced model; see Section 2.2 for details.

Three-fold linking models involving sub-subareas (level 3) nested within subareas
(level 2) which in turn are nested within areas (level 1) are also of practical interest. For
example, such models were used in the Program for the International Assessment of Adult
Competencies (PIAAC) in the context of estimating means for sub-subareas (counties)
nested within subareas (states), which in turn are nested within areas (census divisions).
Details of this application are reported in Krenzke et al. [8] and Ren et al. [9]. A three-fold
linking model on the sub-subarea means θijk is given by

θijk = xᵀijkβ + wi + vij + uijk, k = 1, . . . , nij; j = 1, . . . , mi; i = 1, . . . , L, (5)

where k denotes sub-subarea nested within subarea j nested within area i, xijk is the vector
of covariates associated with θijk, wi is the random area effect, vij is the random subarea
effect, and uijk is the random sub-sub area effect. We assume that all the L areas in the
population are included in the sample, but not all the subareas within an area are covered
by the sample. Furthermore, not all the sub-subareas within a subarea covered by the
sample are included in the sample. We assume that the three random effects in the model (5)
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are independent, wi
iid∼ N(0, σ2

w), vij
iid∼ N(0, σ2

v ) and uijk
iid∼ N(0, σ2

u). The linking model (5)
is combined with the sampling model for the direct estimators yijk of the means θijk for the
sub-subareas in the sample. It is given by

yijk = θijk + eijk, k = 1, . . . , nij; j = 1, . . . , mi; i = 1, . . . , L, (6)

where the eijk are sampling errors assumed to be independently distributed as N(0, Ψijk)
with known sampling variances Ψijk, and they are assumed to be independent of the
random effects wi, vij, and uijk. In practice, the sampling variances are ascertained through
smoothing of the estimated sampling variances, as done in the PIAAC project.

The survey design may not have the same hierarchical structure as the linking
model (5). For example, in the PIAAC project, data from a stratified multistage sam-
ple with a different hierarchical structure are used. Given the vector of covariates xijk
after variable selection, EBLUP estimators of the sub-subarea means can be obtained. It
should be noted that the EBLUP estimators for non-sampled sub-subareas within a sampled
subarea as well as those within non-sampled subareas avoid pure synthetic estimation by
virtue of the area effects wi included in the linking model (5), noting that all the areas in
the population are included in the sample. In the PIAAC study, a hierarchical Bayes (HB)
approach was used to estimate the population sub-subarea means. We will report EBLUP
estimation for the three-fold model, which is given by (5) and (6), in a separate paper.

The main purpose of this paper is to extend the transformation method of Cai et al. [7]
for variable selection to three-fold models given by (5) and (6). We propose two transformation-
based methods—one is parameter free and the other is parameter-dependent—for variable
selection. Section 2 is a review of some relevant variable selection methods for the area
level model and the two-fold subarea model. Variable selection methods for the three-fold
model are presented in Section 3. Results of a simulation study on the performance of
the proposed methods relative to some naive alternatives, based on one-fold and two-fold
models, are presented in Section 4. Some concluding remarks are presented in Section 5.

2. Area Level and Subarea Level Linking Models: Methods for Variable Selection

We now provide a brief review of earlier work on variable selection for area level
and subarea level linking models related to the method for sub-subarea linking models
presented in Section 3.

2.1. Area Level Model

The area level linking model (2) has the standard linear regression model form with
unknown θi as the dependent variable. Lahiri and Suntornchost [4] noted that standard
variable selection criteria applied to (2), such as AIC, BIC, and Mallow’s Cp, are continuous
functions of the unknown error mean sum of squares MSEθ = (m − p)−1θ

ᵀ(Im − PX)θ,
where θ = (θ1 · · · θm)

ᵀ, PX = X(XᵀX)
−1Xᵀ is the projection matrix with X = (x1 · · · xm)

ᵀ,
Im is the identity matrix of order m, and p is the dimension of β. Then, the unknown MSEθ

is replaced by a consistent estimator obtained as

M̂SEθ = MSEy−Ψw, (7)

where MSEy is obtained by substituting y = (y1 · · · ym)
ᵀ for θ in the above expression for

MSEθ and Ψw = (m− p)−1 ∑m
i=1(1− hii)Ψi is a weighted mean of the sampling variance

Ψi with hii = xᵀi (XᵀX)
−1xi. The estimator (7) can take negative values, and modifications

to (7) leading to positive values were proposed by Lahiri and Suntornchost [4].
As noted earlier, standard variable selection criteria applied to the linking model (2)

are simple functions of MSEθ and can be estimated by simply substituting MSEy for MSEθ .
For example, BIC applied to linking model (2) can be estimated as

B̂IC = m log
{(

m− p
)
M̂SEθ/m

}
+ p log m.
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Some other variable selection criteria applicable to the area level model include the condi-
tional AIC (cAIC) proposed by Han [10] and mixed generalized AIC (xGAIC) proposed by
Lombardía et al. [11].

2.2. Subarea Level Model

Cai et al. [7] extended the method of Lahiri and Suntornchost [4] to the subarea model
given by (3) and (4). In this case, the linking model (3) does not have a standard linear
regression model form, because the error terms vi + uij within areas are correlated. As
a result, we need to first transform the linking model (3) to a standard linear regression
model form with iid errors. Specifically, we rewrite the subarea model in matrix form as
yi = θi + ei and θi = Xiβ+ τi, i = 1, . . . , m, where yi = (yi1 · · · yini )

ᵀ
, Xi = (xi1 · · · xini )

ᵀ
,

θi = (θi1 · · · θini )
ᵀ
, ei = (ei1 · · · eini )

ᵀ
, and τi = vi1ni + ui with 1ni being a vector of 1s

of length ni and ui = (ui1 · · · uini )
ᵀ
. Cai et al. [7] proposed to find a matrix Ai for each

i = 1, . . . , m such that the covariance matrix of τ∗i ··= Aiτi is a diagonal matrix with equal
diagonal elements across i = 1, . . . , m. Then, a transformed two-fold model is obtained:

y∗i = θ∗i + e∗i and θ∗i = X∗i β + τ∗i , i = 1, . . . , m, (8)

where y∗i = Aiyi, e∗i = Aiei, θ∗i = Aiθi, and X∗i = AiXi. Noting that (8) has the standard
regression model form on the transformed variables y∗i and θ∗i , we can apply the method
used for the area level model to obtain variable selection criteria.

Cai et al. [7] gave two methods for finding the transformation matrix Ai, one being
parameter-free and the other relying on estimated model-parameter values. The parameter-
free transformation follows the parameter-free transformation method proposed by Li and
Lahiri [12] for selecting auxiliary variables under the unit-level nested error regression
(NER) model. Observing that the covariance matrix of τ∗i is given by

Cov(τ∗i ) = AiΣi A
ᵀ
i = σ2

v (Ai1ni )(Ai1ni )
ᵀ
+ σ2

u Ai A
ᵀ
i ,

one can choose an matrix Ai such that (a) Ai1ni = 0, and (b) Ai A
ᵀ
i is a diagonal matrix

whose diagonal elements are equal for all i = 1, . . . , m. Cai et al. [7] proposed a numerical
procedure to find the Ai matrix satisfying the above conditions. As a result of the linear
constraint (a), the rank of Ai is ni − 1 at most, and as a result, the transformed two-fold
model loses one data point for each sampled area. The parameter-dependent method
used by Cai et al. [7] is the well-known Fuller–Battese transformation [13]. In practice, the
parameter-free transformation is more likely to be used because of its simplicity and not
requiring the estimates of variance parameters.

3. Sub-Subarea Linking Models: Variable Selection

In this section, we present the proposed method for variable selection under the sub-
subarea linking model. We extend the method of Cai et al. [7] for the two-fold model to the
three-fold case.

We first express the sub-subarea linking and sampling models given by (5) and (6) as

θi = Xiβ + ηi, i = 1, . . . , L, (9)

and

yi = θi + ei, i = 1, . . . , L, (10)

respectively, where yi = (yij1 yij2 · · · yiminij)
ᵀ
, Xi = (xij1 xij2 · · · ximinij)

ᵀ
, θi = (θij1 θij2

. . . θiminij)
ᵀ, ei = (eij1 eij2 . . . eiminij)

ᵀ
and

ηi = wi1ni + Ωivi + ui
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with ni = ∑mi
j=1 nij, Ωi = diag(1ni1 ,1ni2 , . . . ,1nimi

), vi = (vi1 · · · vimi )
ᵀ

and ui = (ui11 ui12

· · · uiminimi
)ᵀ. Note that ηi ∼ N(0, Σi), where

Σi = Cov(ηi) = σ2
w1ni1

ᵀ
ni
+ σ2

v ΩiΩ
ᵀ
i + σ2

u Ini . (11)

As in the case of subarea linking model (3), the covariance matrix Σi of ηi in the linking
model (9) does not have a diagonal structure. Following the idea of Cai et al. [7], we
first transform the three-fold linking model (9) using a linear transformation so that the
covariance matrix of the transformed ηi has a diagonal structure. For each area i, we obtain
a matrix Ti that makes the transformed vector η∗i ··= Tiηi have a diagonal covariance matrix
with diagonal elements being a positive constant c for all i = 1, . . . , L. Using the Ti, we
transform the three-fold sampling model (10) and linking model (9) into

y∗i = θ∗i + e∗i , (12)

θ∗i = X∗i β + η∗i , (13)

where y∗i = Tiyi, θ∗i = Tiθi, e∗i = Tiei and X∗i = TiXi. The transformed linking model (13) is
a standard linear regression model with unknown dependent variable θ∗i , and it shares the
same β parameter with the original linking model (9). Then, we can use a bias-correction
method similar to that of Lahiri and Suntornchost [4] to estimate an information criterion
for (13) so as to select auxiliary variables. The details of the proposed transformation and
bias-correction methods are given in the following subsections.

3.1. Transformation Methods
3.1.1. Parameter-Free Transformation

It is desirable that the transformation matrices Ti, i = 1, . . . , L do not rely on unknown
parameter values. To find parameter-free Ti, we follow the idea used by Cai et al. [7] for the
two-fold subarea model. By (11),

Cov(η∗i ) = Ti Cov(ηi)T
ᵀ
i = σ2

w(Ti1ni )(Ti1ni )
ᵀ
+ σ2

v (TiΩi)(TiΩi)
ᵀ
+ σ2

uTiT
ᵀ
i .

If Ti1ni = 0, TiΩi = 0 and TiT
ᵀ
i is a diagonal matrix with equal diagonal elements,

then Cov(η∗i ) will have the desired diagonal structure. Furthermore, TiΩi = 0 implies
Ti1ni = 0 because Ωi1mi = 1ni . Therefore, it suffices to find Ti such that (i) TiΩi = 0, and
(ii) TiT

ᵀ
i is a diagonal matrix with equal diagonal elements across i = 1, . . . , L. Since the

above two conditions do not involve any parameter, a matrix Ti that satisfies them will be
parameter free.

Recall that Ωi = diag(1ni1 ,1ni2 , . . . ,1nimi
), which is a matrix with full column rank

mi. Therefore, imposing TiΩi = 0 on Ti introduces mi independent linear constraints on
Ti, with one constraint for each sub-area j, j = 1, . . . , mi. To be specific, the constraint for
subarea j is Ti ˜

ωj = 0, where
˜
ωj is the jth, j = 1, . . . , mi, column of Ωi. Consequently, the

rank of Ti is at most ni −mi, and hence, each area i will lose mi data points (or equivalently,
each subarea will lose one data point) in the transformation. This is different from the
parameter-free transformation for the two-fold subarea model discussed in Section 2.2,
where each area loses a single data point in the transformation.

In the following, we provide a numerical algorithm to find Ti for area i, i = 1, . . . , L,
that satisfies the above requirements (i) and (ii).
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Step 1: For each subarea j, j = 1, . . . , mi, of area i, fix a set of nij − 1 linearly indepen-
dent vectors of length nij, denoted bi1, bi2, . . . , bi(nij−1), that satisfies bᵀik1nij = 0 for
k = 1, . . . , nij − 1. For a given k, a valid choice for bik is the vector of length
nij whose kth element is 1, last element is −1, and all other elements are 0. For
example, if nij = 5, then we can take bik, k = 1, 2, 3, 4, as bi1 = (1 0 0 0 − 1)

ᵀ
,

bi2 = (0 1 0 0 − 1)
ᵀ
, bi3 = (0 0 1 0 − 1)

ᵀ
and bi4 = (0 0 0 1 − 1)

ᵀ
. Another possi-

bility is to take bik to be the vector whose kth element is 1 and all the other elements
equal −1

nij−1 if nij > 1.

Step 2: Apply the Gram–Schmidt process to bi1, . . . , bi(nij−1) to acquire a set of orthogo-

nal vectors ai1, ai2, . . . , ai(nij−1) with ai1 = bi1 and aik = bik − ∑k−1
l=1 Projail

(bik) for

k = 2, . . . , nij − 1, where Projy(x) ··= xᵀy
yᵀy y is the projection of vector x onto the

line spanned by vector y. Construct a (nij − 1) by nij matrix, denoted Tij, from

ai1, . . . , ai(nij−1) as Tij =
(

ai1
‖ai1‖

· · ·
ai(nij−1)

‖ai(nij−1)‖

)ᵀ
, where ‖ · ‖ is the Euclidean norm.

Step 3: Repeat Step 1 and Step 2 for all subareas j = 1, . . . , mi of area i to obtain matrices
Ti1, . . . , Timi . Take Ti = diag(Ti1, . . . , Timi ).

The Ti constructed using the above steps is parameter free. Step 1 generates a set of
linear independent vectors bik, k = 1, . . . , mi, satisfying bᵀik1nij = 0. The Gram–Schmidt
process in Step 2 produces a set of orthonormal vectors aik, k = 1, . . . , mi, based on bik,
while carrying over the property aᵀik1nij = 0. Thus, the matrix Tij constructed in Step 2
satisfies Tij1nij = 0 and TijT

ᵀ
ij = Inij−1, which in turn guarantee that the matrix Ti defined in

Step 3 satisfies the requirements (i) and (ii) with TiT
ᵀ
i = Ini−mi . Under this transformation,

we get Cov(η∗i ) = σ2
u Ini−mi .

A parameter-free transformation matrix Ti that satisfies the constraints (i) and (ii) is
not unique. However, we found that different choices of Ti yield similar results.

3.1.2. Parameter-Dependent Transformation

It is straightforward to obtain a transformation matrix Ti that depends on the model
parameter values. Since Cov(τ∗i ) = TiΣiT

ᵀ
i , where Σi is given by (11), we can take

Ti = cΣ−1/2
i , where Σ−1/2

i is the positive definite square-root matrix of Σ−1
i and c is a

non-zero constant. Then, Cov(τ∗i ) is a diagonal matrix whose diagonal elements are all
equal to c. Note that Σi is determined by the variance parameters σ2

w, σ2
v and σ2

u , so this trans-
formation matrix is parameter-dependent. Under the two-fold subarea model, applying
this idea and choosing c = σu yields the Fuller–Battese Transformation [7].

Under the three-fold sub-subarea model, we found that

Σ−1
i =σ−2

u
(

Ini −Λi − ξi1ni1
ᵀ
ni
+ ξi1ni1

ᵀ
ni

Λi + ξiΛi1ni1
ᵀ
ni
− ξiΛi1ni1

ᵀ
ni

Λi
)
,

where Λi = diag
(
ρi11ni11

ᵀ
ni1

, . . . , ρimi1nimi
1
ᵀ
nimi

)
, ρij = σ2

v /(σ2
u + nijσ

2
v ) and ξi = σ2

w/
{

σ2
u +

σ2
w
(
ni −∑mi

k=1 ρikn2
ik
)}

. The square-root matrix Σ−1/2
i has a complicated expression but can

be found easily with a numerical procedure, for example, by applying the spectral decom-
position or polar decomposition on Σ−1

i . Taking Ti = σuΣ−1/2
i , we get Cov(τ∗i ) = σ2

u Ini .
In practice, we need to estimate the variance parameters σ2

w, σ2
v , and σ2

u to construct
the transformation matrices Ti, as in the case of the subarea model given by (8).

3.2. Estimating Variable Selection Criteria: Sub-Subarea Model

After transformation, the linking model (13) takes the matrix form of a regular regres-
sion model with unobserved response variable values θ∗i . We now use a method similar to
that of Cai et al. [7] to estimate information criteria, including AIC, BIC, and Mallows’ Cp,
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for the transformed linking model (13). Then, these information criteria can be used for
selecting auxiliary variables under the three-fold sub-subarea model.

The error mean sum of squares of the transformed linking model (13) is given by

MSEθ∗ =
1

n∗ − p
θ∗

ᵀ
(In∗ − PX∗)θ

∗,

where θ∗ =
(
θ∗1

ᵀ · · · θ∗L
ᵀ)ᵀ, PX∗ = X∗

(
X∗ᵀX∗

)−1
X∗ᵀ with X∗ =

(
X∗1

ᵀ · · · X∗L
ᵀ)ᵀ, n∗ is

the dimension of θ∗, and p is the dimension of β. Since θ∗ are unobserved, MSEθ∗ cannot
be calculated. Instead, we estimate MSEθ∗ based on the transformed sampling model (12).
Let y∗ =

(
y∗1

ᵀ . . . y∗L
ᵀ)ᵀ and e∗ =

(
e∗1

ᵀ . . . e∗L
ᵀ)ᵀ. Put

MSEy∗ =
1

n∗ − p
y∗

ᵀ
(In∗ − PX∗)y∗.

We propose to estimate MSEθ∗ by

M̂SEθ∗ = MSEy∗ −
1

n∗ − p
tr
{
(In∗ − PX∗)Ve∗

}
, (14)

where Ve∗ is the covariance matrix of e∗, given by Ve∗ = Cov(e∗) = TVeTᵀ with T =
diag(T1, . . . , TL) and Ve = diag(Ψ111, Ψ112, . . . , ΨLmLnLmL

). It can be shown, using the same
argument as used in the proof of Theorem 1 of Cai et al. [7], that if the sampling variances
Ψijk are bounded for all i, j and k, and nij ≥ 2 for all i and j, then

M̂SEθ∗ = MSEθ∗ +op(1) (15)

as the number of areas L→ ∞.
The term (n∗ − p)−1 tr

{
(In∗ − PX∗)Ve∗

}
in (14) can be considered as a bias-correction

term, and because of its presence, M̂SEθ∗ may take a negative value. A simple truncation
or a continuous transformation of M̂SEθ∗ as suggested by Lahiri and Suntornchost [4] may
be used to obtain a strictly positive estimate of MSEθ∗ .

Given the above estimator of MSEθ∗ , estimators of the AIC, BIC and Mallows’ Cp for
the transformed linking model (13) are readily constructed. The AIC, BIC and Mallows’ Cp
of a submodel of (13) with ps covariates are given by

AIC(s) = n∗ log
{(

n∗ − ps
)

MSE(s)
θ∗ /n∗

}
+ 2ps, (16a)

BIC(s) = n∗ log
{(

n∗ − ps
)

MSE(s)
θ∗ /n∗

}
+ ps log(n∗), (16b)

C(s)
p =

(
n∗ − ps

)
MSE(s)

θ∗ / MSEθ∗ +2ps − n∗, (16c)

respectively, where MSE(s)
θ∗ is the MSE from the submodel. Their estimators, denoted ÂIC

(s)
,

B̂IC
(s)

and Ĉp
(s)

, respectively, are obtained by substituting M̂SEθ∗ into the corresponding
expressions in (16a) to (16c). Then, variable selection is carried out by choosing one of the
above criteria and estimating its values for a set of specified sub-models. The sub-model
with the smallest estimated criterion value is chosen as the selected linking model. Noting
that the criteria (16a)–(16c) are continuous functions of MSEθ∗ and the error of the estimator
M̂SEθ∗ is of op(1), it follows from the continuous mapping theorem [14] (Theorem 2.3) that
the error in the estimated variable selection criteria is also op(1) and hence negligible when
the number of areas L is large.

4. Results of a Simulation Study

This section provides results of a limited simulation study on the performance of the
proposed method for variable selection for sub-subarea linking models. The simulation
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data are generated from the three-fold sub-subarea model given by (5) and (6). The
number of areas is set to L = 10 and the number of subareas sampled from each area i,
i = 1, . . . , L, is set to mi = 5. The number of sampled sub-subareas is taken as nij = 8
for every subarea j in areas i = 1, . . . , 5, nij = 5 for every subarea in areas i = 6, 7, 8 and

nij = 10 for each subarea in areas i = 9, 10. The sampling standard deviation
√

Ψijk in

the sampling model (6) is generated from Unif(0.5, 1.5). The standard deviation of the
sub-subarea random effect in the linking model (5) is set to σu = 2. A few settings for
the standard deviations of the area-level and subarea-level random effects, (σw, σv), are
used: (2, 2), (4, 3), (6, 3), (8, 4), (6, 6), (3, 6) and (4, 8). We consider a linking model that has
an intercept term with corresponding covariate xijk,1 = 1 and eight other covariates xijk,l
(l = 2, . . . , 9) generated as follows: log xijk,2 ∼ N(0.3, 0.5) with mean 0.3 and variance 0.5,
xijk,3 ∼ Gamma(1.5, 2) with shape parameter 1.5 and rate parameter 2, xijk,4 ∼ N(0, 0.8),
xijk,5 ∼ N(1, 1.5), xijk,6 ∼ Gamma(0.6, 10), xijk,7 ∼ Beta(0.5, 0.5) with shape parameters
0.5 and 0.5, xijk,8 ∼ Unif(1, 3) on the interval (0, 3), and xij,9 ∼ Poisson(1.5) with mean
parameter 1.5. The value of the regression parameter vector β is set to (2, 3, 0, 4, 0, 8, 0, 1, 0)ᵀ.
It corresponds to a true model consisting of the intercept term of value 2 and covariates xij,2,
xij,4, xij,6 and xij,8. For variable selection, we always include the intercept term when we
compare all possible sub-models defined by the inclusion/exclusion of the eight variables
xij,2, . . . , xij,9.

We generated 5000 simulation runs, and the covariates are generated first and kept fixed
throughout all simulation runs. Then, we generated the response vectors yi, j = 1, . . . , L,
from the sub-subarea model given by (9) and (10) for each simulation run, using the
specified settings.

We report the performance of the proposed method with parameter-free transfor-
mation (3Fpfree) and parameter-dependent transformation (3Fpdep). For 3Fpdep, the true
parameter values are used here, for simplicity. Under estimated parameter values, the
performance of 3Fpdep is likely to be inferior. The parameter-free and parameter-dependent
methods of Cai et al. [7] for the two-fold subarea model are used for comparison. To fit a
two-fold subarea model to the data with a three-fold structure, the actual sub-subareas are
treated as the subareas in the two-fold model. We can treat either (i) the actual subareas
or (ii) the actual areas as the areas in the two-fold model. Treatment (i) is a natural choice
when there is substantial subarea-level variability. Under treatment (i), where the actual
subareas are treated as areas, the parameter-free transformation under the two-fold model
is algebraically identical to the parameter-free transformation under the three-fold model.
As a result, variable selection based on the parameter-free transformation under treatment
(i) leads to the same set of variables as that under the three-fold model. However, it leads
to pure synthetic estimates for non-sampled areas (actual subareas). Moreover, computa-
tionally, there is no advantage of treatment (i) over the three-fold model because the same
transformation is used. On the other hand, the parameter-dependent method applied to
treatment (i) may lead to a different set of variables. Therefore, we report the simulation
results only for the parameter-dependent method under treatment (i), which is denoted
as 2F-S-SSpdep. The two-fold parameter-free and parameter-dependent methods under
treatment (ii) are denoted as 2F-A-SSpfree and 2F-A-SSpdep, respectively. Under treatment
(ii), pure synthetic estimation is avoided because all areas are sampled. For comparison,
we further consider three naive methods designed for the one-fold FH model and the
regular linear regression model, including the Lahiri–Suntornchost [4] method (Naive-LS)
and Han’s [10] cAIC method (Naive-cAIC) for the FH model, as well as an information
criterion-based method for the regular linear regression model fitted naively to the data
(Naive-LM). For Naive-LS and Naive-cAIC, the actual sub-subareas are treated as the areas
in the FH model. For Naive-LM, the sub-subarea level direct estimator yijk is treated as the
response variable of the regular linear regression model.

Table 1 summarizes the simulation results for variable selection using BIC.
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Table 1. True model selection rate (%): BIC.

Method (σw, σv)
(2, 2) (4, 3) (6, 3) (8, 4) (6, 6) (3, 6) (4, 8)

3Fpfree 87.12 87.62 87.50 88.18 87.26 87.32 87.02
3Fpdep 87.94 88.20 88.46 88.52 88.00 87.96 87.60

2F-S-SSpdep 87.64 87.82 88.16 88.48 87.90 87.86 87.56

2F-A-SSpfree 83.28 63.14 62.62 36.70 8.38 9.22 2.24
2F-A-SSpdep 82.60 60.84 60.66 34.58 7.24 8.48 1.80

Naive-LS 63.62 19.68 8.80 2.56 1.94 4.96 0.78
Naive-LM 60.94 18.32 8.26 2.44 1.84 4.70 0.76

The proposed 3Fpfree and 3Fpdep perform equally well with a stable rate between 87%
and 89% in selecting the true model under all settings for (σw, σv). The two-fold method
2F-S-SSpdep, which treats the actual subareas as areas in the two-fold model, exhibits
similar performance to that of the proposed methods. All the other methods have inferior
performance and display a dramatic decay in rate of selecting the true model when σw and
σu increase. This indicates that in the presence of strong area-level effect or subarea-level
effect, which often happens in practice, 3Fpfree, 3Fpdep and 2F-S-SSpdep are preferred over
the other alternative methods.

The simulation results based on AIC and Naive cAIC are given in Table 2.

Table 2. True model selection rate (%): AIC and Naive-cAIC.

Method (σw, σv)
(2, 2) (4, 3) (6, 3) (8, 4) (6, 6) (3, 6) (4, 8)

3Fpfree 43.88 42.84 43.76 43.92 43.38 44.02 43.42
3Fpdep 44.22 43.18 43.66 44.08 43.36 44.04 43.48

2F-S-SSpdep 44.32 43.14 43.66 43.68 43.22 44.02 43.32

2F-A-SSpfree 47.00 46.60 47.10 42.86 26.46 27.16 14.60
2F-A-SSpdep 47.78 48.48 48.36 43.96 26.36 26.52 14.54

Naive-LS 45.00 31.74 22.48 14.62 14.02 19.84 10.52
Naive-LM 47.02 32.18 22.54 14.56 13.94 19.76 10.40

Naive-cAIC 42.86 26.64 17.28 12.12 11.16 15.62 8.84

Compared with BIC, AIC gives a significantly lower true-model selection rate under
all the methods. As the case for BIC, methods 3Fpfree, 3Fpdep and 2F-S-SSpdep perform
equally well and yield stable results for different (σw, σv) values, and they have better
performance than the other methods. Methods 2F-A-SSpfree and 2F-A-SSpdep have slightly
better performance than 3Fpfree, 3Fpdep and 2F-S-SSpdep when (σw, σv) = (2, 2), (4, 3), and
(6, 3) but notably inferior performance under the other settings for (σw, σv). Methods
Naive-LS, Naive-LM and Naive-cAIC have significantly lower rates of selecting the true
model than the other methods.

Table 3 reports simulation results under Mallows’ Cp criterion for variable selection.
The results in Table 3 are similar to those reported in Table 2 under AIC, and the same
conclusions hold.
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Table 3. True model selection rate (%): Mallows’ Cp.

Method (σw, σv)
(2, 2) (4, 3) (6, 3) (8, 4) (6, 6) (3, 6) (4, 8)

3Fpfree 44.78 43.66 44.84 44.60 44.00 44.84 44.04
3Fpdep 45.02 43.90 44.40 44.90 44.16 44.80 44.30

2F-S-SSpdep 44.96 43.74 44.32 44.50 43.76 44.74 44.10

2F-A-SSpfree 47.60 47.28 47.84 43.32 26.34 27.08 14.54
2F-A-SSpdep 48.82 49.08 49.38 44.52 26.54 26.64 14.22

Naive-LS 45.60 32.16 22.60 14.52 13.98 19.80 10.32
Naive-LM 47.66 32.52 22.64 14.54 14.04 19.80 10.24

5. Concluding Remarks

A transformation-based method is proposed for selecting covariates under the three-
fold sub-subarea model for small area estimation. Two transformations, one being parameter-
free and the other being parameter-dependent, are proposed to accompany the variable se-
lection method. Compared to the parameter-free transformation, the parameter-dependent
transformation does not induce loss of data points but requires estimated variance param-
eters in practice. We prefer the parameter-free transformation for its simplicity and not
requiring the estimates of variance parameters. The performance of parameter-free and
parameter-dependent transformation methods is similar under various simulation settings
for variances of the area-level and subarea-level random effects. EBLUP estimation of
sub-subarea means for sampled sub-subareas, non-sampled sub-subareas within sampled
subareas, and sub-subareas within non-sampled subareas will be studied in detail in a
separate paper. Measures of uncertainty of the EBLUP estimators will also be studied.
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