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Abstract: Cluster randomized experiments and estimator comparisons are well-documented top-
ics. In this paper, using the datasets of the popular vote in the presidential elections of the United
States of America (2012, 2016, 2020), we evaluate the properties (SE, MSE) of three cluster sampling
estimators: Ratio estimator, Horvitz-Thompson estimator and the linear regression estimator.
While both the Ratio and Horvitz-Thompson estimators are widely used in cluster analysis, we
propose a linear regression estimator defined for unequal cluster sizes, which, in many scenarios,
performs better than the other two. The main objective of this paper is twofold. Firstly, to indicate
which estimator is most suited for predicting the outcome of the popular vote in the United States
of America. We do so by applying the single-stage cluster sampling technique to our data. In the
first partition, we use the 50 states plus the District of Columbia as primary sampling units,
whereas in the second one, we use 3112 counties instead. Secondly, based on the results of the
aforementioned procedure, we estimate the number of clusters in a sample for a set standard error
while also considering the diminishing returns from increasing the number of clusters in the sam-
ple. The linear regression estimator is best in the majority of the examined cases. This type of
comparison can also be used for the estimation of any other country’s elections if prior voting re-
sults are available.

Keywords: cluster sampling; ratio estimator; Horvitz-Thompson estimator; linear regression

estimator

1. Introduction

The development and analysis of electoral behavior are closely intertwined with the
study of social sciences and political research. Specifically, the prediction of election re-
sults is a topic that has occupied the focus of much of the international literature. Graefe
(2018) mentioned forecasting methods and practices [1]. The same author, in 2017, ana-
lyzed the US elections of 2016 [2]. Chen et al. presented a Bayesian hierarchical modeling
approach that separates poll bias and variance at the election level. They presented an
empirical study of 9298 pre-election polls across the 367 US Senate elections spanning
1990-2022 [3]. Moreover, Bertholini et al. present models for forecasting Brazilian Presi-
dential Elections in times of political disruption [4]. Furthermore, it was observed that the
addition of recent elections strengthens the relationship between the explanatory varia-
ble and the votes of the incumbent.

The comparison of estimators has a direct connection with the prediction of election
results. Estimators for cluster analysis have existed since the 50s [5,6]. In 2006, Hender-
son, Tamie and Anakotta, and Tamie presented a paper on the estimation of the variance
of the Horvitz-Thompson estimator [7]. The comparison of estimators is a research topic
that has occupied scientists in many sciences, some papers in medicine are [8-10].

Estimator comparison applications for finding election results are in many cases
such as [11-15]. Arceneaux proposed in [13] that when a voter mobilization experiment
is conducted, it is preferable to choose the voting precincts as clusters. This also applies
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for the prediction of the popular vote. In [14], it is mentioned that the voting behavior of
individuals is more correlated within states than across due to their shared history and
economic practices. To a lesser extent, this holds true for the counties, making them an
ideal choice as clusters in Sections 3 and 4. Afterward, Green and Vavreck built upon the
work of Arceneaux by evaluating the properties (point estimates, SEs) of different esti-
mators (OLS, GLS) applied to individual and cluster-level data, using varying sample
sizes and number of clusters [11]. Further complications that arise from cluster sam-
pling, such as cluster-robust standard errors and their significance in political sciences,
are discussed in [1]. On the topic of the prediction of electoral behavior, contemporary
methods suggest that the final estimates should be inferred from the combined study of
forecasts, as proposed in [15].

The main aim of this paper is the estimation of the outcome of the popular vote in
the United States of America using the results of the previous election as a weighting
factor. Beginning with the comparison of three estimators, based on criteria which we
will discuss subsequently, our goal is to use the most suitable one as the basis for the
construction of a linear regression estimator. The three estimators are the
Horvitz-Thompson estimator, the linear estimator for clusters of unequal sizes, and the
Ratio estimator, which will be defined in the next section. While the Ratio and
Horvitz-Thompson estimator are both well suited for cluster analysis, we define (Defi-
nitions 2.4, 2.5) a linear regression estimator for unequal clusters, which, in many sce-
narios, is a better fit than the other two. We note that the linear regression estimator was
utilized in conjunction with simple random sampling to successfully predict the results
of the Greek legislative elections of 1990, using the municipalities as clusters [16], as well
as the US presidential elections [17].

2. Methodology and Definitions

Utilizing the statistical program packages of the R programming language, we col-
lect n independent samples consisting of the elements of the chosen partition using the
single-stage cluster sampling technique without replacement. In the applications that
follow, the value of n is contained in the interval [4 * 103,10%], and the choice of n de-
pends on the computational load that is associated with the number of clusters in the
sample. As the values of those two quantities increase, the required time for computa-
tions increases significantly, especially for n greater than 10,000 and m (clusters in sam-
ple) greater than 40. In the case of the Horvitz-Thompson estimator, the probability of
each cluster is proportional to its size, namely the total amount of valid ballots contained
in each primary sampling unit, whereas simple random sampling is used when applying
the other two estimators over our dataset. The datasets contain the results of the popular
vote of the presidential elections in the years 2012, 2016, and 2020 and are available at
https://github.com/tonmcg/US_County_Level_Election_Results_08-20/releases/tag/v1.0
(accessed on 19 January 2024) and https://www.fec.gov/ (accessed on 12 December 2023)
[18,19].

For a set amount of m clusters, we retain three quantities of interest for each candi-
date. Firstly, we define the parameter p (success rate—reliability) as the percentage of the
confidence intervals produced by the algorithm that contains the expected value of the
analyzed estimator. The confidence intervals are computed for a 95% confidence level. In
order for the estimator to be reliable, the value of parameter p must be close to 95%.
Secondly, we define parameter ¢ (accuracy) in the same way as the first, only that now the
percentage refers to the number of confidence intervals which include the true value of
the outcome. If the estimator is unbiased, the parameters p and ¢ coincide, while the in-
verse is not true in general. Lastly, we compute the root mean squared error (RMSE). The
combination of the quantities above will allow us to successfully assess the precision and
accuracy of the estimators being compared.
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Definition 2.1. The unbiased estimator of population total X for clusters of unequal sizes, Xciu, is
given by the following formula:

m
~ M
X =Xou=— > ti, (1)
i=1
where M is the total number of clusters, m is the number of clusters in the sample, and
t;,i =1,2,..,m, are the values of the random variable in the i-th cluster, namely the
number of ballots associated with each candidate.
For the calculation of its variance and its estimation, the next two equations hold
true:

M- (6 -X)
Var(Xew) = (m f )z (tM = 1) 2)
and
Var (o) = oL )z(t X““) : @)

where f = m/M, X = (X/M) = (T, t;)/M, and Xau = Xcru/M.

Definition 2.2. We define the Ratio estimator Xcir of the population total X as

m m M
)?:XCl,r:N'(Zti/Z.Vi) ) N=Zyi; 4)
i=1 i=1 i=1

where yi is the size of each cluster in the population or the total amount of valid ballots in
cluster i.

The variance of the Ratio estimator is approximately computed through the follow-
ing formula:

M2(1 — — Ry,)?
Var(Xa,) = 2 f)z(t o) )

while its variance is estimated by the equation below:

<D,

V/CTT(Xa,r) — (1 f) Z (t XCl TyL , (6)

_ = 1
where R =Y, t;/¥M, yi, Xy = Xc17/N,and M = N/ (;Z?iﬂ’i)

Definition 2.3. The Horvitz—Thompson estimator for the population total X is defined as fol-
lows:

)?:XHT:Zt_i" )
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where m; =m-y; /Y1, y; = m-p; is the inclusion probability of the i-th cluster in the
sample.
For the variance of the Horvitz-Thompson estimator, the next two formulas were

initially proposed:
M
1-m) (nu T nj)
Var(Xyr) = ) ———=t;> ) 8
= 3 00z 55 =) .

i=1 j#i

2
Var<Xm>—ZZ(”;ﬂ"”)(n—%)-
ity i j

i=1 j>i

The quantities m;;,1 <i,j <M represent the joint inclusion probabilities of our
clusters.

Equation (8) was proposed by Horvitz and Thompson, and (9) was formulated the
following year by Yates, Grundy, and Sen [20,21]. The estimators of the variances (8) and
(9) are cited below:

i = 3 e ST E

i=1 j#i

(mimy =) (65’
Var(XHT)_ZZ T (T[I._;j>' w

i=1 j>i
The computation of the inclusion probabilities ;; is not simple in general, even for
a minor number of clusters. By replacing Equation (12)

-1

M
T = W 1—(1—7r,-)(1—7rj) [Zrtk(l—nk)] , 1<i,j<M, (12)
k=1

in relationships (9) and (11), the following formulas arise for the variance of the estima-
tor Xy and its estimation [22].

m t z
Var(Xym) = mZﬂi(l ) (=) (13)
m o ¢ z
Var (Xur) = m;“ ) (= An) (14)
where
N
1- Ty tk .
Ag = : 1<jk<s<M. (15)

SYa(-m) m’

The estimated values of the Horvitz-Thompson estimator variance presented in
Sections 3 and 4 are based on Equation (14). A comprehensive comparison of estimators
of the variance of Horvitz-Thompson can be found in [20].

As we discussed in our opening remarks, a linear relationship has also been ob-
served between the estimates of the election results in the span of a quadrennium. Before
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proceeding to the definition of the linear regression estimator, in Figures 1 and 2 we
present the scatter plots of the variable t;/m;,1 <i < M, given that m = 30 for two
consecutive presidential elections.

Democratic Party

2020

R? = 0.9541

2016

Figure 1. Democratic Party votes.

Republican Party

2020

R? = 0.9575

2016

Figure 2. Republican Party votes.

Remark 2.1. The value of the determination coefficient R? is 0.9541 and 0.9575 for the Demo-
cratic and Republican candidates, respectively; therefore, the utilization of the next linear model
(Definition 2.4) is expected to contribute to the precision of our estimates. The heteroscedasticity
observed in the residuals in the previous graphs is addressed with the designation of a new slope
Bo for the fitted line, which is derived from using the weighted least squares method (see Remark
2.2).

In Definitions 2.4 and 2.5, we define the linear regression estimator for clusters of
unequal sizes, while linear regression estimators in conjunction with simple random
sampling have been used in [16].

Definition 2.4. The linear regression estimator for cluster sampling designs with probabilities
proportional to cluster size is defined as

Xree(8) = Xur(s) + Bo(s) - (Y =Yyr(s)), seS™ (16)

We symbolize the sampling space for samples of size m as S™, where each of its
elements is represented as s = (x4, X3, X3, ..., Xp,) € S™. Moreover, we have

A_mXi)?Yi?in?z
=3 (2 2) ()2 () @)

i=1

where X = Xy7(s) and ¥ = Yy;(s), s € S™. In addition, we define the following:
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where m; ;{1 < i < M, are the inclusion probabilities of the clusters in the recent and

previous elections, respectively, and f, is the regression coefficient that minimizes the
suggested variance (23) of the linear regression estimator (16). For the estimation of both
the variances of the coefficient f,, the following equations apply [23]:

Var(8) = Var(eim)- [i (y— - z)T (19)

T, m

and
2 m ~. 2171
—~ 5 Zﬁl(éim) yi Y
=—F" ——-— 20
i=
where
x X yi Y .
gi,m=<;i_g)_ﬁo n—i»—a , 1<is<M (21)
and
A_xi)? AYi?1<.<M 7
Eim = T om Bo 7Tl-l m/’ e (22)

are the residuals of the population and their estimated values.

Remark 2.2. Coefficients B, (2.18) and Bo (2.17) minimize the Equations (23) and (24), re-
spectively [5]. In addition, during the experimental process, it was observed that the expected
value of Bo, based on n samples, coincided with (2.18). The coefficient B, (2.18) is retrieved
from the application of weighted least squares method on the population, with the weights being
set equal to the inclusion probabilities t;, 1 < i < M.

Definition 2.5. Function (23) is defined as the variance of the linear regression estimator under
the premise that m; < 1,1 < i < M. We have

1-— 2
Var(Xgec) = mr(n——lf)z Ty (Ei,m) ’ (23)

ieA
where f, is the coefficient that minimizes the weighted sum of the squared residuals in
Equation (23) and

A={i,1<isM|m<1}.
For the estimation of (23), we have
{ :
— 1 .2 Y—-v
Var(Xgge) = —— § (Ei,m) |m(1 -+ ( )A 2
m—24y | .7
i€A m (Yi _ 1T
l =1 n_i' m

where
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A={i1<i<m|m<1}

By adjusting the prerequisites of the linear regression theory, the following rule
should apply to our datasets [5]:

ini [(;_%) g (%_ i Yiﬂi/ﬂﬁ)ﬂ o 5)

A

Furthermore, both the residuals ¢;,, and &;,,, must be uncorrelated, and the vari-
ance of the population must be constant. For the validation of the two latter prerequi-
sites, we have used the Breusch-Godfrey (autocorrelation) and Breusch-Pagan (homo-
scedasticity) tests. Indicatively, we report that for m = 30 the results of both tests have
shown that 95% of the samples provided by the algorithm satisfied the null hypotheses
of the aforementioned tests.

Remark 2.3. For large values of m (m = 30), the second term between the brackets of Equations
(23) and (24), although negligible, contributes to lowering the number of clusters required to
achieve percentage of p = 95% and, consequently, also increases the accuracy c. The level of bias
varies in relation to the variable we are examining (votes of each candidate) and the period in
question.

Remark 2.4. The terms in the sums of (23) and (24) with inclusion probabilities m; = 1 do not
contribute to the variance; therefore, they are dismissed. A basic prerequisite for this sampling de-
sign to be effective is not to have multiple clusters in the population with that property. Note that
m;=mp;,1<i<M.

Definition 2.6. Let 8 be the estimator of parameter 0. The root of the mean squared error
(RMSE) is defined as

RMSE(8) = \/E [(6-8)"]. (26)

3. Preliminary Estimator Comparison

Initially, we opt to compare estimators X, and Xc,, since both are formulated
based on simple random sampling. In Table 1, we present the values p and ¢, which are
defined as the average of percentages p and c for both candidates. Likewise, with the
notation RMSE, we symbolize the average of their corresponding root of mean squared
errors. The quantities mentioned were computed for up to n = 10,000 samples for both
partitions.

Table 1. Estimator comparison X¢, — Xc(Ratio).

Partition Estimator 7] [4 RMSE Clusters (m) Populatj/oon Total
States Xciu - 0.880 3.627 x 107 5 9.87
Ratio 0.875 0.853 6.109 x 10° 5 9.87
Xcru - 0.881 2.978 x 107 7 13.69
Ratio 0.868 0.842 5.284 x 10° 7 13.69
Xcru - 0.884 2.421 x 107 10 19.67
Ratio 0.864 0.849 4.510 x 10° 10 19.67
Counties Xcru - 0.808 3.614 x 107 40 1.28
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Ratio 0.801 0.769 8.547 = 10° 40 1.28
Xciu - 0.880 1.913 x 107 150 4.85
Ratio 0.882 0.865 5.183 x 10° 150 4.85
Xcru - 0.910 1.143 x 107 380 12.24
Ratio 0.909 0.901 3.454 x 10° 380 12.24

Remark 3.1. (a) A major drawback of the variance of the first estimator and its estimation is their
sensitivity to the variability of the random variable’s values. Using simple random sampling will
make this problem more prominent, resulting in samples that commonly contain clusters with
significant differences in their values. This has a negative effect on the accuracy of the predictions,
causing great discrepancies in the width of the produced confidence intervals in consecutive in-
dependent samplings. On the other hand, selecting samples of elements of similar sizes, despite
being helpful in reducing the variance, will not improve the precision of the point estimates,
therefore decreasing the accuracy of our predictions.

(b) The magnitude of the Ratio estimator’s variance estimation is strongly benefitted by the
existence of a linear relationship between the sizes of each cluster and each candidate’s votes. A
similar linear relationship is also present between the total number of valid ballots for each can-
didate in the span of a quadrennium. Such a relationship will be the focus in Section 4, where we
will discuss the viability of the proposed linear regression estimator (2.4).

(c) The two main factors that impact the usability of the Ratio estimator are that firstly is
biased, and secondly, if we must calculate a prediction for the total candidate’s ballots, a prior es-
timation of the total valid ballots (N) is needed.

Based on the previous remarks, we can deduce that the Ratio estimator, even though
it is biased, is superior to the linear estimator (2.1) due to the significant difference per-
ceived among their estimated mean squared error levels.

The next comparison will be conducted between the Ratio and Horvitz-Thompson
estimators. Following the same procedure as before, we detail the results of this com-
parison in Table 2.

Table 2. Estimator comparison, Xyt — X¢;(Ratio).

Partition Estimator P [+ RMSE Clusters (m) Populatoi/:)n Total
States Xyr - 0.952 5.741 x 106 5 20.69
Ratio 0.875 0.853 6.109 x 10° 5 9.87
Xyr - 0.953 4.548 x 106 7 29.07
Ratio 0.868 0.842 5.284 x 10 7 13.69
Xyr - 0.944 3.424 x 106 10 40.55
Ratio 0.864 0.849 4,510 x 10° 10 19.67
Xyr ; 0.942 2.499 x 106 15 55.95
Ratio 0.874 0.860 3.713 x 10° 15 29.41
Counties Xuyr - 0.949 6.669 x 10° 15 4.65
Ratio 0.682 0.637 1.166 x 107 15 0.49
Xyr ] 0.957 3.908 x 106 40 12.32
Ratio 0.801 0.769 8.547 x 10° 40 1.28
Xur - 0.959 1.688 x 10° 150 35.29
Ratio 0.882 0.865 5.183 x 10° 150 4.85
Xyr ] 0.959 6.795 x 107 380 61.40

Ratio 0.909 0.901 3.454 x 10° 380 12.24
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Remark 3.2. (1) As mentioned at the beginning of this section, the Ratio estimator is formulated
with simple random sampling in mind, whereas the Horvitz—Thompson estimator is typically used
in conjunction with sampling designs in which the probabilities are proportional to the sampling
unit’s size (pps). If all clusters share the same probability, the latter estimator coincides with the
linear estimator of definition 2.1, but its accuracy is vastly improved when the probabilities as-
signed to the clusters are proportional to their size in the overall population. The application of such
a sampling design will result in larger clusters appearing more frequently in our samples.

(b) Taking this statement into consideration, we can deduce that for a set amount of m clusters
in the sample, there will be a discrepancy between the amount of population that these samples
represent. Based on this remark, to accurately compare the two estimators, we must make sure that
the samples used in each method correspond to similar percentages of the population.

(c) The low percentages, p and c, of the Ratio estimator in comparison to the Xur estimator in
both partitions, despite its overall lower mean squared errot, lead us to select the latter as the more
reliable estimator among the two.

It is evident that selecting the partition of counties provides us with more accurate
predictions, i.e., a consistently high value for both percentages and a lower mean squared
error, especially for a sufficient number of clusters (m = 40). As a final note for this
comparison, it must be stated that for both estimators, prior knowledge of the total valid
ballots in each cluster, or an estimation of it, is mandatory for the calculation of the pop-
ulation total and the inclusion probabilities.

4. Linear Regression Estimator

This section’s goal is to observe the impact of the use of the previously recorded
election results on the accuracy of our predictions. To that end, we will be analyzing and
evaluating the linear regression estimator that was defined in definitions 2.4 and 2.5 on
both the partitions of states and counties. To emphasize the utility of our proposed esti-
mator and its estimated variance, we will be applying it to data sets pertaining to three
consecutive presidential elections. Moreover, a linear regression estimator is available in
the bibliography [5,6,21].

Ours is constructed using the Horvitz-Thompson estimator, and therefore, it is
meant to be used in conjunction with a pps sampling design.

As a first step, in Table 3 we will be comparing our proposed estimator to the
Horvitz-Thompson estimator on the two partitions that were previously defined for
varying sample sizes.

Table 3. Estimator comparison, Xy — Xgrgg-

Partition Estimator p c RMSE Clusters (m) Pop.o/':"otal
States Xur - 0.952 5.741 x 10° 5 20.69
Xpeo 0.937 0.937 1.433 x 106 5 20.69
Xyr ; 0.958 5.045 x 10 6 24.74
Xnpe 0.953 0.949 1.233 x 106 6 24.74
Xyr - 0.953 4.548 x 106 7 29.07
Xnpe 0.958 0.952 1.097 x 106 7 29.07
Counties Xyr - 0.949 6.669 x 10° 15 4.65
XrEG 0.942 0.933 1.461 = 10° 15 4.65
Xur - 0.954 5.079 x 106 25 7.79
Xpec 0.950 0.901 1.246 x 106 25 7.79
Xyr ; 0.954 4,585 x 10° 30 9.43
Xpgc 0.953 0.875 1.190 x 106 30 9.43
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Xur - 0.951 4.221 x 106 35 10.94
XrEeG 0.954 0.855 1.162 x 10° 35 10.94
Xur - 0.957 3.908 x 10° 40 12.35
XRrEeG 0.961 0.871 1.065 x 10° 40 12.35

Examining Table 3, we observe that the mean squared error of the regression esti-
mator is significantly lower compared to Horvitz-Thompson’s estimator, while the for-
mer still manages to retain a high value for the parameter p. The downside of the in-
creased precision in this case is the lapse of accuracy in the model, mainly because esti-
mator (2.4) is biased. In particular, the accumulation of the point estimates about the es-
timator’s expected value and the decrease in the width of the associated confidence in-
tervals.

In Table 4, we present the results from the comparison of estimators Xpg; and Xyr
in three consecutive presidential elections. We will examine the prerequisites needed to
accurately predict the outcome of the popular vote of 2016 using the linear regression es-
timator in conjunction with the data from 2012. Then, we will repeat the same procedure
for the data sets from 2020 and 2016. Through evaluating the following tables, we will
gain valuable information about the number of clusters needed for a set mean squared
error.

Table 4. Estimate comparison, Xggg, 2016-2020.
Partition Estimator 7] [ RMSE Clusters(m) Pop. Total %
States Xrec(2012 —2016)  0.947 0.945 2.261 x 10° 5 19.84
Xrec(2016 — 2020) 0937 0.937 1.433 x 10° 5 20.69
Xrec(2012 —2016)  0.945 0.940 1.779 x 10° 6 23.98
Xrec(2016 —2020)  0.953 0.949 1.233 x 10° 6 24.74
Xrec (2012 —2016)  0.952 0.950 1.601 x 10° 7 28.05
Xrec (2016 — 2020)  0.958 0.952 1.097 x 10° 7 29.07
Counties  Xpgs(2012 —2016)  0.942 0.941 1.699 x 10° 15 3.85
Xrec(2016 —2020) 0942 0.933 1.461 x 10° 15 4.65
Xrec(2012 —2016)  0.951 0.945 1.329 x 10° 25 6.40
Xrec(2016 —2020)  0.950 0.901 1.246 x 10° 25 7.79
Xrec(2012 —2016)  0.953 0.944 1.208 x 10° 30 7.71
Xrec(2016 —2020)  0.953 0.875 1.190 x 10° 30 9.43
Xrec (2012 —2016)  0.955 0.950 1.053 x 10° 40 10.28
Xrec(2016 — 2020)  0.961 0.871 1.065 x 10° 40 12.35

In Table 5, we define m’ as the number of clusters needed, such that the estimated
variance will be lower than a given bound with a probability of 0.95.

Table 5. The 95th percentile for estimated variance.

Candidate 0 (I;;;C()‘;“tﬂe m(2020) oW (l;gr]‘;“tﬂe m(2016)
DEM 1.218 x 106 27 1.184 x 106 39
GOP 1.219 x 106 31 1.144 x 106 63
DEM 2.119 x 106 13 2.087 x 106 16

Gor 2.030 x 10° 15 1.952 = 10° 29
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The inclusion of the estimated variance ranges enables us to convey some useful in-
sights about the linear regression estimator’s accuracy. In Table 5, it is evident, regarding
the presidential elections of 2020, that in order to achieve an estimated variance of
1.2x10° or less, we need about 30 clusters in our sample while achieving the same
amount of precision for 2016 would significantly increase the total amount of clusters
needed. The average mean squared error between both parties in the elections of 2016
and 2020 for the same number of clusters (30) was also relatively stable at about 1.2x 10,
as seen in Table 4. This implies that the level of bias of the linear regression estimator can
vary a lot, a fact that can be attributed to the difference in the inclusion probabilities m;
and ;. In the following graphs, we present the percentages of p and c (black and
white dots, respectively) as functions of m for both candidates. The results which corre-
spond to the Democratic Party for the elections in 2020 and 2016 are presented in Figures
3and 4.
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Figure 3. 2020.
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Figure 4. 2016.

The respective results for the Republican Party are shown in Figures 5 and 6.
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Figure 5. 2020.
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As was stated above, the increase in bias observed in the estimations for the quad-
rennium of 20162020 compared to the one preceding it can be attributed to the differ-
ence in values of the inclusion probabilities m; and ;. Setting these values as equal in
the program diminishes the effects of bias, but it also drastically increases the mean
squared error. We emphasize that any major difference between the parameters p and c
implies the presence of bias in the model.

In this study, we rely solely on the size of clusters to forecast the outcome of the
popular vote. It is highly recommended that the estimates provided by the linear regres-
sion model are used as a reference point to be studied in parallel with other prediction
models rather than being exclusively relied upon [1]. In particular, the estimations pro-
vided by the linear model, due to their innate precision, can be combined with the
aforementioned models to increase the efficacy of the prediction of the directional error
of a poll.

To conclude this section, in Tables 6 and 7, we present the point estimates and esti-
mated standard deviation of estimators (2.2), (2.3), and (2.4), along with the results of the
popular vote regarding the presidential elections of 2016 and 2020. The samples for each
estimator were selected in order to stand for the minimum amount of population need-

ed.

Table 6. Predictions for the popular vote 2020.

DEM D.E M Gop G.OP. Population % — Cluste
Estimator Percent Deviation Percent Deviation
% % % % "
XrEG 51.05 0.73 46.62 0.63 0.9%-15
Xyr 51.73 2.44 46.36 2.48 3.83%-25
Xeir 52.28 2.31 4591 2.28 6.47%—-250
Results 2020 DEM 51.32 GOP 46.83

Table 7. Predictions for the popular vote 2016.

DEM DEM GOP GOP P lation % —
Estimator Percent Deviation Percent Deviation opuation Yo
o o o o Clusters
Yo Yo Yo Yo
XrEG 48.03 0.97 47.14 1.09 3.51%-15
Xyr 48.06 2.73 46.83 2.85 4.27%-25
Xcir 48.89 2.68 46.54 2.65 5.78%—-250

Results 2016 DEM 47.83 GOP 47.30
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5. Conclusions and Remarks

Considering the data provided in Sections 3 and 4, we conclude that using the linear
regression estimator in the prediction of the popular vote significantly reduces the level
of the mean squared error while also maintaining high precision and a sufficient level of
accuracy in comparison to the other estimators presented in Section 2 for all sample sizes
that were tested. In addition to the goal of accurately predicting the outcome of the elec-
tion, we can evaluate the efficiency and performance of each estimator on a population
scale. In the case of the linear regression estimator, it is imperative that a linear relation-
ship exists between the independent and the response variable in addition to the factors
that were described in Section 2, i.e., the constant variance of the residuals and the ab-
sence of autocorrelation among them. The disadvantages of the estimator (2.4) can be
summarized in two points. Primarily, the linear regression estimator is known to be bi-
ased, and as we observed that the level of bias is not consistent even in consecutive elec-
tions [5]. Even though this hinders the accuracy of the predictions, it is not as detrimental,
as we can deduce by inspecting Table 4. Secondly, to use estimator (2.4), an estimation of
the clusters’ size is needed, which can be acquired by knowing the total valid ballots in
each cluster at the time of the prediction.

During the conduct of comparisons in Sections 3 and 4 it was ascertained that uti-
lizing the partition of the counties leads to more accurate predictions. In the case of es-
timator (2.4), by inspecting the data provided by Table 5, we can discern that 95% of the
total estimations of its variance will not exceed 1.2 million when m" belongs in the in-
terval [27,39] for the prediction of the total votes of the Democratic Party and in the in-
terval [31,63] for the Republican Party. It is possible to infer the outcome of the election
using smaller samples, as evident in Tables 6 and 7, but doing so will increase the mean
squared error. Specifically, for m" € [13,16] and m € [15,29] of the former and latter
parties, respectively, the estimated variance will not exceed 2.1 million in 95% of the
samples. Furthermore, if we require the mean squared error to not surpass 1.2 million, we
will need a sample consisting of at least 30 clusters regardless of the period we are dis-
cussing (2016 or 2020). The high range of the values contained in the intervals above en-
sures that any predictions made using the model suggested will not have their accuracy
severely impacted by popular vote inversions such as the one observed in the presiden-
tial election of 2016. The restrictions we set for the estimated variance correspond to a
coefficient of variation (cv) less than or equal to 0.01 and 0.025 for the elections of 2020
and 2016. The slight lapse in accuracy that is noticed in the election of 2020 of the esti-
mator (2.4) can be easily counteracted by setting the confidence level to 99% without in-
curring a major increase in the width of the produced confidence intervals. Finally, we
recommend the partition of the counties as the default partition due to the lower mean
squared error, the higher accuracy (c) of the estimations that are derived from it, and the
lower required percentage of the population.
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