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Abstract: Missing covariate values are a common problem in survival studies, and the method
of choice when handling such incomplete data is often multiple imputation. However, it is not
obvious how this can be used most effectively when an incomplete covariate is a function of other
covariates. For example, body mass index (BMI) is the ratio of weight and height-squared. In this
situation, the following question arises: Should a composite covariate such as BMI be imputed
directly, or is it advantageous to impute its constituents, weight and height, first and to construct BMI
afterwards? We address this question through a carefully designed simulation study that compares
various approaches to multiple imputation of composite covariates in a survival context. We discuss
advantages and limitations of these approaches for various types of missingness and imputation
models. Our results are a first step towards providing much needed guidance to practitioners for
analysing their incomplete survival data effectively.
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1. Introduction

A problem faced by analysts in survival studies is the ubiquity of missing covariate
values. If not handled appropriately, the effects can be wide ranging and the loss of data
can lead to inefficiencies and introduce bias into analyses. A widely used approach to
analyse incomplete data sets is multiple imputation (MI), introduced in [1]. However, there
are situations where it is not obvious how this can be used most effectively.

A motivating data set for our research was supplied by NHS Blood and Transplant and
is a rather typical routinely collected survival data set. It involves censored survival times
for 7732 kidney transplant patients and contains information on 30 covariates thought to
be potentially related to post-transplant survival. Full details are given in [2]. Whilst there
are relatively few missing values for most of these covariates, one, Body Mass Index (BMI)
of the kidney donor has over 60 per cent of values missing. BMI is defined as the ratio of
an individual’s weight in kilograms to the square of the height in metres:

BMI = weight(kg)/height(m)2.

This is an example of a composite covariate: it is a function of two constituents, namely
weight and height in this case. In [2] the authors investigate whether MI is an appropriate
approach for dealing with such a high proportion of missing values in the context of
survival analysis and show that MI outperforms listwise deletion of observations with
at least one missing covariate (complete case analysis). However, they do not use the
composite nature of BMI explicitly in their analysis.

There are several possible approaches to imputing a composite covariate. The two
main ones are active imputation and passive imputation. In active imputation, also called
“Just another variable”, the composite covariate is imputed directly like any other variable.
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As a result, the functional relationship between the imputed composite covariate and its
constituents is diminished. This is the approach used in [2]. In passive imputation, the
constituents are imputed and the composite covariate is only then constructed. Hence
the functional relationship is preserved in passive imputation. However, the relationship
between the composite covariate and other variables in the data set, such as the outcome
variable, can be underestimated since the other variables do not directly influence the
imputation of the composite covariate.

To combat this issue with passive imputation, a modification called Substantive Model
Compatible Fully Conditional Specification (SMCFCS) has been proposed; see, for exam-
ple [3,4]. In SMCFCS the outcome variable is accounted for when imputing the composite
covariate in order to preserve the relationship between the composite covariate and the
outcome variable.

MI for composite covariates in a survival analysis context has not been widely explored
in the literature, so our aim is to make a start to filling this gap. We will investigate the
performance of active and passive imputation for survival data via a simulation study, the
design for which has been informed by the motivating data set

In Section 2, we first introduce some background on missing data mechanisms and
MI before describing the design of our simulation study and giving some criteria for
comparing the performance of active and passive imputation. In particular, we introduce
the variants of MI to be considered in our study and investigate how the missing data
mechanism and the presence of further covariates - beyond the composite covariate and
its constituents—will affect the performance of the different MI methods. The results are
given in Section 3, and their implications are further discussed in Section 4.

2. Background and Methods

In this section, we first outline different missingness mechanisms since these may
have an impact on the performance of MI. Following this is a brief overview of the general
concept of MI. We then introduce more specific methods relating to MI, such as Fully
Conditional Specification (FCS) and variants of active and passive imputation. Finally, we
provide the design of our simulation study, with details of the process to generate the data,
to set missing values, and the models to impute the missing values.

2.1. Missingness Mechanisms

Assume a n× p data set with n observations and p covariates. Denote this data set by
X = (x1, . . . , xp) where xj = (x1j, . . . , xnj)

′
for the jth covariate, j = 1, . . . , p. For each xij,

denote a missingness indicator, rij, where rij = 1 if xij is observed, and rij = 0 otherwise.
These values build a missingness matrix R = (r1, . . . , rp) where r j = (r1j, . . . , rnj)

′
. X can

be decomposed into a missing part, X M, and an observed part XO, where XO represents
the observed values in the data set XO = (xij|rij = 1). Similarly, X M = (xij|rij = 0) denotes
the unobserved values.

When P(R|X) = P(R), the incomplete values are Missing Completely at Random
(MCAR) [5]. Hence, the distribution is the same between the observed portion of a variable,
and the unobserved portion of that same variable.

When P(R|X) = P(R|XO) the incomplete values are Missing at Random (MAR) [5].
Missing values in an incomplete variable may depend on the observed values of other
variables.

2.2. Multiple Imputation

First introduced by [1], MI is a widely used approach to handle missing values. In MI,
the incomplete observations are imputed M times using an imputation model, yielding M
complete data sets. Following this, an estimate of a parameter of interest, Q, is calculated
for each multiply imputed data set using a substantive, or analysis, model [4]. Denote
the M estimates of Q by Q̂m, with corresponding estimated variances, V̂Wm , m = 1, . . . , M.
In the Pooling phase, the estimates of the parameter of interest are combined by a set of
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rules called “Rubin’s Rules” [6]. A pooled estimate, Q̄M, for the parameter of interest is
calculated as the average of the M estimates:

Q̄M =
1
M

M

∑
m=1

Q̂m. (1)

The estimated total variance of the pooled estimator of Q is given by

V̂T = V̄W +

(
1 +

1
M

)
V̂B, (2)

where V̄W denotes the within-imputation variance,

V̄W =
1
M

M

∑
m=1

V̂Wm , (3)

and V̂B denotes the between-imputation variance:

V̂B =
1

M− 1

M

∑
m=1

(Q̂m − Q̄M)2. (4)

Fully Conditional Specification (FCS)

Multiple imputation can be facilitated by Fully Conditional Specification (FCS). The
procedure for FCS is as follows [7]:

1. To obtain initial values, all incomplete values in a data set are replaced with a “place-
holder”, such as the mean for that variable.

2. Take one variable with placeholder values, xj, and set the placeholder values back to
missing.

3. Subset the data set to the complete case form.
4. Fit a regression model where the outcome variable is xj. Choose which of the remain-

ing p− 1 variables in the data set to fit as covariates. This regression model is an
Imputation Model, denoted by f (X M|XO).

5. Impute missing values in xj by using the estimated coefficients from the imputation
model.

6. Repeat steps 2–5 for any other variable that contains placeholder values.
7. Repeat steps 2–6 until the estimate of the parameter of interest converges. This results

in a complete data set.

This results in one of the M complete data sets. The FCS process is repeated M times
resulting in M imputed values for each missing value.

Within FCS, approaches such as Bayesian Linear Regression (BLR) or Predictive
Mean Matching (PMM) discussed further in [8] can be utilised. However, FCS has some
shortcomings when it comes to passive imputation. As discussed, passive imputation
preserves the functional relationship between the constituents and the composite covariate
by constructing the composite covariate after imputing the constituents. However, in
passive imputation other variables in the data set do not influence the imputed value of
the composite covariate. As a result, the effect of the covariate is attenuated, so that, for
example, for a positive coefficient the bias of the estimator is negative [9].

One approach to combat the issues with passive imputation is to apply a modified
version of FCS called SMCFCS. In SMCFCS, each incomplete variable is imputed with
an imputation model compatible with a user-specified substantive model. Examples of
achieving this are given in [3]; for example, by restricting the parameter space of the
imputation model. As a result all variables in the analysis model are accounted for when
imputing the composite covariate. Hence the relationships between the composite covariate
and the other variables in the analysis model are preserved. This is discussed further in [3,4].
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2.3. Simulation Study Design

A simulation study is conducted to compare the performance of active and passive
imputation for a ratio functional form. In the simulation study a complete data set is
first generated with the values chosen in the generating process based on the underlying
data and analysis model used in [2]. This generating process is given in more detail in
Section 2.3.1. Following this, three different missingness mechanisms are imposed: MCAR
and two MAR mechanisms, outlined further in Section 2.3.2. The missing values are
subsequently imputed by MI, discussed in Section 2.3.3. Approaches applied to evaluate
the performance of the imputation models are given in Section 2.3.4.

In addition, other factors are varied in the simulation study to investigate firstly
how these different factors impact the imputation process, and further investigate how
they impact active and passive imputation. These additional factors are the number of
observations in each replicated data set (N = 500, 1000, and 2000), the percentage of
observations that are censored (10%, 15%, and 20%), whether an auxiliary variable, Z, is
present, whether FCS or SMCFCS is applied. Additionally, in the case of FCS, another
factor altered is whether BLR or PMM is applied.

The simulation is repeated for 1000 replications in line with the sample size calculation
given in [10]. The substantive model fitted is an exponential AFT model, and so the
parameter of interest, Q, is the true coefficient of the composite covariate in the substantive
model. The simulation study is conducted in R. The simulation for FCS is performed
using the MICE package [11], and the SMCFCS simulation is performed using the smcfcs
package [12].

2.3.1. Generating the Data

The variables are generated to follow a structure similar to that of variables in the
motivating data set analysed in [2]. Information from a data set on survival after a car-
diothoracic transplant is also consulted to generate the variables to provide additional or
supporting information.

Two constituents, U1, U2, are generated to follow a structure similar to that of weight
in kg and height in cm, respectively. To account for the skewed distribution in the weight
variable, U1 ∼ Gumbel with location and scale parameters 64 and 14 respectively. The
height variable, U2, is generated from a linear regression model with both U1 and log(U1)
as predictors to account for non-linearity in the relationship. An error term is also given to
reflect the distribution of the height variable, ε ∼ N(0, 8.62):

U2 = −36.0− 0.36U1 + 54.0 log(U1) + ε.

These coefficient values are chosen since they are the estimated coefficients when
fitting this linear model in the kidney data set with recipient height and weight. Then the
composite covariate, X3, is generated to be like BMI, hence X3 = U1

(U2/100)2 .
Two further covariates, X1 and X2, having different correlations with X3 are created.

X1 takes a distribution similar to recipient age and is generated from a linear regression
model involving both constituents and the composite variable as predictors to maintain a
relationship between X1 and X3,

X1 = 3.2− 0.12U1 + 0.14U2 + 1.18X3 + ε.

The coefficient values are the estimated coefficients calculated when fitting this linear
model with the underlying variables in the motivating data set and ε ∼ N(0, 132) since
recipient age is roughly normally distributed, with σ = 13 to equal the standard deviation
of recipient age in the motivating data set. The model to generate X1 values can result in age
values less than 20 which is out of the range of the motivating data sets. Therefore, any X1
values less than 20 are then re-generated by X1 ∼ U(20, 100). As a result, cor(X1, X3) ≈ 0.3.
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The second covariate is based on donor age. We generate X2 ∼ N(40, 100), but if
X2 < 20 then we re-generate X2 by X2 ∼ U(20, 45). X2 has virtually no relationship with
X3. As a result, cor(X2, X3) ≈ 0. The parameter values are chosen so that X2 reflects donor
age in the motivating data set.

An auxiliary variable, Z, was generated to have a correlation of approximately 0.5 to
the composite covariate in order to assess the effect of auxiliary variables on the perfor-
mance of the MI variants. Hence Z is based on a variable ‘waist measurement’ from the US
National Health and Nutrition Examination Survey investigated in [13].

Z = −8.8 + 0.21U2 + 2X3 + ε,

where ε ∼ N(0, 256). σ is slightly inflated from the standard deviation of waist mea-
surement in the motivating data set to decrease the correlation between X3 and Z to
approximately 0.5. This approach can result in values that are too small to be realistic.
Hence if Z < 40, Z is re-generated by Z ∼ U(40, 150) resulting in cor(Z, X3) ≈ 0.5.

Finally, survival time and a censoring indicator are produced. Survival time is gener-
ated by

time = exp(6− 0.02X1 − 0.02X2 + 0.05X3 + ε).

The chosen coefficient values are influenced by the estimated coefficients in the trans-
plant data sets. Additionally, ε ∼ Gumbel (0, 1). Hence the survival time is exponentially
distributed. To have approximately 15% of observations censored, any observation with a
survival time above 500 is right censored at 500. Censoring percentages of 10% and 20%
are achieved analogously by varying the survival time where censoring takes place. A
censoring indicator is then introduced.

2.3.2. Generating Missing Values

We chose to generate approximately 30% missingness in the composite covariate X3
and three different missingness mechanisms are investigated, denoted by MCAR, MAR1
and MAR2. For MCAR, values of X3 are set to missing independently with probability 0.3.
In the MAR1 structure, X3 is set to missing with probability 0.5 when X1 is smaller than its
median, otherwise the probability that X3 is missing is 0.1. In the MAR2 structure, X3 is
missing for the smallest 30% of the X1 values.

We consider three different situations for missingness in the constituents, i.e., scenarios
where only height is observed, only weight is observed, and where both constituents are
missing. To incorporate this, a dummy variable, W1, is randomly generated for each row of
the generated data with a missing value of X3 such that

P(W1 = 1) = 1/3

P(W1 = 2) = 1/3

P(W1 = 3) = 1/3.

When W1 = 1, only the corresponding value of U1 is set as missing. When W1 = 2,
only the corresponding value of U2 is set as missing. When W1 = 3, both U1, U2 values are
set as missing.

2.3.3. Applying Multiple Imputation

MI is applied with M = 30. The choice of M is so that M is roughly equivalent to the
percent of missing values in X3, as recommended in [9].

Two different FCS procedures are evaluated. Firstly, FCS-BLR is investigated since it is
a quick, commonly used approach that is designed for use with continuous variables, such
as X3. In addition, BLR is the approach applied in [2]. Also, FCS-PMM is investigated since
PMM, unlike BLR, does not involve any underlying normality assumptions. Moreover,
studies have found PMM to enhance the imputation procedure; see [9,14]. In addition to
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FCS, SMCFCS is applied for passive imputation models with BLR because users of MI often
rely on readily available software and SMCFCS PMM does not currently fulfil this criterion.

Four imputation models are investigated, two of them being active and two passive.
The presence of the outcome variables as predictors in the imputation model enables the
values in the outcome variable to influence the imputation of the incomplete variable. This
preserves the relationship between the outcome variables and incomplete variable. Hence,
in all these imputation models, survival time and censoring indicator (called ‘status’ below)
are used as predictors in order to avoid incompatibility issues [15]. Additionally, X3 is not
a predictor of either constituent in the imputation models in order to avoid circularity [16].
The four imputation models are:

1. Active imputation without constituents present as predictors (AWO).

X3 ∼ X1 + X2 + time + status

2. Active imputation with constituents present as predictors (APA).

U1 ∼ U2 + X1 + X2 + time + status

U2 ∼ U1 + X1 + X2 + time + status

X3 ∼ U1 + U2 + X1 + X2 + time + status.

3. Standard Passive Imputation (PNP).

U1 ∼ U2 + X1 + X2 + time + status

U2 ∼ U1 + X1 + X2 + time + status

X3 =
U1

(U2/100)2 .

4. Log-Passive Imputation (LNP). In this imputation model, the constituents are first
log-transformed before imputation takes place; U∗1 = ln(U1), U∗2 = ln(U2):

U∗1 ∼ U∗2 + X1 + X2 + time + status

U∗2 ∼ U∗1 + X1 + X2 + time + status

X3 = exp(U∗1 − 2× (U∗2 − ln(100))).

Z is an additional predictor in the imputation models given when an auxiliary variable
is present.

The substantive model fitted to the imputed data sets is an exponential AFT model:

surv(time, status) ∼ X1 + X2 + X3.

In each replication, the M = 30 estimated coefficients are pooled by Rubin’s Rules,
giving β̂0, β̂1, β̂2, β̂3.

2.3.4. Comparing Imputation Models

To compare the imputation models, the pooled estimated coefficients of X3, Q̄M
defined in (1), can be compared to the value of the true coefficient, Q = β3 = 0.05. Since
there are 1000 replications, the mean of the pooled estimates across all replications, Q̂, can
be calculated. One approach to evaluate the performance of the imputation models is to
estimate the percentage bias (PB),

PB = | Q̂−Q
Q
| × 100. (5)
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Another approach is to estimate the coverage rate (CR). The CR is the proportion of
replications where the true value of Q is in the 95% Wald-type confidence interval. Ideally
the CR should be close to 95%.

To distinguish between imputation models that perform well, the average width of
the confidence intervals is calculated [8]. The mean average width (AW) is then calculated
from all 1000 replications.

Finally, the between-imputation variances and within-imputation variances defined
in (3) and (4), respectively, can be used to help identify underlying problems in the MI
procedure [17]. Two examples of this are Fraction of Missing Information (FMI) and Relative
Increase in Variance (RIV), where

FMI =
V̂B + V̂B

M

V̂T
, (6)

RIV =
FMI

1− FMI
=

V̂B + V̂B
M

V̄W
, (7)

where the total variance, V̂T , has been defined in (2).
From (6), FMI lies between 0 and 1 and indicates the proportion of the total variance

in the estimated coefficients that is attributable to missing values in the associated variable.
A large FMI value indicates that the missing values in the variable are causing a large
proportion of the variability in the estimated coefficients.

Definition (7) shows that a large RIV value indicates that V̂B is large relative to V̄W .
Higher RIV values indicate either poor predictors in the imputation model for the asso-
ciated variable or that a large proportion of the associated variable is missing and thus
imputed [18]. FMI and RIV are calculated for each replication and averaged over the
1000 replications.

3. Results

Table 1 shows the main results of the simulation study when N = 2000 and 15% of
observations are censored. Results from other values of N and proportions of censoring
are given in the supplementary material (N = 500, 1000, 2000; proportions of censoring
10%, 15%, 20%). For each imputation method, each missingness structure with and without
the presence of an auxiliary variable, the PB, CR and AW estimates are given. Table 2
contains the corresponding FIV and RIV results when N = 2000 and 15% of observations
are censored. We first outline the general trends in the results under the missingness and
auxiliary variable conditions and then discuss the overall performance of the imputation
methods. When commenting on individual numbers, these are taken from Tables 1 and 2,
while the overall results on the different imputation methods are supported by Tables S1–S8
in Supplementary Materials.

The effect of sample size, within the range considered, on PB and CR appears to be
negligible. A higher censoring proportion slightly reduces CR and increases AW, with little
effect on PB. The relative performance of the imputation methods compared with each
other is not affected by either N or the proportion of censoring.

3.1. MCAR

MCAR is the simplest of the missingness structures and so serves as a baseline condi-
tion. All imputation methods have biases that are small in magnitude (PB ≤ 3.12 when
there is no auxiliary variable and PB ≤ 2.76 when an auxiliary variable is present). All
CR-values are close to the nominal value of 95 per cent. To put this in context, using the
Wilson score method [19], CR < 93.7 leads to a 95 per cent confidence interval for the true
value of CR that does not contain the nominal value of 95 per cent. So, any such values
supply evidence of underestimation. When an auxiliary variable is present PB is smaller,
CR is higher and AW is lower than when there is no auxiliary variable. The only exceptions
are SMCFCS-LNP in the case of PB and SMCFCS-PNP for CR.
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Table 1. PB, CR, and AW for the estimated coefficients of the composite covariate in a exponential
AFT substantive model when N = 2000 and 15% of observations are censored.

No Auxiliary Variables One Auxiliary Variable

PB CR (%) AW PB CR (%) AW

FCS-BLR

AWO 1.44 95.1 0.0239 0.88 96.2 0.0231
APA 1.28 96.3 0.0230 0.88 96.6 0.0224
PNP 3.12 95.1 0.0228 2.76 95.5 0.0223
LNP 0.26 95.7 0.0231 0.08 96.7 0.0226
AWO 1.92 94.3 0.0238 1.82 95.9 0.0229
APA 1.14 96.0 0.0232 0.58 96.7 0.0222
PNP 0.86 95.6 0.0232 0.24 96.8 0.0221M

C
A

R

FCS-PMM

LNP 0.60 95.8 0.0231 0.16 96.8 0.0224

SMCFCS-BLR PNP 0.06 96.5 0.0228 0.02 96.2 0.0222
LNP 0.54 96.4 0.0230 0.98 96.5 0.0224

AWO 1.66 95.1 0.0231 0.28 95.8 0.0224
APA 0.96 96.2 0.0223 0.20 96.1 0.0219
PNP 1.08 96.7 0.0222 1.84 95.6 0.0217FCS-BLR

LNP 2.56 95.3 0.0224 1.74 96.0 0.0221

M
A

R
1

FCS-PMM

AWO 2.46 95.0 0.0232 1.54 96.2 0.0222
APA 4.80 93.1 0.0226 2.96 95.1 0.0217
PNP 4.46 93.4 0.0226 2.46 95.9 0.0216
LNP 2.90 95.3 0.0225 1.94 96.1 0.0219
PNP 0.12 96.8 0.0221 1.06 96.1 0.0216SMCFCS-BLR LNP 0.58 96.2 0.0223 0.34 96.0 0.0218

FCS-BLR

AWO 4.46 93.3 0.0224 1.32 94.8 0.0219
APA 2.56 95.1 0.0218 0.76 94.8 0.0215
PNP 0.32 95.2 0.0217 1.34 94.5 0.0213
LNP 4.64 92.4 0.0220 2.84 94.6 0.0217
AWO 0.64 76.7 0.0231 3.20 93.7 0.0216
APA 7.12 88.4 0.0223 4.40 93.3 0.0213
PNP 6.88 88.8 0.0222 3.88 92.9 0.0212

M
A

R
2

FCS-PMM

LNP 5.24 91.2 0.0221 3.26 93.8 0.0216
PNP 0.74 94.5 0.0212 2.44 94.2 0.0210SMCFCS-BLR LNP 0.10 95.4 0.0218 0.80 95.1 0.0214

3.2. MAR1

Firstly, comparing the results for the auxiliary variable conditions, PB is lower when
the auxiliary variable is present than when it is absent (with the exception of SMCFCS-
PNP), the CR is higher (with the exception of FCS-BLR-APA and the SMCFCS methods)
and AW is lower. For FCS-PMM-APA and FCS-PMM-PNP with no auxiliary variable the
CR-values are low, but the presence of an auxiliary variable brings these up to a better
level. Comparison of MCAR and MAR1 results shows that PB is higher for MAR1 (except
SMCFCS-LNP) and AW is lower for MAR1. The pattern for CR is less clear.

3.3. MAR2

Leaving aside FCS-PMM-AWO for the moment, PB is lower when the auxiliary vari-
able is present (except for the SMCFCS methods). The main pattern in CR is that methods
that have low CR-values with no auxiliary variable, have higher CR with an auxiliary
variable: FCS-BLR-AWO, FCS-BLR-LNP and all the FCS-PMM methods. FCS-PMM-AWO
has a particularly poor CR for the case of no auxiliary variable and a borderline CR with an
auxiliary variable. Comparison of MCAR and MAR2 results shows the main feature to be
that CR is lower for MAR2 than for MCAR (except FCS-BLR-PNP) and AW is also lower
for MAR2 than MCAR.
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Table 2. Mean FMI and mean RIV values for β̂3 over the 1000 replications for all imputation models.

No Auxiliary Variables One Auxiliary Variable

FMI RIV FMI RIV

AWO 0.304 0.436 0.256 0.344
APA 0.244 0.322 0.209 0.263
PNP 0.259 0.348 0.223 0.286FCS-BLR

LNP 0.224 0.288 0.193 0.238
AWO 0.281 0.390 0.245 0.324
APA 0.229 0.296 0.197 0.244
PNP 0.230 0.297 0.200 0.249M

C
A

R

FCS-PMM

LNP 0.225 0.289 0.195 0.241
PNP 0.242 0.326 0.204 0.260SMCFCS-BLR LNP 0.216 0.280 0.179 0.222

AWO 0.296 0.420 0.250 0.333
APA 0.231 0.300 0.204 0.255
PNP 0.249 0.331 0.218 0.278FCS-BLR

LNP 0.202 0.252 0.175 0.211
AWO 0.247 0.328 0.210 0.264
APA 0.208 0.262 0.179 0.217
PNP 0.207 0.260 0.180 0.218

M
A

R
1

FCS-PMM

LNP 0.199 0.248 0.174 0.210
PNP 0.232 0.309 0.197 0.249SMCFCS-BLR LNP 0.191 0.240 0.158 0.190

AWO 0.286 0.400 0.243 0.320
APA 0.223 0.286 0.196 0.243
PNP 0.240 0.314 0.210 0.265FCS-BLR

LNP 0.185 0.226 0.159 0.188
AWO 0.248 0.344 0.178 0.215
APA 0.188 0.231 0.161 0.191
PNP 0.188 0.230 0.161 0.191

M
A

R
2

FCS-PMM

LNP 0.178 0.215 0.154 0.181
PNP 0.222 0.289 0.189 0.236SMCFCS-BLR LNP 0.169 0.206 0.139 0.163

3.4. Imputation Methods

First consider the FCS-BLR methods. AWO has low CR under MAR2 (no auxiliary
variable) and has uniformly highest AW across all conditions. LNP has a relatively high PB
(4.46) and low CR under MAR2 (no auxiliary variable). APA and PNP have broadly satis-
factory results. The FCS-PMM methods are less satisfactory here. AWO has a particularly
poor CR under MAR2 (no auxiliary variable), APA and PNP have several low CR-values
and high PB-values, while LNP has low CR under MAR2. The SMCFCS methods have
relatively low PB, satisfactory CR and reasonably low AW under all conditions. A review
of the FMI and RIV values in Table 2 shows that of the four methods with the best overall
performance SMCFCS-LNP has the lowest values across the board.

3.5. FCS-PMM

As discussed in Section 3.4, FCS-PMM revealed several weaknesses under the MAR
schemes, with large values of PB compared with FCS-BLR and SMCFCS-BLR and evidence
of, sometimes severe, undercoverage. Investigating this further, we found that a reason
for these issues may be incompatability of the way PMM imputes missing values with
certain MAR mechanisms: Under PMM, the missing values of X3 are imputed to follow
the distribution of the observed X3 values. However, under the MAR schemes used in this
simulation study, the observed X3 values are negatively skewed since smaller X3 values
are more likely to be missing; see Figure 1.
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Figure 1. Kernel density plot of observed X3 values for the different missingness structures, and for
X3 when no missing values are generated.

This in turn affects the relationship between X3 and the outcome variable as shown in
Figure 2. While this relationship is preserved under MCAR missingness, there are clear
differences in the relationship between ‘survival time’ and, respectively, the observed and
the missing values of X3 under MAR2. Imputing the missing values from the distribution
of the observed values may thus result in estimated coefficients further from the true value
of β3 and thus increased PB and undercoverage.

Figure 2. The relationship between X3 and survival time, split by whether X3 is missing or observed.
These plots are displayed for an MCAR missingness structure and an MAR2 missingness structure.
The values plotted are a random sample of three generated data sets of 2000 values each.
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4. Discussion

In this paper we have undertaken a simulation study within a survival analysis context
to investigate various aspects of MI. Whilst the study is modest in scale and in no way
definitive, a number of aspects are worthy of attention.

First, it is rare to know for sure what the missingness mechanism is in a real application
and clearly just because an imputation method performs well under an MCAR structure, it
need not do so under a MAR structure. In practice it may be that a chosen MI approach
with good MCAR properties may perform less well if the missingness (unbeknown to
the analyst) is MAR. So, anything that can help the performance of such an MI method
is to be welcomed. In our study, at least under the MAR1 structure, the presence of an
auxiliary variable can be useful. For example, FCS-PMM-APA with no auxiliary variable
has a low CR but its CR is reasonable in this case when an auxiliary variable is present.
Conversely, in our study if an MI method performs well with no auxiliary variable (for
example, SMCFCS-BLR-LNP under MAR2), it retains a good performance in the presence
of an auxiliary variable. So, the indication is that if an appropriate auxiliary variable is
available, it is worth considering incorporating it into the MI approach.

Secondly, we are interested in this study, in simple terms, about whether active or
passive MI is preferable in a survival analysis context with BMI. In our study active
imputation methods have performed well (FCS-BLR-APA) and poorly (FCS-PMM-AWO).
Likewise passive imputation methods have performed well (FCS-BLR-PNP) and poorly
(FCS-PMM-PNP). So the general question “which is better, active or passive imputation?”
is too simplistic. Rather, it is important also to bring in other factors, such as whether to
use BLR or PMM in further studies or in practice.

Thirdly, the idea of logging a ratio before undertaking imputation seems like an
obvious thing to do. Typically, ratios like BMI are positive and positively skewed. Basic
statistics indicates that taking logs of such variables may make them less skewed. But in our
study pre-imputation logging is not always beneficial; for example, FCS-PMM-LNP did not
perform well with MAR2 and no auxiliary variable. On the other hand, SMCFCS-BLR-LNP
was arguably the best performing approach in our study. So, it is important to bring in
other factors, such as whether to use FCS or SMCFCS in further studies or in practice.

Fourthly, Ref. [3] noted that more investigation of SMCFCS in a censored data context
is needed. We concur with this given the results in the present study where SMCFCS-BLR-
LNP in particular performed well in all scenarios. In addition, for BLR-PNP, SMCFCS
showed improved performance compared with FCS.

The main limitation of our study is the focus on the exponential model as the substan-
tive model, combined with a Type I censoring scheme albeit for different sample sizes and
censoring percentages. While we have found several interesting results for these scenar-
ios with different missingness mechanisms and in the presence/absence of an auxiliary
variable, it would be interesting to see if our conclusions generalise to further widely used
survival models, such as the Weibull model or Cox’s proportional hazards model, with
a variety of commonly encountered censoring schemes. Further avenues of interest that
could be explored in future research include investigating different composite covariates
and different percentages of missingness in the composite covariate and its constituents.
Realistic simulation scenarios could be based on survival studies beyond those on organ
transplantation, to broaden the appeal, and to increase the benefits, to practitioners in the
area of survival studies.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/stats5020020/s1, Tables S1–S3: PB, CR, and AW for the estimated
coefficients of the composite covariate in a exponential AFT substantive model when N = 500 at
10%, 15% and 20% of observations are censored; Tables S4–S6: PB, CR, and AW for the estimated
coefficients of the composite covariate in a exponential AFT substantive model when N = 1000 at
10%, 15% and 20% of observations are censored; Tables S7 and S8: PB, CR, and AW for the estimated
coefficients of the composite covariate in a exponential AFT substantive model when N = 2000 at 10%
and 20% of observations are censored.
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Abbreviations
The following abbreviations are used in this manuscript:

BMI Body Mass Index
MI Multiple Imputation
FCS Fully Conditional Specification
SMCFCS Substantive Model Compatible Fully Conditional Specification
MCAR Missing Completely at Random
MAR Missing at Random
BLR Bayesian Linear Regression
PMM Predictive Mean Matching
MAR1 First MAR structure used in the simulation study
MAR2 Stricter MAR structure used in the simulation study
AWO Active Imputation when the constituents are not predictors
APA Active Imputation when the constituents are predictors
PNP Standard Passive Imputation
LNP Passive Imputation when the constituents are first log-transformed
PB Percentage Bias
CR Coverage Rate
AW Average Width
FMI Fraction of Missing Information
RIV Relative Increase of Variance
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