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Abstract: Inspired by nature, tunable wettability has attracted a lot of attention in both academia and
industry. Various methods of polymer surface tailoring have been studied to control the changes in
wetting behavior. Polymers with a precisely controlled wetting behavior in a specific environment
are blessed with a wealth of opportunities and potential applications exploitable in biomaterial
engineering. Controlled wetting behavior can be obtained by combining surface chemistry and
morphology. Plasma assisted polymer surface modification technique has played a significant part to
control surface chemistry and morphology, thus improving the surface wetting properties of polymers
in many applications. This review focuses on plasma polymerization and investigations regarding
surface chemistry, surface wettability and coating kinetics, as well as coating stability. We begin with a
brief overview of plasma polymerization; this includes growth mechanisms of plasma polymerization
and influence of plasma parameters. Next, surface wettability and theoretical background structures
and chemistry of superhydrophobic and superhydrophilic surfaces are discussed. In this review,
a summary is made of recent work on tunable wettability by tailoring surface chemistry with
physical appearance (i.e. substrate texture). The formation of smart polymer coatings, which adjust
their surface wettability according to outside environment, including, pH, light, electric field and
temperature, is also discussed. Finally, the applications of tunable wettability and pH responsiveness
of polymer coatings in real life are addressed. This review should be of interest to plasma surface
science communality particularly focused controlled wettability of smart polymer surfaces.

Keywords: polymer surfaces; surface wettability; plasma surface modification; tunable surface
wettability; pH-responsive

1. Introduction

Plasma Polymerization has been a vibrant area of research as it offers a versatile route to
design materials rationally with tunable functionalities. The exclusive properties of plasma polymer
smart coatings like tunable wettability, self-cleaning and antireflective make them prominent in
various applications such as biomaterials, drug delivery, adhesion, protective coatings, microelectronic
devices, oil-water separation and thin film technology. These smart polymer coatings have attracted
considerable interest owing to these remarkable application oriented surface properties, especially
surface wettability [1–4]. Smart polymer surfaces with specific wettability are designed by tuning the
surface chemistry and the geometric structure [5]. Plasma copolymerization technique of monomers
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with antagonist physicochemical properties is used to optimize chemical composition because of its
versatility to obtain specific chemical functionalities [6,7].

In this review, a brief overview of polymers, polymerization techniques, plasma polymerization
and surface wettability are discussed. The research background and mechanism of plasma
copolymerization and copolymer surface properties, mainly tunable surface wettability, are presented
as well.

2. Plasma Polymerization

Polymerization is a process to form a polymer by the combination of repeating functional units,
called monomers. The wet chemical polymerization techniques such as spin coating and ink-jet
printing are widely used as they are low-cost processes. However, the presence of solvent may lead
to adverse effects on polymer coatings, such as non-uniform coatings, the impurities by the solvent
produces defective coatings that are not suitable for biomaterials and drying processes resulting in
inhomogeneous polymer deposition [8,9].

The issues caused by wet chemical polymerization techniques can be overcome via chemical
vapor deposition (CVD). The CVD provides uniform coatings in a single dry chemical deposition step.
Plasma-enhanced CVD (PECVD), initiated CVD (iCVD) and photoinitiated CVD (piCVD) follow a chain
polymerization mechanism, while oxidative CVD (oCVD) follows step-growth polymerization [10,11].
All of these CVD techniques for polymerization have a set of advantages and drawbacks limiting these
techniques suitable for some particular polymer coatings.

Plasma techniques are employed as plasma etching, plasma grafting and plasma-enhanced CVD.
The PECVD is a versatile polymerization method that utilizes precursors in either solid, liquid or gas
form for rapid, pinhole free, cross-linked and dry deposition of the polymer. The structural difference
between conventional polymer and plasma polymer is shown in Figure 1 [12]. It was found that plasma
treatment increases the crosslinking degree in polymer, so its structure compared to the conventional
polymer is different.
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Figure 1. Schematic representations of monomer precursor, conventional polymer and plasma polymer
film synthesized from the same monomer precursor.

Plasma polymerization occurs at both low pressure and atmospheric pressure; the purpose of
this work is to study low-pressure plasma polymerization. The chain polymerization process occurs
with the assistance of plasma energy during plasma polymerization and this plasma energy is used to
activate electrons, ions and radicals [13]. In the plasma polymerization process, monomer precursors
in vapor form are pumped to the vacuumed plasma reactor. The high-energy excited electrons during
glow discharge break molecules into free electrons, ions, radicals and excited molecules. These
free radicals and excited molecules condense and polymerize on the substrate, and the ions and
electrons crosslink or form chemical bonds with the already deposited polymer, so the properties
of plasma polymers are not only determined by precursors but also by the deposition parameters.
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The low-pressure glow discharge plasma characterized as cold plasma can be generated by providing
either a continuous current or an alternating current signal to vapors. For continuous ion bombardment,
high electron mobility is required that can be achieved by a high-frequency current signal typically in
the radio frequency (RF) range. The RF plasma is categorized as cold plasma due to electron energy
range from 1 eV to 10 eV [14].

2.1. RF Plasma Polymerization

The RF plasma with capacitively-coupled parallel plate configuration is commonly used to
induce radicalization of monomer precursor. The plasma power supply usually consists of an RF
generator of 13.56 MHz frequency and a matching box to reduce reflected power. The RF power
for polymerization process is lower ranging from 10 W to 400 W. RF-generated plasmas are more
stable and have higher-temperature electrons than equivalent AC or DC, and can be used to process
insulating materials, so it is a good choice for polymer deposition from organic monomers. The use of
13.56 MHz is recommended by the international authorities to avoid interference with broadcasting
frequencies [15,16].

2.2. Growth Mechanisms of Plasma Polymerization

Yasuda [14] proposed bi-cyclic rapid step-growth polymerization mechanisms schematically
illustrated in Figure 2. Cycle I consist of activation reaction products from single reactive site species,
and cycle II is propagated by divalent reactive species.
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Figure 2. Growth and deposition mechanisms of plasma polymerization.

The reactive species are characterized as free radicals in Figure 2. As the same charge ion cannot
react to each other and an equal number of positive and negative charge ions are needed for growth
mechanisms. Therefore, the role of the ion in growth mechanisms can be excluded.

The single reactive species or divalent reactive species can be polymerized with monomer by
shifting the radical center and leaving it open for more polymerization process. Reaction (5) shows
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divalent reactive species can react with other divalent species to form a new bond while leaving
additional reactive sites for further polymerization. Reaction (1), (4) and (5) show the addition of
reactive species to the monomer or other reactive species which is same as observed during initiation
and propagation reaction in the chain growth free radical polymerization. Reaction (2) shows the
formation of the oligomer (combination of few monomer units) by losing its radical center, which is
same as the termination reaction in the chain growth free radical polymerization. Moreover, reaction (3)
combines single reactive species with divalent reactive species by the cross-cycle reaction and presence
of radical center shows the continuity of polymerization reaction. While repeating these steps, the size
of the gaseous species increases, and the saturation vapor pressure of the species decreases, which
forces the species to be deposited on the substrate in the form of polymer.

2.3. Influence of Plasma Parameters

The polymer chemistry and morphology during plasma polymerization can be affected by
numerous internal and external factors. The most important external factors are system pressure,
monomer flow rate, input power and deposition time [14,17].

System pressure is controlled by vacuum pump-out rate from plasma reactor, gas feed rate into the
plasma reactor, deposition/fragmentation rate within the plasma reactor and the change in temperature
during plasma polymerization. The mean free path between active species is significant at low pressure,
thus, uniform deposition throughout the reactor system can be obtained. Low pressure also increases
the glow discharge size rising plasma interaction with the substrate [18–20].

The monomer flow rate determines whether the plasma polymerization is carried out in an energy
deficient region or monomer deficient region. At constant RF power, the deposition rate increases
linearly with increasing flow rate as long as the reaction system moves from monomer deficient region
(having much available energy for monomer activation) to energy deficient region. At this point,
a balance exists between available energy for reaction and monomer. The further increase in flow
rate decreases the resident time of monomer in plasma, consequently the polymer deposition rate
decreases (energy deficient region). The rise in flow rate also increases system pressure. Thus, effects
associated with high pressure are also dominated by high flow rate as nonuniformity of deposited
polymer surface [18–20].

The deposition rate of plasma polymer coatings increases linearly with an increase in input power
(energy deficient region), as long as the energy deficient region changes to monomer deficient region.
At this point, the maximum deposition rate is obtained due to balance between available energy for
reaction and monomer. The further increases in power results as decrease in deposition rate due to the
sputtering effect during the polymer film growth in monomer deficient region. The deposition rate of
plasma polymer coatings also increases as plasma exposure time increases. Moreover, the chemistry and
morphology of deposited polymer might be changed due to cross-linking and etching process [18–20].

The deposition rate of plasma polymer coatings decreases as the substrate temperature increases.
A high degree of monomer fragmentation shows the change in deposition mechanism at high
temperature. The cross-linking and branching of the deposited polymer increase due to the
fragmentation process [18–20].

2.4. RF Pulsed Plasma Polymerization

Plasma polymerization under continuous wave (CW) mode produces complete fragmentation
of monomer, thus, random polyrecombination of fragments and atoms leads to irregular polymer
structure as previously mentioned in Figure 1. The primary cause of small retained irregular polymer
structure is the monomer exposure to high power plasma. To overcome this inevitable disadvantage,
low power plasma is used, termed as ‘mild plasma conditions’, but the power modulation can only be
done to a certain limit. However, lowering input power by pulsed wave (PW) plasma polymerization
is possible [12,21].
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The pulsed plasma polymerization process is used to modulate power from microseconds to
milliseconds; in this way, overall power density can be controlled. This pulsation consists of two
periods. During the pulse on-time (tpulse-on), polymerization by fragmentation and polyrecombination
of monomers occur depending on monomer flow, pressure and the plasma power same as in CW
mode. Alternatively, during pulse off-time (tpulse-off), the free radicals created during tpulse-on react
with monomer and initiate the polymerization process as illustrated in Figure 3. These radicals, in the
absence of ions bombardment and photo-irradiation initiate a purely radical chain chemical reaction.
During this period tpulse-off plasma polymer is chemically very similar to the conventional polymer as
shown in Figure 1. Thus, the initiation step occurs during the tpulse-on and propagation step during
tpulse-off [22,23].
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The CW and PW plasma polymerization mechanism difference is following (Figure 4):
Initiation M + plasma→M• PW plasma (during tpulse-on)

M + plasma→ A• + B• + C• + D• CW plasma (fragmentation)
Chain growth M• + M→ P• PW plasma (during tpulse-off)

A• + B• + C• + D• → BDCA + ∆E CW plasma (polyrecombination)
The chemical structure and composition of PW plasma polymer coatings depend on the tpulse-on

and tpulse-off ratio, the so-called duty cycle (DC) and power density:

DC =
tpulse−on

tpulse−on + tpulse−off
(1)

A shorter tpulse-on time and a longer tpulse-off time favor the conventional structure. In other words,
low duty cycle support retention of functional group in PW plasma polymer coatings. The polymer
products formed during Tpulse-off should have a more regular structure as compared to those formed
during Tpulse-on. Thus, PW plasma polymer product becomes a mixture of regular and cross-linked
chemical structures as shown in Figure 4. The regularity of chemical structure of PW plasma polymer
coatings depends on chain growth reaction during Tpulse-off, duty cycle and pulse frequency. This pulse
frequency is different from the RF [22].
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2.5. Plasma Copolymerization

The plasma polymerization has the unique characteristics of being copolymerized almost all the
monomers. The properties of copolymers produced from two or more monomers are nearly proportional
to the composition of these monomers feed rate in the reactor. Thus, plasma copolymerization is a
versatile technique to obtain specific chemical functionalities [24].

Different copolymerization models are developed to explain the radical copolymerization
process. If A and B are different monomers, the resulting copolymers can be of
random (—AA—B—AB—AAA—B— . . . .), alternating (—A—B—A—B— . . . ) or block
(—AA—BBB—AAA—BB—) structure [25,26].
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Figure 4. Schematics of continuous wave (CW) and pulsed wave (PW) mode plasma polymerization
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3. Surface Wettability

The surface wettability of a solid by the liquid is the most delicate and key aspect of surface
science due to its various everyday applications, including printability, anti-fogging, anti-bacterial,
anti-reflection, field-effect transistor, self-cleaning windows, cookware coatings, waterproof textiles,
corrosion resistance, oil-water separation and anti-bioadhesion [27–29]. The surface wettability is
usually governed by the chemical composition and morphology of solid surface. When a liquid drop
makes contact with a solid surface, it will either retain its drop like shape or spread out on the solid
surface, this property is characterized by using contact angle (CA) measurements. The liquid droplet
tends to form an angle with the solid surface when it is placed in contact with the solid surface. This
contact angle can be measured between the horizontal line and tangential line of the liquid surface
near the liquid-solid-vapour three-phase contact line as shown in Figure 5. According to water CA
(WCA) measurements, the surface wettability can be divided into four categories. The surfaces are
hydrophobic and hydrophilic with WCA on solid surfaces in the range 90◦ < θ < 150◦ and 10◦ < θ <

90◦, respectively. The surfaces with WCA greater than 150◦ are called superhydrophobic and WCA
less than 10◦ are called superhydrophilic [30,31]. Superhydrophobic surfaces can be found in nature of
lotus leaves, ramie leaves, red rose petals, rice leaves, butterfly’s wings, peacock feathers, fish skin and
so on [31].
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3.1. Static and Dynamic Wettability

The droplet contact angle measurements on the solid surface are performed by both statically
and dynamically. The CA measurements of a static liquid droplet on a solid surface are known as
static contact angle (SCA). Moreover, for dynamic wettability, the sliding angle (SA) or contact angle
hysteresis (CA hysteresis) is measured. High SCA reveals that the solid surface repels liquid droplet;
moreover, a low CA hysteresis or small SA indicates a liquid droplet has low adhesion to the solid
surface and easily slides on the surface [32–34]. The contact angle is measured during droplet size
variation, to change droplet size, the liquid volume is added (advancing CA), or removed (receding
CA). The series of advancing CAs are measured by simply adding more liquid to the droplet, and the
receding CAs are measured by withdrawing a specific volume of liquid. The advancing CA shows
favorability level of a solid surface to wet and receding CA shows vice-versa, i.e., favorability to de-wet.
The advancing and receding CAs measurements are more reliable as SCA can adopt any value between
advancing and receding CAs. The advancing and receding contact angle difference for a contact line
moving in an opposite direction at the same velocity is known as CA hysteresis. The larger value of
CA hysteresis shows high resistance between wetting and de-wetting states. The CA hysteresis is
commonly induced by surface effects, such as roughness, heterogeneity or surface deformation [35].

3.2. Theoretical Background

The wettability of flat surface can be predicted by Young’s equation using surface energy [36]:

cosθ =
γSV − γSL

γLV
(2)

where γ represents the surface energy between the solid-vapor (SV), solid-liquid (SL) and liquid-vapor
(LV) interfaces. The θ in Young’s equation is droplet contact angle with the surface. The large contact
angle implies high energy (γSL) interface (not favorable for the liquid-solid interface), whereas smaller
contact angle implies low energy interface (convenient liquid-solid interface). The above mentioned
equation is only applicable to physically smooth and chemically homogeneous surfaces.

The Wenzel model [37] and Cassie-Boxter model [38] are two renowned theories to explain the
wettability behavior of the rough surface. In the Wenzel state, the droplet is in contact with the solid
surface completely, and liquid penetrates into cavities as shown in Figure 5b. This model reveals



Surfaces 2019, 2 356

that rough solid has a larger surface area as compared to smooth one, thus Equation (2) is modified
by Wenzel:

cosθr = r cosθ (3)

where θr is the droplet contact angle on a rough surface, θ is Young’s contact angle on a smooth surface
with the same material and r is surface roughness obtained by dividing actual area with the flat projected
area. For the flat surface, r becomes 1, and r > 1 implies surface roughness features. According to
Wenzel model, both hydrophobicity and hydrophilicity are amplified by surface roughness. Moreover,
the CA hysteresis increases for high surface roughness due to droplet-solid contact and pinning of the
droplet during de-wetting.

However, the Wenzel model state is only applicable to the chemically similar solid surface.
According to Cassie-Boxter model liquid, the air is trapped in rough surface cavities, thus, the liquid
of the droplet cannot penetrate into these cavities as shown in Figure 5c, leading to solid-liquid and
liquid-air a composite interface:

cosθr = fSL cosθ1 + fLA cosθ2 (4)

where fSL and fLA are the areas fractions of liquid droplet in contact with the solid surface and trapped
air in the cavities of the rough surface, respectively; θ1 and θ2 are the CAs of droplet with solid surface
and air, respectively. For composite interface, the air part of surface can be considered as completely
non-wet (θ1 = 180◦ and θ2 = θ) fSL + fLA = 1. Thus, Equation (4) can be written as follows:

cosθr = fSL (1 + cosθ) − 1 (5)

Marmur introduced a mixed model, according to this model a liquid droplet partially wets the
surface and sits on air packets as shown in Figure 5d [39]. This model modified CA expression:

cosθr = r f fSL cosθ+ fSL − 1 (6)

It is possible that the Cassie-Baxter state for a given solid surface can transform into Marmur or
Wenzel state, surface roughness and surface chemistry plays a significant role in this regard.

3.3. Textured Surface Wettability

As mentioned in Wenzel and Cassie-Baxter models, the surface roughness (surface texture) and
surface chemistry are the primary factors to determine liquid droplet behavior on a solid surface and
texturing a surface with micro or nano-scale architecture is essential to enhance hydrophobicity and
hydrophilicity [40–42].

For hydrophobic solid surface, solid-vapor surface energy γSV is less than solid-liquid surface
energy γSL. Thus, according to Equation (2), the surface energy becomes low due to trapped air below
the drop for textured surface of 30 µm roughness order. For hydrophilic solid surface, the solid-liquid
surface energy γSL is less than solid-vapor energy γSV. Thus, the solid-liquid interface follows the
roughness of the textured solid surface, which leads the liquid droplet to a Wenzel state [43].

4. Surface Functionalization of Plasma Polymer Coatings

Plasma functionalization is the process of surface modification to improve features and properties
of polymers by changing the surface chemistry. The plasma functionalization is achieved in a single
step without wet chemistry methods, which positively affects its cost, safety and environmental impact.
The surface properties of many materials including glass, metals, ceramics, textiles and a broad range
of polymers are improved by plasma functionalization [44].
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4.1. Surface Processes During Plasma Functionalization

The highly reactive species (free radicals and electrons) in plasma initiates various physical and
chemical processes by contacting with surfaces depending on plasma parameters [45]. For example,
the highly reactive species remove surface contaminations to make ultra-clean surface [46]. The free
radicals help to break bonds and promote cross-linking of molecules [47]. The substrate is etched and
formed micro or nanometer scale roughness by highly reactive species [48]. The short-lived free radicals
are deposited on the substrate to promote specific properties depending on the functional group and
this deposition of functional groups is the most important process in plasma functionalization [45].

4.2. Functionalized Plasma Polymer Coatings

The functionalization of the polymer by plasma treatment has many advantages over wet-chemical
treatment, as wet-chemical methods become unacceptable due to environmental and safety
consideration. Functional groups like carboxylic acid groups, hydroxyl groups and amine groups
produced by plasma treatment are used to chemically functionalized polymer surfaces [49]. Numerous
authors reported the functionalization of polymer materials by exposure to various gaseous plasma
treatments, such as oxygen plasma, nitrogen plasma, ammonia plasma and fluorine plasma [50–53].
For example, polymer functionalized with oxygen plasma has low surface energy, whereas polymer
functionalized with fluorine plasma has low surface energy improving chemical inertness [54,55].
Moreover, argon plasma treatment can increase crosslinking of polymer surfaces [56,57].

Functionalization by depositing thin polymer coatings is a unique process due to its various
applications such as adhesion, surface hardening, surface wettability, tribology, contact lens coating,
blood compatibility and diffusion barrier [58]. The functionalization by hydrocarbon polymer
deposition is widely used due to its outstanding physical properties such as optical refractive
index and microhardness. Methane is used to functionalize contact lens materials such as silicone
rubber. The 5 nm plasma polymer coating on silicone rubber reduces its hydrophobicity and surface
tackiness [59]. The C2H6 plasma polymer coatings functionalize the alkali halide (e.g., KBr and
NaCl). These coatings show good adherence to substrate and moisture barriers [60]. The hydrophobic
materials are obtained by plasma polymerization of fluorine-containing gases. For example, carbon
nanotubes are functionalized to make superhydrophobic using tetrafluoroethylene plasma polymer
coatings as shown in Figure 6 [61]. The hydrophobic and oleophobic coatings are obtained by plasma
polymerization of perfluoro acrylates [62]. The 1H,1H,2H,2H-perfluorooctyl acrylate precursor is used
to get superhydrophobic surface by repetitive bursts of CW plasma polymerization. This small time
scale plasma deposition leads to the polymeric nanospheres [63].

The organosilicon monomers are used to functionalize various materials due to its excellent optical,
electrical, thermal and biomedical properties. For example, hexamethyldisiloxane ((CH3)3SiOSi(CH3)3)
is used to functionalize charcoal to make blood-compatible surfaces to reduce blood cells loss through
blood contact [64,65]. In addition to the applications of plasma functionalized organosilicon polymers
in the biomedical field, they have also been used in protective, conductive and moisture sensitive
coatings [66,67]. The functionalization by incorporating cyano groups in a polymer made it an
attractive material in thermal resistance, electrical properties and gas permeation properties due to its
high polarity [68,69]. The amino groups are used to the functionalize membrane that can bind toxic
components found in patient’s blood during blood dialysis [70–72].
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4.3. Functionalized Plasma Copolymer Coatings

Plasma copolymerization is considered as a promising and versatile technique due to its advantage
of the tunable functionality over plasma homopolymerization by adjusting the monomer feed ratio.
The combining properties of each monomer that participate in copolymerization opened new doors to
tailor a surface [73]. Golub et al. [74] reported one of the early work on RF plasma copolymerization of
ethylene (ET) and tetrafluoroethylene (TFE). The rate of ET-co-TFE polymer deposition is exceeded as
compared to the calculated deposition rate of homopolymers. The C1s XPS spectra showed that up
to 70 mol % TFE, the relative amount of carbon to fluorine bonding is of the order CF > CF2 > CF3.
However, this order changed to CF2 > CF3 > CF for a higher TFE concentration as shown in Figure 7.
The F1s binding energies for the ET-co-TFE polymer coatings linearly increased with the increase of
TFE flow rate. Leezenberg et al. [75] deposited plasma copolymer coatings of hexafluoropropylene
(C3F6) and octafluoropropane (C3F8). They showed the addition of C3F8 in plasma polymer coatings
increased CF3 groups which reduced surface energy. The SWCA increased with thickness and addition
of C3F8 due to the lower surface energy of CF3. Jiang et al. [76] utilized plasma copolymerization
technique to fabricate hexamethyldisiloxane (HMDSO, C6H18Si2O) and octafluorocyclobutane (C4F8)
coatings. They found that with the increases of HMDSO precursor flow the fluorine content decreases
and oxygen contents rise.

Beck et al. [77,78] studied plasma copolymerization of acrylic acid with hexane and allylamine.
They showed coatings with specific chemical functionality can be produced by controlling the
concentration of monomer feed. The higher concentration of carboxylic functional group is achieved
by simply increasing the acrylic acid feed rate.

Hirotsu et al. [79] reported pulsed and CW plasma copolymerization of acrylic acid (AA) with
hezamethyldisilazane (HMSZ). They found that duty cycle and power have great influence on
deposition rate, as deposition rate was greater for pulsed plasma. The deposition rate of the copolymer
was higher as compared to HMSZ and AA polymers alone, suggesting copolymerization of AA
with HMSZ. The high plasma power with continuous wave favored Si-O functional groups, and low
power favored carboxylic functional groups; thus, they tuned water contact angle from hydrophilic to
hydrophobic by regulating power. Fahmy et al. [80,81] studied the effect of duty cycle and monomer
feed rate of plasma copolymers of acrylic acid and styrene (AA-co-S). They found high deposition
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rate at a high duty cycle and high chain growth polymerization at a low duty cycle of pulsed plasma
AA-co-S polymer coatings as shown in Figure 8. Moreover, high retention of the carboxylic group
is found at a low duty cycle in both AA and AA-co-S polymer coatings. They also reported the
concentration of carboxylic groups increases with the fraction of AA monomer feed rate in copolymer
mixture. The deposition rate also increased monastically as AA feed rate rise [80].

Chahine et al. [82] investigated the chemical structure and growth kinetics of pulsed plasma
copolymer coatings elaborated from 2-(dimethylamino) ethyl methacrylate (DMAEMA) and
1H,1H,2H-perfluoro-1-decene (HDFD). They claimed that deposition rate per pulse increases up
to 30 W power and then decreases due to the transfer of polymerization from energy deficient region
to monomer deficient region. Moreover, the increase of CFx and decrease in carboxylic groups are
observed from FTIR as HDFD feed rate rise in the mixture of monomers. The reduction in the
ratio of the FTIR absorbance bands AC=O/AOH and CF2/CF are observed for an increase in plasma
discharge power; however, these absorbance ratios rise for high pulse off time showing high retention
of functional groups at low power.
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5. Surface Wettability of Functionalized Polymer Coatings

As mentioned earlier, the surface wettability is governed by surface chemistry and enhanced by
surface roughness, thus, rough and smooth solid surfaces are designed with different hydrophobic and
hydrophilic coatings to exhibit specific surface wettability.

5.1. Hydrophobic Polymer Coatings

The hydrophobicity of a flat surface can be increased either by low surface energy coating
(changing surface chemistry) or by adding roughness. The maximum SCA that can be achieved for flat
surface by using low surface energy coating is 120◦ and SCA higher than 120◦ can only be obtained by
the hydrophobic surface roughness [83].

The fluorocarbon polymer coatings are of particular interest for hydrophobic surfaces due to the
extremely low surface energy of fluorine containing (CF2 and CF3) functional groups [84]. Most of
the fluorocarbon polymer coatings are deposited by RF plasma polymerization process using either
CW or PW mode [85]. The CH2F2, CHF3, C3F6O CF4, C2F6, C3F8, C4F10 and C4F8 are commonly used
precursors for fluorocarbon coating. The hydrophobicity of fluorocarbon coatings depends on the
surface chemistry of deposited polymer controlled by precursor feed rate and plasma parameters such
as input power, reactor pressure, reactor geometry and plasma operational mode (CW or PW) [23,86].
The fluorocarbons precursors are commonly classified into polymer forming and non-polymer forming
by their F/C ratios. The fluorocarbon with lower F/C ratios is called polymer forming such as C4F8 and
C4F10. Fluorocarbon with high F/C ratios is not polymerized such as CF4, and C2F6, because F atoms
act as etching agents for hydrocarbon polymer and silicon. Therefore, the F/C ratios play a critical role
to determine either process leading to etching or polymer deposition and C3F8 stands between these
two classes. Yasuda et al. [86] considered fluorocarbon plasma polymerization is more complicated as
compared to hydrocarbons, due to competition between plasma polymerization and etching. They also
suggested that only unsaturated and cyclic fluorocarbon precursors could be used for polymerization.
Jihye et al. [87] deposited fluorocarbon polymer coatings using different precursors such as C2F6, C3F8

and C4F8 on Si substrate by plasma polymerization process in both CW and PW mode. They observed
SWCA is higher for C2F6 and C3F8 polymer coatings by PW plasma polymerization; however, SWCA
of C4F8 plasma polymer coating is higher for CW plasma polymerization as shown in Table 1.
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Table 1. Static water contact angle of fluorocarbon plasma polymer on Si substrate [87].

Static Water Contact Angle (SWCA)

C2F6 C3F8 C4F8

PW (1kHz) 103.8 ± 0.2◦ 104.4 ± 0.5◦ 98.8 ± 0.3◦

PW (500 Hz) 106.0 ± 1.0◦ 101.5 ± 0.5◦ 96.0 ± 0.1◦

PW (200 Hz) 74.5 ± 1.5◦ 78.5 ± 0.5◦ 81.5 ± 0.5◦

CW 102.0 ± 0.2◦ 101.0 ± 0.5◦ 112.0 ± 0.5◦

Octafluorocyclobutane (C4F8) gas belongs to cycloalkanes family and frequently used as
hydrophobic coating and etching agent, its chemical structure is shown in Figure 9. The higher
SWCA of C4F8 for CW plasma polymerization shows CW plasma mode favors formation of CF3

and CF2 functional groups and inverse for C2F6 and C3F8. The C4F8 plasma polymer coatings on
different smooth substrates exhibit hydrophobic character with small variation depending on the
substrate due to highly cross linked CF3 and CF2 groups, and this hydrophobicity is enhanced
to superhydrophobicity with SWCA > 160◦ and CA hysteresis < 5◦ by rough or nanotextured
surfaces [88–92]. Labelle et al. [93,94] explained thickness variations of C4F8 polymer coatings using
PW and CW plasma. They found that deposition rate is a weak function of input power in CW plasma
and for PW plasma thickness rate is significantly low as compared to CW. The deposition rate for PW
plasma is attributed almost to tpulse-on, and there is slight dependence on tpulse-off. Furuya et al. [88]
observed that the chemical structure and chemical bonding of C4F8 plasma polymer coating significantly
depend on the type of substrate used.
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5.2. Hydrophilic Polymer Coatings

The polymers having a polar functional group that make them soluble in the polar solvent (water)
are known as hydrophilic polymers [95]. The water solubility of the hydrophilic polymer varies with
molecular chain length, molecular crosslinking and polarity of side chain as shown in Table 2. Various
methods have been established to produce hydrophilic polymer surface; however, all these methods
used a standard approach to introducing new polar functional groups, such as hydroxyl (OH), carboxyl
(COOH) and amino groups (NH2) to improve surface hydrophilicity [96–98].

Table 2. Polymer structure and water solubility [99].

Polymer Structural Feature Water Solubility

Chain length increased Decreases
Polar groups ratio increased Increases

Polarity of polar group increased Increases
Cross-linking increased Decreases

The most recent scientific study of the hydrophilic polymers is devoted to the acrylic acid (AA) and
its copolymer derivatives [99]. The chemical structure of AA is shown in Figure 9. Allméa et al. [100]
observed the hydrophilic behavior of acrylic acid polymer coatings grafted on low and high-density
polyethylene, these polymer coatings showed 56◦ SWCA on low density polyethylene and 60◦ SWCA
on high-density polyethylene at room temperature. These polymer coatings show stable wettability
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at room temperature even after a month of storage. However, when these coated samples were
heated to 80 ◦C, they lost their wettability in 1 h, and SWCA increased from 56◦ to 87◦ for low density
polyethylene and from 60◦ to 82◦ for high-density polyethylene. Moreover, crosslinked polyethylene
sample grafted with AA did not lose its polarity and wettability when heated. Gupta et al. [101]
observed the 72.9◦ SWCA of polyethylene terephthalate (PET) decrease up to 26◦ after plasma-induced
graft polymerization of acrylic acid depending on the graft density. Sciarratta et al. [102] observed the
change in SWCA of polypropylene (PP) from 90◦ to 19◦ after acrylic acid plasma polymer coatings.
Jafari et al. [103] checked surface wettability and water stability of low frequency plasma-deposited
AA on polyethylene. They observed 90◦ SWCA of polyethylene varied to 10◦ after AA plasma
polymerization and after water washed the SWCA increases to 60◦. The rise in SWCA is due to
sharp declines of carboxylic (COOH) functional group from 28% to 7% after being water washed.
Voronin et al. [104] checked retention of carboxylic (COOH) functional group of AA pulsed plasma
polymer coatings as a function of duty cycle. They found the carboxylic group functionality increases
for lower duty cycle. The retention reached to 66% for tpusle-off exceeding 5 ms. Moreover, the deposition
rate is a strong function of monomer flow rate. Fahmy et al. [105] studied the surface and chemical
properties of pulsed plasma polymer coating of AA on glass and aluminum as a function of the duty
cycle. They found the deposition rate is nonlinear when it is plotted against duty cycle. Moreover,
the carboxylic functional group concentration increases with a lower duty cycle as it favors chain
polymerization and high duty cycle support fragmentation.

5.3. Tunable and pH-responsive Surface Wettability

The surface wettability can be tuned by varying the ratio of hydrophobic/hydrophilic monomers
during the preparation of copolymers [99]. The degree of surface wettability also depends on
relative cross-linking and polymer functionality as described in Table 2. Peter et al. [106] reported
the tunable wetting behavior of micro/nanotextured poly dimethyl siloxane (PDMS). The PDMS
substrate is plasma coated with sulfur hexafluoride, fluoroform and octafluorocyclobutane successively.
These coatings showed stable superhydrophobicity and superhydrophilicity. Yilgor et al. [107]
developed polymeric surface with tunable wettability based on hydrophilic/hydrophobic silica
mixture prepared by spin-coating. They have showed gradual change of surface wettability from
superhydrophilic to superhydrophobic by tuning hydrophobic silica content in coatings as shown
in Figure 10. Chahine et al. [82] studied plasma copolymer having hydrophobic and hydrophilic
components. They studied growth kinetics and chemical structure of plasma copolymer elaborated
from 2-dimethylamino ethyl methacrylate (DMAEMA) and 1H,1H,2H-perfluoro-1-decene (HDFD)
monomers. They observed low peak power and Tpulse-on lead to better retention of the functional
group both in plasma homo- and copolymers and for high peak power and Tpulse-on fluorinated
unit retained better than acrylate in both homopolymers and copolymers. They also found that the
presence of HDFD amount give rise to the copolymer growth rate and this growth principally occurs
during Tpulse-on.
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Stimuli-responsive polymers undergo a reversible phase transition in response to the external
stimuli such as pH, redox, temperature, ultrasound, light, electromagnetic radiation and biomolecules.
Different type of stimuli-responsive surfaces are fabricated that reversibly switch to different wetting
states [108]. The pH-responsive superwettability is of great importance because of its interesting
applications, such as biosensors and drug delivery. Weak polymer bases and acids are commonly
used to get a pH-responsive surface with switchable wetting properties [108]. The polymer acids
have pH-responsive carboxylic (COOH) group, this carboxylic group at low pH can be protonated
so hydrophobic interaction become dominant, while at high pH, the carboxylic group dissociate into
carboxylate anions (COO−) and become hydrophilic. By the combination of pH-responsive polymer
with the rough surface substrate, the switchable wettability can be enhanced [109].

Polyacrylic acid (PAA) is one of the most frequently reported pH-responsive polymer with
pKa = 4.7 [108]. The PAA chain conformation can change from collapsed state at pH < pKa to the
stretched state at pH > pKa via protonation and deprotonation of carboxylic functional groups.
The copolymer coatings containing PAA monomer owing to pH-responsive feature are used to tune
responsive surface with switchable wettability. Xu et al. [110] prepared poly styrene-co-acrylic acid
(PS-co-PAA) polymer. They showed SWCA of PS-co-PAA polymer coatings after being dipped in low
pH solution is 73◦ and this SWCA value decreases abruptly to a constant value of 43◦ as pH value change
to 4. Zhou et al. [111] fabricated poly 2,2,3,4,4,4-hexafluorobutyl methacrylate-co-polyacrylic acid
(PHFBMA-co-PAA)] copolymers with three different segment length on silicon wafers using spin coating
technique. They found that PAA ratio in copolymer significantly influences pH-responsive surface
wettability; however, all these copolymers show evolutions of SWCA at a similar pH inflection point at
pH 5.25 regardless of PAA concentration. Xia et al. [112] fabricated N-isopropyl acrylamide-co-acrylic
acid (NIPAAm-co-PAA) polymer on smooth and rough silicon. They observed reversibly switchable
wettability from superhydrophilic to superhydrophobic in response to both narrow temperatures range
of about 10 ◦C and a relatively wide range of pH about 10 due to combining effect of the chemical
structure variation and the surface roughness. For a flat surface, this dual response switching of
NIPAAm-co-PAA polymer is only from hydrophobic to hydrophilic; however, for a rough surface, the
extreme change of 150◦ in SWCA is observed.
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Muzammil et al. [113,114] fabricated novel and intelligent C4F8-co-AA polymers with tunable
wettability and pH-responsiveness are demonstrated. A series of plasma C4F8-co-AA polymer
coatings based on various hydrophilic/hydrophobic monomer feed ratio on the flat and nanotextured
low-density polyethylene (LDPE) surfaces are deposited via capacitively coupled RF plasma (CCP).
The SWCA of C4F8-co-AA polymer coatings on flat LDPE surfaces tuned from 119◦ to 11◦, while
this surface wetting tunability dramatically enhanced from superhydrophobicity (SWCA = 163◦)
to superhydrophilicity (SWCA = 4◦) for nanotextured LDPE surfaces (Figure 11). The C4F8-co-AA
polymer coatings also showed pH-responsive wetting behavior caused by the combined effect of the
pH-responsive component (carboxylic acid functional group) and nanotextured surface. The increase
of carboxylic acid functional groups in C4F8-co-AA polymers shifted the switchable pH-responsive
wetting behavior towards low SWCA range. The magnifying effect of the nanotextured surface on
pH-responsiveness is also observed.
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Figure 11. Tunable Wettability and pH-Responsiveness of Plasma Copolymers of Acrylic Acid and
Octafluorocyclobutane [113].

The influence of duty cycle in pulsed plasma process with the monomer feed rate on the surface
chemistry and wettability of C4F8-co-AA polymer coatings is studied. The concentration of the
carboxylic acid (hydrophilic) groups increase, and that of fluorocarbon (hydrophobic) groups decrease
by lowering the duty cycle. The combined effect of surface chemistry and surface morphology of
the RF pulsed plasma copolymer coatings causes tunable surface wettability and surface adhesion.
The gradual emergence of hydrophilic contents leads to surface heterogeneity by lowering duty cycle
causing an increased surface adhesion in hydrophobic coatings. The C4F8-co-AA plasma polymer
coatings on the nanotextured surfaces are tuned from repulsive superhydrophobicity to adhesive
superhydrophobicity, and further to superhydrophilicity by adjusting the duty cycles with the monomer
feed rates [115].
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6. Prominent Applications of Tunable Wettability and pH-responsiveness

As discussed above, tunable wettability and pH-responsiveness have a variety of applications.
In this section, an overview of some of these applications is presented.

6.1. Oil-water Separation

Removing oil from water is an essential industrial process and due to different affinities of water
and oil, it is done by tuning surface wettability. This wettability based oil-water separation technique
is highly effective and energy efficient as compared to conventional methods [116].

In this technique, a filter with selective wettability is used as a porous barrier that allows some
components of permeation of selective wettability and rejects others. By polymer modification,
many of these selective wettability filters with a pore size in micrometers range are fabricated. The
function of these selective wettability filters is based on controlled wettability rather than size barrier.
Mostly these selective wettability filters are superhydrophilic but oleophobic and vice versa [117,118].
The microfiltration polymer membranes with fixed wettability have also been used for a stabilized
oil-water emulsion of micrometer oil droplet. These polymer membranes can efficiently separate both
oil-in-water emulsions as well as immiscible oil-water mixtures, with high efficiency (rejection rate)
above 99% [119,120]. The polymers with stimuli-responsive wettability have also been used in selective
wettability filters and membranes for oil-water separation as shown in Figure 12 [121].
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and oleophilic polymer sponge for oil absorbance from oil-in-water emulsion. (c) Hydrophilic and
oleophobic polymer filter for oil-water separation, (d) hydrophilic and oleophobic polymer sponge for
oil-in-water emulsion, (e) hydrophobic-oleophilic stimuli-responsive filter for oil-water separation [1].

6.2. pH-responsive Tumor Targeted Drug Delivery

The pH-responsive biomaterials for tumor-targeted drug delivery have attracted much interest
as pH in tumor tissue may be exploitable for selective targeting of tumors relative to normal
tissues. The acidic pH (low pH) induced protonation causes the hydrophilic-hydrophobic transition.
The carboxylic component is pH-sensitive part of polymer deprotonated at physiological pH and
shows hydrophilic state, while an acidic environment, due to the protonation polymer, becomes
hydrophobic, leading to drug release. These pH-responsive biomaterials in acidic environment
accept protons and change their structure in three different ways to attained targeted drug release
destabilization, precipitation or dissociation depending on the pKa value of a pH-sensitive component
of the polymer [122]. Polymers with carboxylic groups are commonly used for targeting the tumor
tissue in the acidic environment [123]. At 7.4 pH, the carboxylic component is deprotonated and
remains in the hydrophilic state. In an acidic environment, it is protonated and surface wettability
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changed to a hydrophobic state. The change in surface wettability leads to the deformation in the
polymer, causing drug release [124].

7. Conclusions

The surfaces with tunable and stimuli-responsive switchable wettability are of great interest due
to their promising applications. The plasma polymer surface modifiction method is describe in this
review paper is aimed mostly to improve tunable wettability to improve biocompatibility to polymers.
The copolymer, having hydrophobic and hydrophilic component, can be tuned to specific wettability
by controlling monomer ratio, surface morphology and other deposition parameters. Moreover,
many groups are claiming successful fabrication of copolymer surfaces with switchable wettability in
response to external stimuli, such as pH, light irradiation, temperature, chiral and counter ion. The most
of the stimuli-responsive surfaces with switchable wettability typically show intrinsic responsive
wettability due to the fixed functional responsive building block of copolymers. It is challenging to
tune the chemical structures of responsive copolymers with controlled wetting/dewetting components
due to the complicated procedures. This review has demonstrated recent advances to fabricate surfaces
with tailored wettability by merely controlling plasma polymerization parameters. The controlled
wettability can be used to design filters with selective wettability for oil-water separation industry.
Moreover, this technique will be helpful to design the pH-responsive biomaterials for tumor-targeted
drug delivery. Polymers with tunable wettability may be another hotspot, which have great potentioal
in the biomateril related field. This rich knowedge on surface wettability of plasma polymerized
coatings will be benificial to biomadical applications.
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