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Abstract: In this work, three Ibuprofen tin complexes were synthesized and characterized by Fourier
Transform Infrared spectroscopy (FTIR), 1H and 119Sn-Nuclear Magnetic Resonance (NMR), and
Energy Dispersive X-ray (EDX) spectroscopies to identify the structures. The complexes were mixed
separately with poly(vinyl chloride) (PVC) to improve its photo-stability properties. Their activity
was demonstrated by several approaches of the FTIR to exhibit the formation of new groups within
the polymer structure due to the exposure to UV light. Moreover, the polymer’s weight loss during
irradiation and the average molecular weight estimation using its viscosity before and after irradiation
were investigated. Furthermore, different techniques were used to study the surface morphology
of the PVC before and after irradiation. Field-emission scanning electron microscopy (FESEM) and
optical microscope demonstrated that applying Ibuprofen tin complexes keeps the surface of PVC
smoother, with fewer cracks and spots after irradiation comparing to the blank PVC. Finally, It seems
possible that such synthesized Ibuprofen tin complexes can work as excellent photo-stabilizers of PVC.
In particular, complex 1 showed the best results among other stabilizers due to the large conjugation
system of the stabilizer.
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1. Introduction

Many known tin (IV) complexes are related to the common prescription RxSn(L)4−x, where L could
be an inorganic or organic ligand, and R is an aryl or alkyl group [1]. This type of complex comprises a
tin center link to the anion, typically chloride, fluoride, hydroxide, oxide, thiolate, and carboxylate [2].
In the last five decades, thousands, or maybe millions, of organometallic compounds have been
synthesized, where the greater number was for organotin materials. Hence, their applications in the
industry as corrosion inhibitors, plastic photo-stabilizers, medical helpers, etc., have increased [3,4].
The main application of the organotin derivatives (about 70%) is as heat and light stabilizers in
PVC pipes. In 1930, Germany and the United States manufactured PVC that consists of chlorinated
hydrocarbon polymer. This polymer has been utilized widely around the world as one of the most
important plastics because of its low cost, flame retardancy, chemical resistance, elasticity, light weight,
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good mechanical properties, electrical insulation property, and corrosion resistance [5–7]. The first
discovery was in the 1940s when an organotin was used as an additive in a very small amount to PVC
material to stop the photo-degradation of the plastic. Carraher et al. have prepared various plastic
stabilizers depending on organotin materials [8]. Today, polyvinyl chloride is produced as the third
most significant polymer after polypropylene and polyethylene [9]. This polymer is widely utilized
to produce cables, pipes, disposable bottles, and some disposable kitchen stuff [10], where the main
applications of PVC are pipes, doors, and window production, and secondly cables and rigid films. In
2013, PVC was produced in more than sixty million tons around the world, where China produced
half of this amount [11].

However, PVC when exposed to ultraviolet gradually degrades, resulting in a decline in
mechanical properties. The degradation of PVC can be seen in the discoloration, reduced ductility,
and micro-cracks [12]. The low light stability of PVC will lead to a loss of HCl molecules in a process
called discoloration, and eventually cause a severe degradation and chemical and physical alterations
of the polymer properties. Various additives with low concentrations were used for the inhibition of
PVC from the photo-degradation process. The most familiarly used additives are organometallics,
like organotin complexes [13–15], organic [16,17], and others [18–28]. In this work, we report the
synthesis of Ibuprofen tin complexes and the evaluation of their activity as photo-stabilizers for the
PVC. Ibuprofen tin complexes are electron rich and could act as UV absorbers. Therefore, these
complexes are expected to absorb UV irradiation and protect the PVC against photodegradation. This
is quite an interesting project for the environment because it is going to reduce the consumption of
plastic, which is causing a big problem for the marine eco-system.

2. Experiment Section

2.1. Chemicals and Instruments

All chemicals and solvents were purchased from Merck Company and used without further
purifications. Polyvinyl chloride was obtained from Petkim Petrokimya with an average molecular
weight of (MV = ca. 171,000). The presence of tin in complexes was identified by using the atomic
absorption flame spectrophotometer (AA-6880 Shimadzu, Kyoto, Japan). To identify the synthesized
materials, the FTIR spectrophotometer (8300 Shimadzu, Kyoto, Japan) was utilized. Moreover, 500 MHz
1H NMR using tetramethylsilane as the internal standard in deuterated dimethyl sulfoxide was applied
to identify the chemical shifts of protons within the structure of the synthesized specimens. Varian
INOVA spectrometer (Lake Forest, CA, USA) was utilized to record this data; furthermore, a Bruker
DRX spectrophotometer was used for characterization, 119Sn NMR (107 MHz). The PVC films were
exposed to UV light utilizing an accelerated weather meter provided from Q-Panel Company. All NMR
samples were prepared by dissolving 15 mg of the substance in 2 mL of the Dimethyl sulfoxide (DMSO)
at room temperature. The sample was shaken or ultrasonic was used if necessary until full dissolving
was achieved. 500 MHz 1H NMR and 107 MHz 119Sn NMR was used to identify the substance with
16 scans. The samples were irradiated at room temperature with a maximum wavelength of 365 nm.
Moreover, the polymer molecular weight was estimated by measuring the viscosity of the polymer
using the Ostwald U-Tube Viscometer technique. TESCAN MIRA3 LMU EDS was used to investigate
the morphology of the PVC film surface utilizing 10 kV as an accelerating voltage.

2.2. Synthesis of Ph3SnL Complex (1)

A suitable amount of Ibuprofen (0.206 g; 1.0 mmol) was mixed with (0.385 g; 1.0 mmol) of
triphenyltin chloride and left to stir for 6 h in boiling methanol (MeOH; 30 mL). Then the mixture
was cooled down to room temperature and filtered to get the crude product, which was washed with
methanol to obtain the desired compound (complex 1).
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2.3. Synthesis of Bu2SnL2 Complex (2)

A suitable amount of Ibuprofen (0.412 g; 2.0 mmol) was mixed with (0.303 g; 1.0 mmol) of
dibutyltin chloride and left to stir for 8 h in boiling methanol (MeOH; 30 mL). After that, the mixture
was cooled down to ambient temperature and filtered to give the crude product, which was washed
with methanol to obtain the desired compound (complex 2).

2.4. Synthesis of Bu2SnOHL Complex (3)

A suitable amount of Ibuprofen (0.206 g; 1.0 mmol) was mixed with (0.248 g; 1.0 mmol) of
dibutyltin oxide and left to stir for 6 h in boiling methanol (MeOH; 30 mL). Later, the mixture was
cooled down to room temperature and filtered to give the crude product, which was washed with
methanol to produce complex 3.

2.5. Preparation of PVC Films

PVC (5.0 g) in tetrahydrofuran (THF; 100 mL) was stirred at room temperature for two hours with
0.5 wt. % of the complexes to get a homogenous mixture. After that, it was poured into the glass plates
to form homogenous films with a thickness of 40 µm. All prepared films were dried using a vacuum to
remove the trace amount of solvent that could affect the measurements.

2.6. Utilizing the FTIR Technique to Investigate the Photo-Degradation of PVC

FTIR technique was also used to examine the photo-degradation of polymer films through
following the formation and growth of carbonyl C=O and alkene C=C groups [29,30]. The functional
group index (Is) for both groups C=O and C=C was determined using the flowing equation [31].

Is = As/Ar (1)

where As is the functional group absorbance and Ar is the standard peak absorbance.

2.7. Utilizing the Weight Loss Technique to Investigate the Photo-Degradation of PVC

The photo-stability of PVC was also examined by calculating the weight loss of the polymer
during irradiation time in the existence of the stabilizers. Hence, weight loss was calculated according
to Equation (2).

Weight loss (%) = [(W0 −Wt)/W0] × 100 (2)

where W0 is the weight of PVC before irradiation and Wt is the weight after irradiation [32].

2.8. Calculation of the Average Molecular Weight (MV) of PVC

The intrinsic viscosity [η] of the polymer solution was measured, and the MV. of PVC after
irradiation was measured according to Equation (3). This equation is called the Mark–Houwink
equation [33].

[η] = 1.63× 10−2M0.766
v (3)

3. Results and Discussion

3.1. Characterization of Synthesized Complexes

Three organotin(IV) complexes Bu2SnL2, Ph3SnL, and Bu2SnOHL were prepared by reacting
di- and tri-organotin chlorides and di-organotin oxide with Ibuprofen as a ligand (L) under reflux
conditions for 6–8 h in the presence of methanol as solvent (Schemes 1–3). Elemental analysis was used
to clarify the elemental composition of the three prepared complexes and check the purity of them.
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The high purity of Ibuprofen tin complexes made the complexes more stable. All data are presented in
Table 1.Surfaces 2020, 3 FOR PEER REVIEW  4 
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Table 1. Elemental analysis and physical properties of synthesized complexes. 

Complex Code Colour Melting 
Point (°C) 

Yield 
(%) 

Found (Calculated) (%) 
C H Sn 

Ibuprofen L white 75–78 - (75.69) (8.80) - 

Ph3SnL 1 white 210–212 97 66.98 
(67.05) 

5.75 
(5.81) 

21.25 
(21.38) 

Bu2SnL2 2 white 190–192 72 
63.47 

(63.46) 
8.20 

(8.15) 
18.47 

(18.45) 

Bu2SnOHL 3 white 233–235 92 55.35 
(55.41) 

7.88 
(7.97) 

26.01 
(26.08) 

The FTIR spectrum for Ibuprofen was compared with the spectra of organotin(IV) complexes 
to clarify the bonding sites of ligand molecules when coordinated with organotin(IV) compounds. 
All FTIR data of the prepared complexes and free ligands were summarized in Table 2. The 
presence of a broad peak in the FTIR spectrum of the ligand (Ibuprofen) at the region between 3000 
and 3300 cm−1 was demonstrated. This peak is related to the stretching of the O–H bond of the 
carboxylic group. Thus, the peak disappeared in the ligand–tin complexes FTIR spectrum; this is 
clear evidence that the complexation has successfully happened after the deprotonation of the 
carboxylic group. The peak of carbonyl group ν(C=O) appeared at 1720 cm−1 and was shifted in the 
complexes toward lower frequency. The diagnostic bands for the carboxylate anti-symmetric 
[νas(COO)] are observed at 1627–1716, while the symmetric [ν(COO)] are observed at 1404–1423 
cm−1 for stretching vibrations of complexes due to the complex formation. Calculating the change 
between νasy (COO) and νsy (COO) (ν) evaluates the possible mode of coordination of carboxylates to 
tin metal. The Δν (COO) values were obtained by the following equation [Δν (COO) = νasym (COO) − 
νsym (COO)] and the result showed that Δν (COO) is > 200 cm−1. In this case, the Ibuprofen is 
considered as an asymmetric bidentate ligand [34]. 

Furthermore, the presence of peaks was demonstrated between 443 and 482 cm−1, and 543 and 
555 cm−1, which are related to stretching Sn–O bond frequency, and stretching Sn–C bond 
frequency, respectively. This is obvious evidence regarding the complex formation [35]. 

Scheme 1. Preparation of complex 1.
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The FTIR spectrum for Ibuprofen was compared with the spectra of organotin(IV) complexes 
to clarify the bonding sites of ligand molecules when coordinated with organotin(IV) compounds. 
All FTIR data of the prepared complexes and free ligands were summarized in Table 2. The 
presence of a broad peak in the FTIR spectrum of the ligand (Ibuprofen) at the region between 3000 
and 3300 cm−1 was demonstrated. This peak is related to the stretching of the O–H bond of the 
carboxylic group. Thus, the peak disappeared in the ligand–tin complexes FTIR spectrum; this is 
clear evidence that the complexation has successfully happened after the deprotonation of the 
carboxylic group. The peak of carbonyl group ν(C=O) appeared at 1720 cm−1 and was shifted in the 
complexes toward lower frequency. The diagnostic bands for the carboxylate anti-symmetric 
[νas(COO)] are observed at 1627–1716, while the symmetric [ν(COO)] are observed at 1404–1423 
cm−1 for stretching vibrations of complexes due to the complex formation. Calculating the change 
between νasy (COO) and νsy (COO) (ν) evaluates the possible mode of coordination of carboxylates to 
tin metal. The Δν (COO) values were obtained by the following equation [Δν (COO) = νasym (COO) − 
νsym (COO)] and the result showed that Δν (COO) is > 200 cm−1. In this case, the Ibuprofen is 
considered as an asymmetric bidentate ligand [34]. 

Furthermore, the presence of peaks was demonstrated between 443 and 482 cm−1, and 543 and 
555 cm−1, which are related to stretching Sn–O bond frequency, and stretching Sn–C bond 
frequency, respectively. This is obvious evidence regarding the complex formation [35]. 

Scheme 2. Preparation of complex 2.
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Table 1. Elemental analysis and physical properties of synthesized complexes.

Complex Code Colour Melting Point (◦C) Yield (%)
Found (Calculated) (%)

C H Sn

Ibuprofen L white 75–78 - (75.69) (8.80) -

Ph3SnL 1 white 210–212 97 66.98
(67.05)

5.75
(5.81)

21.25
(21.38)

Bu2SnL2 2 white 190–192 72 63.47
(63.46)

8.20
(8.15)

18.47
(18.45)

Bu2SnOHL 3 white 233–235 92 55.35
(55.41)

7.88
(7.97)

26.01
(26.08)

The FTIR spectrum for Ibuprofen was compared with the spectra of organotin(IV) complexes to
clarify the bonding sites of ligand molecules when coordinated with organotin(IV) compounds. All
FTIR data of the prepared complexes and free ligands were summarized in Table 2. The presence of a
broad peak in the FTIR spectrum of the ligand (Ibuprofen) at the region between 3000 and 3300 cm−1

was demonstrated. This peak is related to the stretching of the O–H bond of the carboxylic group.
Thus, the peak disappeared in the ligand–tin complexes FTIR spectrum; this is clear evidence that
the complexation has successfully happened after the deprotonation of the carboxylic group. The
peak of carbonyl group ν(C=O) appeared at 1720 cm−1 and was shifted in the complexes toward
lower frequency. The diagnostic bands for the carboxylate anti-symmetric [νas(COO)] are observed at
1627–1716, while the symmetric [ν(COO)] are observed at 1404–1423 cm−1 for stretching vibrations of
complexes due to the complex formation. Calculating the change between νasy (COO) and νsy (COO)
(ν) evaluates the possible mode of coordination of carboxylates to tin metal. The ∆ν (COO) values were
obtained by the following equation [∆ν (COO) = νasym (COO) − νsym (COO)] and the result showed
that ∆ν (COO) is > 200 cm−1. In this case, the Ibuprofen is considered as an asymmetric bidentate
ligand [34].
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Table 2. Ligand and complexes FTIR spectra data.

Compounds vs (OH) vas (COO) vs (COO) ∆ν (COO) ν (Sn-C) ν (Sn-O)

L 3300 1720 1419 301 _ _
Ph3SnL _ 1716 1423 293 551 443
Bu2SnL2 _ 1716 1419 297 555 482
Bu2SnOL _ 1627 1404 223 543 478

Furthermore, the presence of peaks was demonstrated between 443 and 482 cm−1, and 543 and
555 cm−1, which are related to stretching Sn–O bond frequency, and stretching Sn–C bond frequency,
respectively. This is obvious evidence regarding the complex formation [35].

The ligand and organotin(IV) complexes were also characterized by 1H- and 119Sn-nuclear
magnetic resonance (NMR) in DMSO-d. The main signals of the chemical shift are listed in Table 3.
1H NMR spectra showed all needed peaks to demonstrate the chemical structure of the ligand and
complexes (1, 2, 3). As can be seen from Table 3, the chemical shifts of ligands shifted up and down
filed when linked to Sn metal. These alternations in 1H NMR chemical shift between the complexes
and ligand are due to the different environments around the protons. A single peak in the 1H-NMR
spectrum at 12.27 ppm of the ligand is observed, which is related to the proton of the carboxylic group.
Hence, this peak disappeared in the 1H-NMR spectra of the complex due to the deprotonation of
the carboxylic group after the complexation occurred. This indicates the bonding and coordination
between ligand and complexes. The signal at 3.6 ppm corresponds to the HDO proton [36]. The
119Sn-NMR spectra were verified in the DMSO-d6 solvent for the three complexes. Di-organotin(IV)
complexes give a resonance at −255.2 and −226.2 ppm, which are attributed to the 2 and 3 complexes,
respectively. This fits within the range of six coordinated complexes. In the case of complex 1, the
resonance of the 119Sn was at −171.4 ppm, which indicates the Penta-coordinate of the complex [37].
The 119Sn NMR, 1H NMR, and FTIR spectra for the Ibuprofen and complexes were illustrated in the
Supplementary Materials.

Table 3. 1H and 119Sn NMR spectral data for tin complexes.

Compound
NMR (DMSO-d6) Chemical Shifts ppm
1H (500 MHz) 119Sn (107 MHz)

L

12.27 (s, 1H, COOH), 7.20 (d, J = 8.0, 2H, CH aromatic
ring), 7.10 (d, J = 7.6, 2H, CH aromatic ring), 3.46 (q, 1H,
CH), 2.41 (d, J = 8.0, 2H, CH2), 1.82 (m, 1H, CH), 1.78 (d,

3H, CH3), 0.86 (d, 6H, 2CH3).

–

1
8.01–7.66 (br m, 15H, CH aromatic ring), 7.21–7.48 (m, 4H,
CH aromatic ring), 3.77 (q, 1H, CH), 2.43 (d, 2H, CH2),

1.84 (m, 1H, CH), 1.75 (d, 3H, CH3), 0.88 (d, 6H, 2CH3).
−171.4

2

7.08–7.19 (d, 8H, CH aromatic ring), 3.64 (q, 2H, 2CH),
2.42 (d, 4H, 2CH2), 1.83 (m, 2H, 2CH), 1.77 (d, 2CH3, 6H),

1.33–1.63 (m, propyl of dibut, 12H), 0.82–0.86
(m, 18H, 6CH3).

−255.2

3

6.85–7.17 (d, 4H, CH aromatic ring), 3.74 (q, 1H, CH),
2.46 (d, 2H, CH2), 2.08 (s, OH), 1.78 (m, 1H, CH), 1.46 (d,
3H, CH3), 1.23–1.37 (m, propyl of dibut, 12H), 0.85–0.98

(m, 4CH3, 12H).

−226.2

3.2. Utilizing FTIR Technique to Examine the Photo-Stability of PVC Films

The efficiency of the organotin(IV) complexes as light stabilizer of PVC was examined using the
FTIR technique. The Irradiated PVC films with ultraviolet light at a maximum wavelength of 365
nm for 300 h caused an alteration in the FTIR spectrum. Three absorption peaks appeared in the
infrared spectra of the PVC films after exposure to UV light. This could be attributed to the formation
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of hydroxyl 3500 cm−1 (OH), carbonyl 1722 cm−1 (C=O), and polyene 1604 cm−1 (C=C) groups [38].
As shown in Figure 1, a growth of three signals can be detected in the blank PVC after exposure to UV
light for a long time, while the polymer with additives showed higher stability, and complex 1 was
the most effective stabilizer. These three peaks are hydroxyl (OH) at 3500 cm−1, carbonyl (C=O) at
1722 cm−1, and polyene (C=C) at 1604 cm−1 groups. The growth rate of these peaks is related to the
reference peak (1328 cm−1), which can be considered as a measure of the photo-degradation of PVC
according to Equation (1) to determine IC=O and IC=C indices. They are plotted against irradiation time
for the blank PCV and PVC + complexes using an interval time of 50–300 h of irradiation in Figures 2
and 3, respectively. Thereby, it has been demonstrated that both indices exhibit a significant reduction
for IC=O and IC=C in the existence of additives with PVC compared to blank PVC. For instance, the
IC=O values after 300 h of exposure to UV light were 0.599, 0.542, 0.413, and 0.287 for the PVC, PVC + 3,
PVC + 2, and PVC + 1, respectively. Thus, with common qualities, the IC=C values decreased in the
presence of additives as follows: 0.394, 0.334, 0.298, and 0.231 for PVC, PVC + 3, PVC + 2, and PVC
+ 1, respectively, after irradiation (300 h). Here, it can be concluded that all three stabilizers work to
protect the PVC from photo-degradation and the best one is complex 1. This could be explained as
complex 1 is linked to Ibuprofen and three phenyl groups that absorb within the UV region because of
their conjugation system.
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3.3. Utilizing Weight Loss to Examine the Photo-Stability of PVC Films

Photo-degradation of PVC leads to dehydro-chlorination, and small organic residue elimination
resulting in weight loss [39]. The weight loss of PVC was measured at 50 h intervals of irradiation
using Equation (2). Figure 4 illustrates the alterations to the percentage of PVC weight loss at different
irradiation times up to 300 h. Clearly, the PVC films containing complexes of organotin display a lower
weight loss relative to that obtained for blank PVC.

Weight loss investigation is in agreement with the functional group indices effect since it shows
that complex 1 demonstrated the best photo-stability against PVC photo-degradation. As mentioned
above, this is due to the large aromatic conjugation system which is available in complex 1.
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3.4. Calculation of the Average Molecular Weight (MV) by Utilizing Viscosity

An estimate the average molecular weight of the polymer was obtained using viscosity. Hence,
the degradation causes the breaking of the polymer chain, which leads to decreasing the polymer’s
molecular weight [40]. The PVC solution viscosity is used to measure the MV . The irradiated PVC films
were dissolved in the THF and the viscosity was measured using a viscometer [33]. The MV. for each
film at different irradiation times was calculated using Equation (3). Figure 5 shows the MV. against
irradiation time for the blank and additive-filled PVC. The MV of PVC film was reduced dramatically
during the irradiation process. As a result, the MV for blank PVC film was approximately 170,100 at
the beginning and decreased to 12,700 after 300 h of irradiation, while the MV. of PVC + 3, PVC +

2, and PVC + 1 were 26,200, 35,400, and 44,600 at same conditions. Obviously, this study is in good
agreement with the functional groups and weight loss studies. PVC + 1 has the highest MV among
other stabilizers, which means Ph3SnL (1) is the best photo-stabilizer of PVC against photo-degradation.
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3.5. Utilizing Energy Dispersive X-ray (EDX) to Examine the Photo-Stability of PVC Films

The energy dispersive X-ray (EDX) technique was utilized to analyze the elemental composition of
PVC films with tin complexes after and before irradiation. Figure 6 shows the elements and EDX images
of PVC films [41] that demonstrated the additives were well mixed with the polymer materials [42].
The percentage of chlorine in blank PVC is 57.9% after 300 h irradiation due to the release of hydrogen
chloride molecules during irradiation. It was demonstrated that releasing of HCl for blank PVC is
much higher than polymer mixes with stabilizers.
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3.6. Morphological Analysis of PVC Films

The morphology of the PVC surface was examined utilizing FESEM and microscope techniques.
The FESEM images of the PVC surface (as shown in Figure 7) exhibited homogenous and smooth
blank PVC surface before irradiation [43]. Figure 8 shows the FESEM images of blank PVC and PVC +

additives after exposure to UV light. Thus, it has been demonstrated from Figure 8a that PVC surface
without additives and after irradiation shows big cracks and roughness which was attributed to the
breaking of polymer chains into small fragments. Another reason could be that the polymer undergoes
an elimination reaction and releases HCl molecules to form alkene groups [44]. However, Figure 8b–d
shows the FESEM images of the PVC films mixed with tin complexes after exposure to UV light. The
PVC containing complexes’ surface was smoother and had fewer cracks compared to the blank PVC
after irradiation. Figure 9 shows images of the modified PVC surfaces under the microscope before
and after exposure to UV light.
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Figure 9. PVC surface microscopic images (a) before exposure to UV light, (b) after exposure to UV
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3.7. Photo-Stabilization Mechanisms

The di- and tri-organotin(IV) complexes work as photo-stabilizers for PVC films during irradiation.
The three organotin complexes were synthesized for reducing PVC photo-degradation and their
efficiencies follow the order 1 > 2 > 3. Such additives can stabilize PVC films depending on several
mechanisms. Tin is a strong Lewis acid, so it can act as an excellent hydrochloride scavenger (Figure 10).
Tin(IV) ion can displace chlorine atom within the polymer backbone by the oxygen atoms of the
carboxylate group. Such stabilizers give excellent photo-stabilizing long-term PVC by being used as
secondary stabilizers [45].
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Figure 10. Organotin complexes act as hydrochloride scavengers.

The complexes could act as peroxide decomposers for reduced photo-degradation of PVC.
The photo-oxidation of PVC produces radicals that cause the production of POOH by reacting
with oxygen [46]. Thus, tin complexes can decompose peroxides (for example, hydroperoxides)
(Figure 11) [47].
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Figure 11. Organotin complexes as peroxide decomposers.

Figure 12 shows the attraction between the complex (photo-stabilizer) and the polymer chain,
especially the polarized C–Cl bond. This could help to stop the photo-degradation of polymer as these
additives act as primary stabilizers by absorbing the UV light from the sun. The attraction between
organotin(IV) and PVC can help the conversion energy of the PVC to be excited to an energy level that
does not damage the polymer backbone [48].
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Figure 12. Organotin complexes as primary stabilizers.

This type of stabilizer could prevent PVC’s photo-degradation by its role as free radical scavengers
as shown in Figure 13. These additives might make a complex with a chromophore in an excited
state [49]. Furthermore, these photo-stabilizers can absorb ultra-violet radiation straight away before



Surfaces 2020, 3 591

it reaches the PVC and dissipate this energy to lower levels, where it does not harm the chemical
structure of the polymer chains due to the photo-stabilizer conjugation system that absorbs the UV [50].
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