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Abstract: Given several different populations, the relative proportions of each in the high (or low) end
of the distribution of a given characteristic are often more important than the overall average values or
standard deviations. In the case of two different normally-distributed random variables, as is shown
here, one of the (right) tail ratios will not only eventually be greater than 1 from some point on, but will
even become infinitely large. More generally, in every finite mixture of different normal distributions,
there will always be exactly one of those distributions that is not only overrepresented in the right tail
of the mixture but even completely overwhelms all other subpopulations in the rightmost tails. This
property (and the analogous result for the left tails), although not unique to normal distributions, is
not shared by other common continuous centrally symmetric unimodal distributions, such as Laplace,
nor even by other bell-shaped distributions, such as Cauchy (Lorentz) distributions.
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1. Introduction

In comparisons of the distributional values of a given psychological or physical trait
between two populations (e.g., treated/untreated, male/female, exposed/nonexposed,
elderly/youthful), the relative proportion of each population with values exceeding speci-
fied threshold or cutoff levels is often of more interest than comparisons of average values,
standard deviations, or combinations thereof such as the Cohen d effect-size measure. The
(right) tail ratio of one distribution compared to a second distribution, a measure of the
relative tail proportions, is the ratio of the fraction of the first population above a given
cutoff to the fraction of the second population above that same cutoff.

Tail ratios are a common measure of differences in extremes between populations
in general and are of particular interest in psychological research, as emphasized by [1]
in their review of the background, history, and practical advantages of tail ratios. For
example, ref. [2] reported actual numerical ranges (between two and four) of certain
male/female tail ratios and [3] studied how certain male/female tail ratios have changed
over time. More generally, the issues of over- and underrepresentation of various factions
of populations consisting of two or more subpopulations has become an important subject
of study (see [4–8]).

The values of many biological or psychological traits (e.g., blood pressure, IQ, height)
are often assumed to have normal (Gaussian) distributions (e.g., [9–11]), and the goal
of this note is to record a simple fact about normal distributions that may be useful in
interpreting statistical data concerning both tail ratios and over- and underrepresentation
in mixed populations. In particular, it is shown below that in every population consisting
of a finite number of subpopulations with different distributions of a normally distributed
trait, exactly one of the subpopulations will not only dominate every other one in the
right tail but also will do this in an extreme manner, eventually overwhelming all the
other subpopulations. This property, although not unique to normal distributions, is not

Stats 2022, 5, 977–984. https://doi.org/10.3390/stats5040057 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats5040057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0002-5099-3042
https://doi.org/10.3390/stats5040057
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats5040057?type=check_update&version=1


Stats 2022, 5 978

shared by other common distributions, including ones that are also continuous, centrally
symmetric, and unimodal, nor even by other bell-shaped distributions such as the common
Cauchy (Lorentz) distributions.

2. Tail Ratios and Right-Tail Dominance

Recall that a probability measure P on the real line is uniquely determined by its
complementary cumulative distribution function (ccdf) FP, defined by FP(x) = P((x, ∞)) for
all x ∈ R. (FP is also often called the survival function of P, since FP(c) represents the
P-probability of the set above the cutoff threshold c, i.e., the fraction that survives when all
values less than or equal to c are removed.) With this notation, the formal definition of the
tail ratio of P1 to P2 is as follows.

Definition 1. Given probability distributions P1 and P2, the tail ratio of P1 to P2 is the function
F1(c)/F2(c), where F1 and F2 are the ccdfs for P1 and P2, respectively.

(N.B. By convention, the tail ratio of P1 to P2 is that of the right tail; i.e., the ratio of the
ccdf of P1 to the ccdf of P2, not the ratio of the cdf of P1 to the cdf of P2, which would yield
the left tail ratio.)

A distribution P1 may be said to dominate another distribution P2 in the right tail
if, for all sufficiently large cutoffs c, the tail ratio of P1 to P2 is strictly greater than 1, i.e.,
FP1(c) > FP2(c). A much stronger notion of domination in the right tail is when the
survival probabilities of P1 eventually become arbitrarily larger than those of P2 as the
cutoff increases; this is formalized in the next definition.

Definition 2. A probability distribution P1 strongly dominates distribution P2 in the right tail if
the (right) tail ratio of P1 to P2 becomes infinitely large as the cutoff increases, i.e., if

lim
c→∞

FP1(c)
FP2(c)

= ∞.

We also recall that a continuous (absolutely continuous) probability distribution P is
uniquely determined by its probability density function fP : R → [0, ∞) via P((a, b)) =∫ b

a fP(x)dx; so, in particular, FP(c) =
∫ ∞

c fP(x)dx. The next lemma, which records a simple
relationship between the quotients of probability density functions (pdfs) and the quotients
of the corresponding ccdfs, is used in several examples and proofs below.

Lemma 1. Suppose P1 and P2 are continuous probability distributions with strictly positive
continuous pdfs f1 and f2 and with ccdfs F1 and F2, respectively. If limx→∞ f1(x)/ f2(x) = α,
then limc→∞ F1(c)/F2(c)) = α.

Proof. Let f1 and f2 be strictly positive continuous pdfs with corresponding ccdfs F1 and
F2, respectively. Then, since limx→∞ F1(x) = limx→∞ F2(x) = 0, and f2(x) > 0 for all x,

lim
x→∞

F1(x)
F2(x)

= lim
x→∞

F′1(x)
F′2(x)

= lim
x→∞

f1(x)
f2(x)

= α,

where the first equality follows by the general form of L’Hôpital’s rule, the second since
F′ i(x) = − f i(x), and the third by hypothesis.

The next example illustrates the difference between domination and strong domination.

Example 1. (i) Let P1 and P2 be Cauchy distributions with medians m1 = 0 and m2 = 0.5 and
scale parameters s1 = 1 and s2 = 0.5, i.e., with density functions fPi(x) =(

πsi[1 + ((x−mi)/si)
2]
)−1

, respectively. Then by Lemma 1,
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lim
c→∞

FP1(c)
FP2(c)

= lim
x→∞

fP1(x)
fP2(x)

= lim
x→∞

π(1 + 2x2 − 2x)
π(1 + x2)

= 2,

which implies that, as c→ ∞, the P1-probability of the set of numbers greater than c approaches
exactly twice the P2-probability of numbers greater than c. Thus, although P1 dominates P2 in
the right tail, neither P1 nor P2 strongly dominates the other in the right tail.

(ii) Let P1 and P2 be Laplace distributions with medians m1 = 1 and m2 = 0 and scale pa-
rameters s1 = s2 = 1, i.e., with density functions fPi(x) = (2si exp(−(|x−mi|)/si))

−1,
respectively. Then,

lim
c→∞

FP1(c)
FP2(c)

= lim
c→∞

e1−c

e−c = e;

again, neither P1 nor P2 strongly dominates the other in the right tail.
(iii) Let P1 and P2 be Laplace distributions with medians m1 = m2 = 0 and scale parameters

s1 = 1 and s2 = 0.5, respectively. Then, P1 strongly dominates P2 in the right tail since

lim
c→∞

FP1(c)
FP2(c)

= lim
c→∞

e−c

e−2c = ∞.

(iv) Let P1 and P2 be normal distributions with identical variances +1 and with means 1 and
0, respectively. Then, the density functions fP1(x) = (1/

√
2π)e−(1/2)(x−1)2

and fP2(x) =
(1/
√

2π)e−(1/2)x2
for P1 and P2, respectively, satisfy ( fP1(x))/( fP2(x)) = ex−(1/2) → ∞

as x → ∞; so, by Lemma 1, P1 strongly dominates P2 in the right tail.

3. Tail Ratios in Normal Distributions

When population research studies report only the means and standard deviations
of their results, the default scientific understanding is that the data are approximately
normally distributed. That is, the distributions in question are close to normal (Gaussian)
distributions (see [12] for a comprehensive treatment of this classic distribution.)

For example, if a research study reports that their data have an average value of 2
and a standard deviation of 1, then the usual understanding is that the underlying dataset
looks like the diagram in Figure 1(left) with m = 2 and s = 1, not like the somewhat
similar Cauchy distribution in Figure 1(right). The underlying theoretical basis for the
assumption of normality in most cases is the remarkable Central Limit Theorem, which
says that if the numerical results of independent repetitions of any experiment are added,
the empirical distribution (and consequently the sample average) always approaches a
normal distribution. For instance, in the present context of tail ratios, the survey article
by Voracek, Mohr, and Hagmann states “all tail-ratio calculations discussed here assume
normally distributed variables” ([1], p. 882).

The appropriateness of assuming that given data have a normal distribution is often
tested using the well-known empirical observation called the “68%–95%–99.7% rule” of
normality illustrated in Figure 1(left). The one key property of a continuous centrally
symmetric unimodal distribution that makes it normal is the unique (after rescaling) rate
of decrease in its density function away from its mean. The normal density function,
discovered by Gauss in 1809 in connection with his studies of astronomical observation
errors, decreases from its mean at a rate exactly proportional to e−x2

and not to e−x or x−2,
for example, as is the case for the Laplace and Cauchy distributions, respectively.
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Figure 1. Universal empirical rules for all normal (left) and Cauchy (right) distributions. Here m
represents the median, and s represents the distance (called standard deviation for normal distributions
and scale parameter for Cauchy) from m to the inflection point. Although both families, normal
and Cauchy, have similar bell-shaped density functions, normal distributions satisfy the main strong-
domination and overrepresentation properties presented in this note, but Cauchy distributions do not.

The Cauchy distribution, for instance, which sees widespread application in physics,
also has a continuous centrally symmetric unimodal bell-shaped density similar to the
normal distribution, but the Cauchy distribution has an undefined mean and variance
and satisfies a different empirical rule, namely the 50%–70%–79.5% rule illustrated in
Figure 1(right). Thus, it is very easy in practice to distinguish between these two similar-
looking common bell-shaped distributions.

As is easy to see, the density functions of every two different normal distributions
intersect in either exactly one or in exactly two distinct points. Thus, the density function
of one of those two distributions is strictly larger than that of the other at all points greater
than the larger of the two intersection points (or the unique one, if there is only one).
This, in turn, implies that the proportion of that distribution from that point on is strictly
larger than that of the other distribution from that point on; thus, this distribution will be
overrepresented in the right tail. This is illustrated in the following example.

(N.B. For brevity, the standard notation N(m, σ2) will be used throughout this note to
denote a normal distribution with mean m and standard deviation σ > 0.)

Example 2. (i) Let P1 ∼ N(100, 102) and P2 ∼ N(110, 102). It is clear that the unique crossing
point of the density functions of P1 and P2 is at x = 105, which implies that the proportion of
P2 that is above any cutoff c > 105 is greater than the proportion of P1 above c, i.e., the tail
ratio of P2 to P1 is greater than 1 for all cutoff values c strictly greater than 105. Conversely,
the proportion of P1 below any c < 105 is greater than the proportion of P2 below c.

(ii) Let P1 ∼ N(100, 102) and P2 ∼ N(101, 112). By basic algebra, the two crossing points of the
density functions of P1 and P2 are seen to be at x1

∼= 83.52 and x2 ∼= 106.95, which implies
that the tail ratio of P2 to P1 is greater than 1 for all cutoffs c > x2. Similarly, in this case P2
also dominates P1 in the lower tail in that the proportion of P2 that is below any cutoff c < x1
is also greater than the proportion of P1 below c.

As was seen in Example 1, for two given different Cauchy distributions or two different
Laplace distributions, neither distribution may strongly dominate the other in the right tail.
This is in sharp contrast to the main conclusion in this note, where it will be shown that in
every finite collection of different normal distributions, there is always a unique one of those
distributions that strongly dominates every one of the other distributions in the right tail.
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Theorem 1. Let P1 and P2 be different normal distributions. Then,

(i) either P1 strongly dominates P2 in the right tail or P2 strongly dominates P1 in the right tail;
(ii) if P1 strongly dominates P2 in the right tail, then either P1 has greater mean (average value)

than P2 or P1 has greater variance than P2 or both;
(iii) if P1 has greater variance than P2, then P1 strongly dominates P2 in both right and left tails,

independent of the means.

Proof. Suppose that P1 ∼ N(m, σ2
1 ) and P2 ∼ N(m, σ2

2 ) are normal distributions with pdfs
f1 and f2, respectively. Since P1 and P2 are different, either σ1 6= σ2 or σ1 = σ2 and m1 6= m2.

Case 1. σ1 6= σ2. Without loss of generality, σ1 > σ2 = 1. Then,

f 1(x)
f 2(x)

=

√
2π

σ1
√

2π
exp

(
−(x−m1)

2

2σ1
2 +

(x−m2)
2

2

)
(1)

=
1
σ1

exp
(

x2

2

(
1− 1

σ1
2

)
+ x
(

m1

σ1
2 −m2

)
+

(
m1

2

2
− m1

2

2σ1
2

))
.

Since σ2
1 > 1, (1− (1/σ2

1 )) > 0, then (1) implies that limx→∞( f 1(x)/ f 2(x)) = ∞, and
thus by Lemma 1, P1 strongly dominates P2 in the right tail.

Case 2. σ1
2 = σ2

2 and m1 6= m2. Without loss of generality, σ1 = σ2 = 1. Then,

f 1(x)
f 2(x)

= exp
(
−x2 + 2m1x−m1

2 + x2 − 2m2x + m2
2

2

)
(2)

= exp
(
(m1 −m2)x +

(m2
2 −m1

2)

2

)
.

In addition, without loss of generality, m1 > m2, in which case (2) implies, via Lemma 1
as in Case 1, that P1 strongly dominates P2 in the right tail. This concludes the proof of (i);
the proofs of (ii) and (iii) follow similarly.

The same essential argument extends easily to show that among every finite collection
of different normal distributions, strong domination in the right tail by exactly one of those
distributions is inevitable.

Corollary 1. Given a finite number of different normal distributions P1, . . . , Pn, there is a unique
one of these distributions that strongly dominates all the others in the right tail.

Proof. For each i ∈ {1, . . . , n}, let normal distributions Pi have mean mi and standard
deviation σi, respectively. Since the distributions are all different, if mi = mj and σi = σj
then i = j, which implies that there exists a unique i∗ ∈ {1, . . . , n} such that mi∗ = max{mj :
σj = max{σ1, . . . , σn}}. By the arguments for Cases 1 and 2 in Theorem 1, Pi∗ strongly
dominates Pi in the right tail for all i 6= i∗.

As was seen in Theorem 1, if P1 has either greater variance than P2 or the same variance
and higher mean, then P1 will strongly dominate P2 in the right tail. Moreover, for many
practical purposes, “most important, what might appear to be trivial group differences in
both variability and central tendency can cumulate to yield very appreciable differences
between the groups in numbers of extreme scorers” ([10], p. 11). The next example, a slight
modification of the numerical example suggested by Feingold, illustrates this observation
with the two normal distributions in Example 2(ii) that are close in mean value (100 vs. 101)
and in standard deviation (10 vs. 11).

Example 3. Suppose a population X consists of two mutually exclusive subpopulations X1 and
X2, where the values of a given trait are normally distributed with distributions P1 ∼ N(100, 102)
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and P2 ∼ N(101, 112), respectively, as in Example 2(ii). A normal distribution calculator yields
that P(X1 > 130) ∼= 1.3490× 10−3 and P(X2 > 130) ∼= 4.1900× 10−3, which yields the tail
ratio P(X2 > 130)/P(X1 > 130) ∼= 3.106. Thus, even with distributions this close in average
value and standard deviation, if the two subpopulations X1 and X2 are of the same size, then the X2
population will comprise more than 75% of the combined population beginning only three standard
deviations above the mean.

Note that the results in Theorem 1 and Corollary 1 for normal distributions only
depend on first-order asymptotic terms, and the question of which more general classes
of distributions with rapidly decaying tails satisfy the same conclusions is left to the
interested reader.

4. Overrepresentation in the Right Tail

Whether a particular subpopulation is overrepresented or underrepresented among
the other subpopulations with respect to given values for a specific trait depends on the
relative size of that subpopulation with those trait values compared to the size of the whole
population with those trait values. For example, if subpopulation X1 comprises 30% of the
total population, but comprises 40% of the population with trait values above a given cutoff c,
then X1 is overrepresented in the portion of the total population with values greater than c.

The goal of this section is to show that a simple consequence of Corollary 1 is that in
every finite mixture of different normal distributions, exactly one of those distributions will
be strongly overrepresented in the right tail. (Recall that a finite mixture of distributions is a

probability distribution with cdf F satisfying F =
n
∑

i=1
wiFi, where n > 1, F1, . . . , Fn are cdfs,

and w1, . . . , wn are strictly positive weights with
n
∑

i=1
wi = 1. )

Definition 3. Given a finite mixture of distributions F =
n
∑

i=1
wiFi, the distribution Fi∗ is strongly

overrepresented in the right tail of F if, as c→ ∞, the proportion of subpopulation Fi∗ with values
above c approaches 100% of the total population of F with values above c, that is, if

lim
c→∞

wi∗Fi∗(c)
n
∑

i=1
wiFi(c)

= 1.

Theorem 2. In every finite mixture of different normal distributions F =
n
∑

i=1
wiFi, there is a unique

i∗ ∈ {1, . . . , n} such that Fi∗ is strongly overrepresented in the right tail of F.

Proof. For all i ∈ {1, . . . , n}, let Fi denote the ccdf of Pi. By Corollary 1, there exists a
unique i∗ ∈ {1, . . . , n} such that Pi∗ strongly dominates Pi for all i 6= i∗, i ∈ {1, . . . , n}, i.e.,

lim
c→∞

Fi(c)
Fi∗(c)

= 0 for all i 6= i∗, i ∈ {1, . . . , n}. (3)

Since wi > 0 for all i ∈ {1, . . . , n}, (3) implies that

lim
c→∞

wiFi(c)
wi∗Fi∗(c)

= 0 for all i 6= i∗, i ∈ {1, . . . , n},

which implies that

lim
c→∞

wi∗Fi∗(c)
n
∑

i=1
wiFi(c)

= 1,
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so Fi∗ is strongly overrepresented in the right tail of F.

Two concrete examples of normally-distributed traits among human populations are
height and test scores such as those in the College Board Scholastic Aptitude Test (SAT).
There are enormous amounts of data on human height, which are essentially continuous
and are very close to being normally distributed ([11], p. 24). Scores on the SAT, on the other
hand, are originally discrete but the distribution “obtained from a continuized, smoothed
frequency distribution of original SAT scores” is a linear transformation of a normal distri-
bution ([9], p. 59). Thus, since all linear transformations of normal distributions are normal,
for all practical purposes, the resulting smoothed SAT scores have normal distributions.

Example 4. The SAT scores of males and females are usually assumed (or designed) to be approx-
imately normally distributed [9]. Unless the distributions are identical, Theorem 2 implies that
exactly one of those two sexes must be strongly overrepresented in the right tail, and that this
overrepresentation will increase as the score range increases; Figure 2 illustrates this with actual
College Board statistics.

Figure 2. Figure from [13], p. 7, titled “The numbers College Board didn’t publish” showing statistics
for nearly two million students for the 2016 Edition of the Scholastic Aptitude Test, with breakdown
by gender and score ranges. Note that the proportions of males in various score ranges, i.e., the
tail ratios, increase as the score range increases and the left tail ratios also increase as the score range
decreases.(About 10% more females participated than males, which is reflected in the Adjusted
Male/Female Ratios).

5. Discussion

In real life examples, of course, there are no variables that are exactly normally dis-
tributed, since the normal distribution is continuous, and the number of people in various
categories, for example, is necessarily finite. However, if distributions are close to being
normally distributed, the right-tail overrepresentation of a unique subpopulation predicted
by Theorem 2 (and the analogous conclusions for left tails) are perhaps reasonable to expect.
Similarly, in real-life examples, calculations involving tails that are 6 or 7 standard devia-
tions out involve probabilities of less than one in 10 billion and are meaningless among the
current human population of this planet.
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