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Abstract: Phytophthora capsici incites foliar blight, root, fruit, and crown rot in squash (Cucurbita spp.)
and limits production worldwide. Resistance to crown rot in C. moschata breeding line #394-1-27-12 is
conferred by three dominant genes, but the molecular mechanisms underlying this resistance are
poorly understood. In the current study, RNA sequencing was used to investigate transcriptional
changes in #394-1-27-12 (resistant) and Butterbush (susceptible) following infection by P. capsici
at 12, 24, 48, 72, and 120 h post inoculation (hpi). Overall, the number of differentially expressed
genes (DEGs) in Butterbush (2648) exceeded those in #394-1-27-12 (1729), but in both genotypes,
the highest number of DEGs was observed at 72 hpi and least at 24 hpi. Our gene ontology (GO)
analysis revealed a downregulation of the genes involved in polysaccharide and lignin metabolism in
Butterbush but as an upregulation of those associated with regulation of peptidase activity. However,
in #394-1-27-12, the downregulated genes were primarily associated with response to stimuli, whereas
those upregulated were involved in oxidation–reduction and response to stress. The upregulated
genes in #394-1-27-12 included defensin-like proteins, respiratory-burst oxidases, ethylene-responsive
transcription factors, cytochrome P450 proteins, and peroxidases. These findings provide a frame-
work for the functional validation of the molecular mechanisms underlying resistance to P. capsici
in cucurbits.

Keywords: Cucurbita moschata; crown rot; RNA-seq; co-expression analysis; differentially expressed
genes

1. Introduction

Phytophthora capsici Leonian is a hemibiotrophic soilborne pathogen that causes foliar
blight, root, fruit, and crown rot syndromes in squash (Cucurbita spp.) and other vegetable
crops [1,2]. The effective management of P. capsici in commercial vegetable production using
chemical pesticides is often hindered by the evolution of pathogen populations insensitive
to approved fungicides [3]. Cultural management practices such as crop rotation and
the use of raised beds can help reduce pathogen inoculum density and dispersal but are
often less effective under high disease pressure [4,5]. Host resistance is the best strategy
for managing Phytophthora in squash; however, complete resistance is not available in
commercial C. pepo cultivars, although partial resistance has been described in Zucchini
(cv ‘Spineless Perfection’ and ‘Dark Green’) and Marrow (cv ‘Magda’ and ‘Hurikan’)
cultivars [6].

Several disease screening efforts have identified sources of resistance in C. lundeliana [7,8],
C. moschata [9,10], and C. pepo [11]. In both C. moschata (breeding line #394-1-27-12 carrying
resistance from C. lundeliana) and C. pepo (breeding line #181761-36P), resistance to Phytoph-
thora crown rot is conferred by three independent dominant genes [8,12]. Furthermore, the
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quantitative trait loci (QTLs) associated with resistance to Phytophthora crown rot have recently
been reported in C. moschata [13] and C. pepo [14,15], paving the way for the application
of marker-assisted selection in germplasm improvement. However, despite these advance-
ments, the molecular mechanisms underlying resistance to Phytophthora crown rot are still
poorly understood.

To effectively infect and colonize plants, P. capsici deploys a multitude of effectors to
suppress host defense mechanisms. Therefore, the first plant response against P. capsici
involves the activation of basal resistance in the form of pathogen-triggered immunity
(PTI) following the detection of pathogen-associated molecular patterns (PAMPs) [16].
This is often followed by effector-triggered immunity (ETI) against pathogen effectors or
virulence factors coinciding with signaling pathways mediated by salicylic acid, jasmonates,
or ethylene [17,18]. During host infection, P. capsici releases a repertoire of effectors to
support biotrophic and necrotrophic growth by suppressing host plant defenses [19–21].
These include apoplastic effectors such as necrosis-inducing proteins (NLPs) and elicitins,
as well as cytoplasmic effectors containing either N-terminal Arg-Xaa-Leu-Arg (RxLR)
or Crinkler (CRN) translocation motifs [22,23]. It is hypothesized that the Phytophthora
crown rot resistance genes in squash interact with these effectors or participate in defense
signaling pathways against P. capsici infection. In resistant squash genotypes, a form of
hypersensitive response often characterized by scarred tissue at the crown restricts lesion
development [8,13], and the occlusion of vascular vessels does not occur [6]. On the
other hand, the rapid dissolution of epidermal and cortex tissues is evident in susceptible
genotypes, with dense mycelia and occlusion material obstructing the vascular bundles [6].
Age-related resistance to Phytophthora fruit rot in winter squash results from the fortification
of the cuticle and epidermal tissues in older fruits (≥14 days post pollination). However, in
young fruits (7 days post pollination), these physical barriers are easily overcome, resulting
in disease development [24].

Transcriptome-based gene expression analysis through RNA sequencing offers a rapid
and efficient platform to discover, characterize, and annotate the key candidate genes and
pathways underlying biological traits in plants [25]. RNA sequencing analysis in squash
has been extensively used to uncover molecular mechanisms underlying responses to
biotic stress traits such as powdery mildew [26], potyviruses [27], aphid feeding [28], cold
tolerance [29], salinity tolerance [30], and morphology and development traits [31–35].

To further understand the molecular mechanisms underlying Phytophthora crown rot
resistance in squash, the current study deployed RNA sequencing to identify differential
gene expression patterns between resistant (394-1-27-12) and susceptible (Butterbush)
C. moschata genotypes.

2. Results
2.1. Phenotypic Response of Resistant and Susceptible Genotypes

Throughout the experiment, the resistant genotype (394-1-27-12) remained asymp-
tomatic (Figure 1A). In contrast, susceptible Butterbush seedlings exhibited expanding
water-soaked lesions that were followed by visible constriction at the crown at 120 h post
inoculation (hpi) (Figure 1B). Consequently, the Butterbush seedlings were severely wilted
and did not survive past 168 hpi.
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Figure 1. Asymptomatic plants of the resistant Cucurbita moschata breeding line 394-1-27-12 (A) and 
disease progression in the susceptible BuĴerbush (B) cultivars at 0, 12, 24, 72, and 120 h post inocu-
lation (hpi). 

2.2. RNA Sequencing and Differential Gene Expression 
RNA library sequencing yielded a total of 1269.91 million reads, of which 1258.69 

million remained after quality filtering, with an average of 41.96 million reads per sample. 
Approximately 93% of the reads mapped to the C. moschata reference genome, with at 
least 90% mapping uniquely (Supplementary Table S1). A differential expression analysis 
across the aforementioned time points was performed using the expression profiles of the 
non-inoculated plants as the baseline. Genes with a log2fold change greater than three 
were considered differentially expressed and visualized using volcano plots (Supplemen-
tary Figure S1). A total of 1729 (1116 upregulated and 613 downregulated) and 2648 (1666 
upregulated and 982 downregulated) genes were differentially expressed in 394-1-27-12 
and BuĴerbush, respectively (Supplementary Table S2). The highest differential gene ex-
pression in 394-1-27-12 was observed at 72 hpi (714 DEGs), followed by 120 hpi (498 
DEGs), 12 hpi (487 DEGs), and least at 24 hpi (30 DEGs) (Figure 2A). A similar paĴern was 
observed for BuĴerbush, for which the highest differential gene expression was observed 
at 72 hpi (1546 DEGs), followed by 120 hpi (654 DEGs), 12 hpi (381 DEGs), and least at 24 
hpi (67 DEGs) (Figure 2B). 
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Figure 1. Asymptomatic plants of the resistant Cucurbita moschata breeding line 394-1-27-12 (A) and
disease progression in the susceptible Butterbush (B) cultivars at 0, 12, 24, 72, and 120 h post
inoculation (hpi).

2.2. RNA Sequencing and Differential Gene Expression

RNA library sequencing yielded a total of 1269.91 million reads, of which 1258.69 million
remained after quality filtering, with an average of 41.96 million reads per sample. Approx-
imately 93% of the reads mapped to the C. moschata reference genome, with at least 90%
mapping uniquely (Supplementary Table S1). A differential expression analysis across the
aforementioned time points was performed using the expression profiles of the non-inoculated
plants as the baseline. Genes with a log2fold change greater than three were considered
differentially expressed and visualized using volcano plots (Supplementary Figure S1). A
total of 1729 (1116 upregulated and 613 downregulated) and 2648 (1666 upregulated and
982 downregulated) genes were differentially expressed in 394-1-27-12 and Butterbush, re-
spectively (Supplementary Table S2). The highest differential gene expression in 394-1-27-12
was observed at 72 hpi (714 DEGs), followed by 120 hpi (498 DEGs), 12 hpi (487 DEGs), and
least at 24 hpi (30 DEGs) (Figure 2A). A similar pattern was observed for Butterbush, for
which the highest differential gene expression was observed at 72 hpi (1546 DEGs), followed
by 120 hpi (654 DEGs), 12 hpi (381 DEGs), and least at 24 hpi (67 DEGs) (Figure 2B).

The top 25 upregulated and downregulated differentially expressed genes (DEGs) in
394-1-27-12 and Butterbush were visualized using heat plots across time points
(Supplementary Figures S2 and S3). All four time points were measured against 0 hpi,
which was used as the baseline treatment. The degree of co-expression for both the upregu-
lated and downregulated DEGs was visualized using Venn diagrams and was highest at 72
and 120 hpi in 394-1-27-12 and Butterbush (Figure 3). In 394-1-27-12, 231 upregulated and
48 downregulated genes were co-expressed at 72 and 120 hpi, respectively (Figure 3A,B).
Butterbush, on the other hand, had a total of 348 upregulated and 86 downregulated genes
co-expressed at 72 and 120 hpi, respectively (Figure 3C,D). A total of 8.2% of the total
detected genes were differentially expressed in Butterbush, of which 4.8% belonged to
genes expressed at 72 hpi and 2% belonged to genes expressed at 120 hpi, when compared
to 0 hpi. In 394-1-27-12, 5.4% of the total detected genes were differentially expressed, of
which 2.2% were expressed at 72 hpi and 1.5% at 120 hpi, respectively.
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Figure 2. Differentially expressed genes (DEGs) upregulated (blue bar) or downregulated (orange 
bar) at 12, 24, 72, and 120 h post inoculation in (A) 394-1-27-12 and (B) BuĴerbush genotypes of 
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and BuĴerbush (C,D). 
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Figure 3. Venn diagrams showing the co-expression of differentially expressed genes (DEGs) across
12 (purple), 24 (yellow), 72 (green), and 120 (pink) hours post inoculation (hpi) in 394-1-27-12
(A,B) and Butterbush (C,D).

2.3. Gene Ontology Pathway Enrichment Analysis

Gene ontology (GO) pathway enrichment analysis was performed to understand the
transcriptional and co-functional network of the DEGs among resistant and susceptible
genotypes (Supplementary Table S3). Twenty-one and eight GO terms were enriched for
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downregulated genes in 394-1-27-12 (Figure 4) and Butterbush (Figure 5), respectively.
In 394-1-27-12, significant GO enrichment for downregulated genes was associated with
response to stimuli. However, in Butterbush, significant GO enrichment for downregulated
genes was linked to polysaccharide and lignin metabolism.
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Figure 4. Gene ontology enrichment analysis for the downregulated genes in the 394-1-27-12 (resis-
tant) Cucurbita moschata genotype.
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Figure 5. Gene ontology enrichment analysis for the downregulated genes in the Butterbush (suscep-
tible) Cucurbita moschata genotype.

For the upregulated genes, 16 and 44 GO terms were enriched in 394-1-27-12 (Figure 6)
and Butterbush (Figure 7), respectively. Significant GO enrichment for upregulated genes
in 394-1-27-12 was primarily associated with oxidation–reduction and response to stress
processes. On the other hand, GO enrichment for upregulated genes in Butterbush was
primarily associated with the negative regulation of peptidase activity.
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Figure 6. Gene ontology enrichment analysis for the upregulated genes in the 394-1-27-12 (resistant)
Cucurbita moschata genotype.
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Figure 7. Gene ontology enrichment analysis for the upregulated genes in the Butterbush (susceptible)
Cucurbita moschata genotype.

Our pathway enrichment analysis for the DEGs (performed using the ‘pathway en-
richment’ tool of the Cucurbit genome database) showed multiple enriched pathways
for 394-1-27-12 and Butterbush (Table 1). Pathways enriched with (i) Baicalein degra-
dation (hydrogen peroxide detoxification), (ii) Luteolin triglucuronide degradation, and
(iii) L-glutamate degradation IX (via 4-aminobutanoate) were associated with the upregu-
lated genes in 394-1-27-12. On the other hand, the enriched pathways associated with the
downregulated DEGs in 394-1-27-12 were involved in hydroxylated fatty acid biosynthesis.
Similarly, in Butterbush, the pathway enrichment was primarily for (i) Baicalein degra-
dation (hydrogen peroxide detoxification), (ii) Luteolin triglucuronide degradation, and
(iii) Phenylpropanoid biosynthesis for the upregulated genes. However, no pathways were
significantly enriched for the downregulated genes in Butterbush.
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Table 1. Pathway enrichment analysis for the upregulated and downregulated DEGs.

Pathway ID Enriched Pathway p-Value Number of Genes

Upregulated DEGs
394-1-27-12
PWY-7214 Baicalein degradation 0.000583 6
PWY-7445 Luteolin triglucuronide degradation 0.000583 6
PWY0-1305 L-glutamate degradation IX 0.0028 2
Butterbush
PWY-7214 Baicalein degradation 0.000000303 15
PWY-7445 Luteolin triglucuronide degradation 0.000000303 15
PWY-361 Phenylpropanoid biosynthesis 0.0448 7

Downregulated DEGs
394-1-27-12
PWY-6433 Hydroxylated fatty acid biosynthesis 0.000291 4

2.4. Candidate Resistant Genes in 394-1-27-12

Our co-expression analysis between 394-1-27-12 (Resistant) and Butterbush (Suscepti-
ble) revealed shared DEGs following P. capsici infection. At 12, 24, 72, and 120 hpi, there
were 0, 1, 388, and 163 common DEGs between the two genotypes, respectively (Figure 8).
Further analysis of the DEGs at 72 and 120 hpi revealed that 31 stress response genes and
26 oxidation–reduction genes were co-expressed in 394-1-27-12 (Figure 9).

The stress response genes included expansin-like A3 (CmoCh19G007900) protein,
thaumatin-like protein (CmoCh19G002930), heat stress transcription factor (CmoCh07G002
420), Wound-induced protein WIN1 (CmoCh05G012280), Protein PLANT CADMIUM RE-
SISTANCE 8 (CmoCh17G007590), Myb transcription factor (CmoCh08G010590), defensin-
like protein 1 (CmoCh15G009030), respiratory-burst oxidase (CmoCh11G011760), Wound-
induced protein (CmoCh05G012270), ethylene-responsive transcription factor 1B (CmoCh14G
018460), and defensin-like protein 6 (CmoCh04G022620) (Table 2 and Supplementary Table S4).
On the other hand, the oxidation–reduction genes co-expressed at 72 and 120 hpi in 394-
1-27-12 included respiratory-burst oxidase (CmoCh11G011760), cytochrome P450 protein
(CmoCh05G007700, CmoCh20G009870, CmoCh09G001800, CmoCh09G001790, and CmoCh
09G002630), and peroxidases (CmoCh11G013370, CmoCh11G013380, and CmoCh20G003430)
(Table 3 and Supplementary Table S5).
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at 12, 24, 72, and 120 h post inoculation.
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Table 2. Differentially co-expressed genes at 72 hpi and 120 hpi associated with stress response in the
394-1-27-12 (resistant) genotype.

Gene Annotation Stress Responsive Gene
394-1-27-12

Log2FC
72 hpi 120 hpi

CmoCh19G007900 Expansin-like A3 16.4 28.8
CmoCh19G002930 Thaumatin-like protein 14.1 12
CmoCh07G002420 Heat Stress Transcription Factor B-2a 5.6 3.3
CmoCh05G012280 Wound-Induced Protein WIN1 6.1 6.3
CmoCh17G007590 Plant Cadmium Resistance 8 5 3.4
CmoCh08G010590 Myb Transcription Factor 5.6 5.6
CmoCh15G009030 Defensin-Like Protein 1 8.9 8.4
CmoCh11G011760 Respiratory-Burst Oxidase, Putative 4.3 3.8
CmoCh05G012270 Wound-Induced Protein 6.6 7.7
CmoCh14G018460 Ethylene-Responsive Transcription Factor 1B 4.4 3.1
CmoCh04G022620 Defensin-Like Protein 6 8 9.1

Table 3. Differentially co-expressed genes at 72 hpi and 120 hpi associated with oxidation–reduction
in the 394-1-27-12 (resistant) genotype.

Gene
Annotation Oxidation Reduction Gene

394-1-27-12
Log2FC

72 hpi 120 hpi
CmoCh11G011760 Respiratory-burst oxidase 4.3 3.8
CmoCh05G007700 (Cinnamate-4-hydroxylase) (Cytochrome P450 protein) 4.9 3.1
CmoCh20G009870 Cytochrome P450 family protein 4.7 5.1
CmoCh09G001800 Cytochrome P450 5.8 4.9
CmoCh09G001790 Cytochrome P450 4.9 3.9
CmoCh09G002630 Cytochrome P450 5.7 5.2
CmoCh11G013370 Putative heme-binding peroxidase 4.6 4.6
CmoCh11G013380 Putative heme-binding peroxidase 4.9 4.7
CmoCh20G003430 Peroxidase 6.3 4.8
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In summary, the resistant 394-1-27-12 line demonstrated enhanced resistance to
P. capsici infection compared to its susceptible counterpart, Butterbush. While the tran-
scriptomic analysis via RNA sequencing revealed more DEGs in Butterbush, the resistant
394-1-27-12 line expressed more genes associated with pathogen stress. Notably, both the
resistant and susceptible lines exhibited the highest number of DEGs at 72 hpi, suggesting
that this time point is a critical phase in the molecular response against P. capsici infection.
However, two of the most notable stress response genes, namely the expansin-like protein
and thaumatin-like protein, were highly expressed in the resistant 394-1-27-12 line both
at 72 hpi and 120 hpi, suggesting a genotype-specific biotic stress-related gene expression
pattern in influencing resistance against P. capsici infection. Our results demonstrated a
repertoire of genes in combating P. capsici infection directly through their involvement in
stress response pathways or indirectly by acting on the regulatory networks that operate
during pathogen infection in C. moschata.

3. Materials and Methods
3.1. Plant Materials and Inoculation

Two C. moschata squash genotypes, a resistant breeding line (394-1-27-12) and a highly
susceptible butternut cultivar (Butterbush), were used in the study. The plants were sown
in seedling trays containing sterilized potting mix and grown in a growth chamber with
supplemental lighting (14 h light, 10 h dark) at room temperature (20–22 ◦C). For each
genotype, 15 individual plants were randomly assigned to a control group (non-inoculated)
and a treatment group (inoculated with P. capsici). At the second true leaf stage, the
seedlings were inoculated with a virulent P. capsici isolate following the protocol described
by Krasnow et al. (2017), with minor modifications [6,12]. Briefly, a 5 mm cornmeal agar
mycelial plug was transferred to 14% V8 agar plates (140 mL V8 juice, 3 g CaCO3, 16 g
agar per liter) and grown under constant fluorescent light at 28 ◦C. After 6 days, the plates
were flooded with cold sterile distilled water (4 ◦C) and chilled at 4 ◦C for 30 min before
incubation at 21 ◦C for 1 h to allow for the synchronous release of zoospores. Zoospores
were quantified with a hemocytometer and diluted to 1.0 × 105 zoospores mL−1. A hand
spray bottle adjusted to release 0.5 mL volume per spray was used to deliver 1.5 mL of
zoospore suspension at the crown of each seedling.

3.2. RNA Extraction and Sequencing

Stem tissues from inoculated and non-inoculated seedlings of both genotypes were
harvested from the crown tissue across six time points (0 h, 12 h, 24 h, 72 h, and 120 h)
and immediately frozen in liquid nitrogen and stored at −80 ◦C until further processing.
Three independent replicates per time point were made. Total RNA was extracted using
the FavorPrep™ Plant Genomic RNA Extraction Mini Kit (Pingtung, Taiwan) following
the manufacturer’s protocol. The quantification and quality examination of the extracted
RNA were carried out using a Qubit v4 Flourometer (ThermoFisher Scientific, Waltham
MA, USA) and via agarose gel electrophoresis. RNA integrity (RIN) was assessed using an
Agilent 2100 Bioanalyzer system (Agilent Technologies, Santa Clara, CA, USA) to ensure
all samples had RIN > 8.0 before sequencing [36]. Sequencing libraries were prepared,
and messenger RNA was sequenced on an Illumina NextSeq 500 sequencer (Illumina,
San Diego, CA, USA) at Novogene (Sacramento, CA, USA).

3.3. RNA-Seq Data Analysis

Initial quality control of the RNA sequencing data was carried out to remove adap-
tor sequences and reads with high missing data or low-quality base scores (Qphred < 30).
Clean reads from all libraries were aligned to the C. moschata reference genome
(http://cucurbitgenomics.org/organism/9, accessed on 15 December 2020) using HISAT
2.0 software [37]. Read counts for aligned transcripts were generated using feature
counts [38,39]. A differential gene expression analysis was performed using DeSeq2
utilizing the empirical Bayes shrinkage of gene expression logarithmic fold changes to

http://cucurbitgenomics.org/organism/9
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increase sensitivity and precision, enabling the detection of significant genes with low read
counts [39]. The threshold for significant differentially expressed genes was set at a false
discovery rate of 0.05 and an absolute value of fold change ≥2. Functional annotation and
a biosynthetic pathway analysis of differentially expressed genes were performed in the
publicly available Cucurbita genomics database.

4. Discussion

While several sources of resistance to Phytophthora crown rot [7–11] and their associated
inheritance mechanisms [8,12] and QTLs [13–15] have been described in Cucurbita spp.,
the molecular mechanisms and gene pathways underlying the resistance remain poorly
understood. In the current study, RNA sequencing revealed gene expression patterns in
resistant and susceptible genotypes of Cucurbita following P. capsici infection. Overall,
a significantly higher number of genes were differentially expressed in the susceptible
genotype (Butterbush; 2648 genes) when compared to the resistant genotype (394-1-27-
12; 1729 genes). A similar trend was reported in melon, where the susceptible genotype
(E31) had a higher number of differentially expressed genes than the resistant genotype
(ZQK9) post P. capsici infection [40]. In a separate study, Naveed and Ali (2018) also
reported a higher number of DEGs in the susceptible tomato accession (Sp-S) compared to
its resistant counterpart (Sp-R) when inoculated with P. parasitica [41]. The higher degree of
differentially expressed genes in susceptible plants may be due to extreme transcriptional
reprogramming, as well as the presence of diverse cellular and metabolic changes during
the pathogen’s interaction with a susceptible host [41].

Our GO analysis of upregulated genes in both susceptible and resistant genotype
showed the significant enrichment of the genes involved in defense mechanisms. Most of
the defense-related genes were associated with oxidation–reduction and oxidative stress
processes, a typical expression in plants under biotic stress. Genes regulating oxidation–
reduction processes primarily inhibit the oxidative burst of reactive oxygen species during
pathogenesis and further induce genes involved in the hydrogen peroxide metabolic
pathways that catalyze compatible–incompatible interactions between the pathogen effector
protein and the host [42]. This interaction triggers primary responses such as cell wall
polymerization, lignification, and apoptosis [42,43]. The reactive oxygen species (ROS) also
trigger distant signaling and initiate a cascade of cell defense-related protein responses,
such as phytoalexins, and a series of kinases and phosphatases [44,45].

In both the resistant (394-1-27-12) and susceptible (Butterbush) genotypes, expansin-
like protein and thaumatin-like protein were over-expressed (>13 logfold change than the
non-inoculated) at 72 and 120 hpi (Supplementary Table S2). One expansin gene homolog
(CmoCh19G007900) was found to have a two-fold higher gene expression level in 394-1-
27-12 (Log2FC = 28.80) compared to Butterbush (Log2FC = 12.68) at 120 hpi. The role of
expansin proteins in triggering ROS production and cell wall structure modification in
biotic stress response is well known in plants. Narváez-Barragán et.al (2020) reported the
role of the Ex11 expansin protein in Arabidopsis thaliana in defense against pectobacterium
through ROS production and the subsequent triggering of the jasmonic acid, salicyclic acid,
and ethylene signaling pathways [46]. Additionally, the overexpression of genes regulating
hydrolase activity at 72 and 120 hpi further explains the role of expansin proteins in defense
since glycoside hydrolase is one of the two functional domains of expansin proteins [47]. On
the other hand, thaumatin-like proteins confer anti-fungal activity and have been reported
in numerous plant species, including tobacco (osmotin), maize (zeamatin), barley (hordo-
matin), oat (avematin), and wheat (trimatin) [48–52]. Thaumatin-like proteins include a
major class of pathogenesis-related proteins such as oxidases and oxidase-like proteins,
chitinases, β-1,3-glucanases, endoproteinases, proteinase inhibitors, lipid-transfer proteins,
ribonuclease-like proteins, defensins, and thionins [53–55]. Hence, the identification of
two crucial genes, expansin-like and thaumatin-like proteins, holds promise for governing
C. moschata resistance to P. capsici. However, a more in-depth understanding of the complete
molecular pathways and inter-regulator gene networks is required to comprehend the
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crosstalk of expansin-like and thaumatin-like proteins with plant hormones to facilitate
pathogen stress responses.

Stress response genes co-expressed at 72 and 120 hpi in the resistant genotype also
included transcription factors such as Myb (CmoCh08G010590) and the ethylene-responsive
transcription factor 1B (CmoCh14G018460). The Myb transcription factors modulate the
response of plants to biotic and abiotic stress by promoting the biosynthesis of salicylic acid
and abscisic acid, two key signaling molecules in plant defense [56]. Similarly, ethylene-
responsive transcription factor 1B is an ethylene response factor (ERF) that regulates the
response of plants to stresses by facilitating ethylene, jasmonic acid, abscisic acid, and redox
signaling [57]. In Nicotiana benthamiana, the AP2/ERF transcription factor was reported
to be involved in resistance against Phytophthora infestans by regulating the production of
phytoalexins [58]. The regulation of gene expression through transcriptional reprogram-
ming is key in plant defense activation [59], and transcriptional factors can upregulate
genes to prevent pathogen penetration and/or degradation. For instance, in Barley, the
upregulation of the HvNAC6 transcription factor prevents Blumeria graminis penetration
and establishment [60]. The heat stress transcription factors, also called heat shock tran-
scription factors (Hsfs), co-expressed at 72 and 120 hpi, have also been shown to play a
dominant role in both abiotic and biotic stresses. In Fragaria vesca, at least eight such Hsfs
genes were highly expressed during powdery mildew infection [61]. Additionally, the Hsf
OsSPL7 was critical in rice in conferring resistance against Xanthomonas and maintaining
ROS balance [62].

Our pathway enrichment analysis showed that the L-Glutamate degradation pathway
(PWY0-1305) was significantly enriched in the upregulated DEGs of the resistant genotype
(394-1-27-12) compared to the susceptible genotype (Butterbush). Glutamate metabolism
plays a key role in amino acid metabolism linked to plant defense processes such as cellular
redox regulation, tricarboxylic acid cycle-dependent energy reprogramming, and nitrogen
transportation cycle [63], and an increased expression of defense-related genes was seen
in rice when exogenous glutamate application was applied to rice roots [64]. On the
contrary, the hydroxylated fatty acid biosynthesis pathway (PWY-6433) was significantly
enriched in the downregulated DEGs of the resistant genotype (394-1-27-12) compared to
the susceptible genotype (Butterbush). The hydroxylated fatty acid biosynthesis pathway
leads to the production of very-long-chain fatty acids in response to abiotic or abiotic
stress [65]. However, a significant accumulation of very-long-chain fatty acids can result
in severe plant growth retardation and cell death, and its suppression in 394-1-27-12
may be needed to facilitate normal plant growth following infection by P. capsici. The
complex dynamics of C. moschata differentially expressed genes during P. capsici infection
necessitates further investigations into the defense signaling pathways. Additionally,
our study’s identification of the genes associated with the putative glutamate metabolic
pathways opens avenues for future research on the crosstalk among different biotic stress
regulatory pathways. Understanding metabolic processes and such pathways under P.
capsici-related stress is crucial in gaining insights into genetic manipulations and creating
breeding strategies in squash.

5. Conclusions

The current study uncovered significant defense-related genes and pathways involved
in plant response against P. capsici in resistant (394-1-27-12) and susceptible (Butterbush)
C. moschata genotypes. Taken together, the results reveal that resistance in the 394-1-27-12
genotype occurs primarily through the activation and upregulation of the genes involved
in oxidation–reduction and the response to stress pathways. These findings provide a
platform for the further exploration of the role played by these key genes in conferring
resistance against P. capsici in squash to generate resistant squash breeding lines.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/stresses3040056/s1, Figure S1A: Volcano plots showing differential
gene expression for 394-1-27-12 (resistant) at 12, 24, 72, and 120 h post inoculation; Figure S1B:
Volcano plots showing differential gene expression for Butterbush (susceptible) at 12, 24, 72 and
120 h post inoculation (hpi); Figure S2A: Heat map for the top 25 upregulated and downregulated
genes in 394-1-27-12 (coded as SS30) at 12 h post inoculation; Figure S2B: Heat map for the top
25 upregulated and downregulated genes in 394-1-27-12 (coded as SS30) at 24 h post inoculation;
Figure S2C: Heat map for the top 25 upregulated and downregulated genes in 394-1-27-12 (coded as
SS30) at 72 h post inoculation; Figure S2D: Heat map for the top 25 upregulated and downregulated
genes in 394-1-27-12 (coded as SS30) at 120 h post inoculation; Figure S3A: Heat map for the top
25 upregulated and downregulated genes in Butterbush (coded as BBT) at 12 h post inoculation;
Figure S3B: Heat map for the top 25 upregulated and downregulated genes in Butterbush (coded as
BBT) at 24 h post inoculation; Figure S3C: Heat map for the top 25 upregulated and downregulated
genes in Butterbush (coded as BBT) at 72 h post inoculation; Figure S3D: Heat map for the top
25 upregulated and downregulated genes in Butterbush (coded as BBT) at 120 h post inoculation;
Table S1: RNA library sequencing statistics, mapping rate, and quality scores; Table S2: Differentially
expressed genes in 394-1-27-12 (coded as SS30) and Butterbush (coded as BBT); Table S3: Gene
ontology enrichment analysis revealed a transcriptional and co-functional network of the DEGs
among resistant and susceptible genotypes; Table S4: List of stress response genes co-expressed at 72
and 120 h post inoculation in 394-1-27-12; Table S5: List of oxidation–reduction genes co-expressed at
72 and 120 h post inoculation in 394-1-27-12.
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