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1 Advanced Manufacturing Laboratory, Department of Manufacturing Systems, Faculty of Mechanical
Engineering and Robotics, AGH University of Krakow, 30-059 Kraków, Poland; nkark@mail.ntua.gr (N.E.K.);
muthurat@srmist.edu.in (M.T.)

2 Department of Mechatronics Engineering, College of Engineering and Technology, SRM Institute of Science
and Technology, Kattankulathur 603203, India

* Correspondence: karmiris@agh.edu.pl

Abstract: Improvement of the surface quality of machined parts is essential in order to avoid
excessive and costly post-processing. Although non-conventional processes can efficiently carry out
the machining of difficult-to-cut materials with high productivity, they may also, for various reasons,
be related to increased surface roughness. In order to optimize the surface quality of generated
surfaces in a reliable way, surface profiles obtained during these processes must be adequately
modeled. However, given that most studies have focused on Ra or Rz indicators or are based on
the assumption of a normal distribution for the profile heights, relevant models cannot accurately
represent the surface characteristics that exist in a real machined surface with a high degree of
accuracy. Thus, in the present study, a new modeling approach based on the use of a statistical
probability distribution for the surface profile height is proposed. After six different distributions
were evaluated on the basis of a three-stage procedure involving different roughness indicators
pertaining to the abrasive waterjet (AWJ) milling of pockets, it was found that, although it is not
possible to model the nominal values of every roughness parameter simultaneously, in several cases,
it is possible to approximate the values of critical indicators such as Ra, Rz, Rsk, Rku and Rp/Rv ratio
by Weibull distribution with a sufficient degree of accuracy.

Keywords: surface roughness; probability density function (PDF); AWJ pocket milling; eco-friendly
abrasive; walnut shell

1. Introduction

Surface quality plays a fundamental role in the contemporary manufacturing industry
due to the profound impact of texture parameters, not only on the dimensional accuracy
of precision machined parts but also on the tribological and wear properties of the sur-
face [1,2], which in turn can directly regulate the service life of produced components [3].
Thoughmany researchers usually characterize surface quality based on the most funda-
mental 2D or 3D roughness parameters, e.g., Ra, Rz or Sa and Sz, surface profiles are
toocomplex to be sufficiently described by only a small numberof such parameters [4,5].
Thus, it is recommended that multiple parameters of the surface roughness of machined
surfaces should be studied in order to gain a deep insight intothe implications of machining
parameters on surface quality [6]. In some cases, special techniques must beemployed
in order to obtain a more accurate estimation of the roughness parameters’ values [7],
especially online, which is a challenging task [8–10].

Beyond the conventional machining and abrasive processes, a wide variety of non-
conventional methods also exist, and theseare highly recommended when one isseeking to
alter the surface topography of mechanical parts bearing in mind cost management and
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flexibility, as some of the non-conventional processes can definitely provide more possibil-
ities for the achievement ofa favorable surface texture at an affordable cost and without
reducing productivity. Among these processes, AWJ has proven to be efficient in many
demanding cases, given that, through AWJ, almost every material type can be machined
with high productivity and minimalenvironmental impact. However, special conditions
must be selected during AWJ machining in order to achieve an adequate level of roughness
which usually, due to the use of the numerous irregularly shaped particles which can be
embedded on aworkpiece’s surface, poseconsiderable challenges to the manufacturers.

In order to be able to adopt effective strategies for the control and reduction of surface
roughness, it is essential to both take into consideration the specific characteristics of the
process or processes selected for the manufacturing of mechanical parts and the correlation
of process parameters with the surface quality of the produced surfaces, based on reliable
models. For that purpose, a wide variety of models has been proposed in the scientific field
of machining processes, ranging from models that simply predict the values of fundamental
surface roughness indicators to models that can realistically predict the anticipated surface
topography after one or multiple operations have been carried out [11]. For example, in
the case of established, conventional machining processes, apart from the models based on
artificial intelligence (AI) methods thatusually serve to predictspecific surface roughness
indicators, a considerable amount of work has been dedicated to the development of more
advanced predictive models, based on the exact shape of the cutting tool and the selected
tool path and while taking into consideration possible non-ideal features such as tool
runout [12,13]. In most of these cases, the predicted surface topography is appropriately
determined by considering the interaction between the cutting edge or edges and the
workpiece material on a given toolpath, with the surface topography estimated by the
material remaining after the action of the cutting tool [14,15]. As the final topography also
incorporates the effect of other phenomena occurring during machining processes, such as
chattering or tool wear, in some cases information from vibration measurements or worn
tool geometry is taken into consideration in order to improve the accuracy of prediction
and attempts to quantify other stochastic elements are also made [16–19]. However, in the
case of processes with a higher influence of stochastic elements andwhere it is not possible
to directly quantify the action of each particle, such as abrasive processes, the efficiency of
these models is limited. This isdespite efforts aimed atpredicting final topographies that
arebased on the detailed modeling of numerous deterministic and stochastic features of
these processes [20].

Nowadays, the considerable advances in measurement systems as well as image
analysis [21] have led to the development of a promising category of methods for the
prediction of surface topography regardless of the kinematics and other stochastic elements
of processes when high resolution images or laser scans of the machined workpiece are
available [22]. Zhang et al. [23] have developed a fuzzy clustering model for online rough-
ness measurement by obtained images using an advanced clustering algorithm. Patel and
Kiran [24] have proposed an image-based technique for surface roughness estimation by
correlating roughness parameters with image characteristics. Shi et al. [25] have used a
shading-based surface reconstruction technique and surface gradient model, especially
for the simulation of machined surface topography. Dhanasekar and Ramamoorthy [26]
have developed surface quality enhancement algorithms in order to evaluate the surface
topography from images and compared the results withexperimental data.

Based on either laser scans or conventionally measured profiles, an alternative option
is to use fractal-based methods to reconstruct surfaces created by machining processes.
For instance, Thielen, Magyar and Piros [27] used fractal functions to create realistic shaft
surfaces produced by turning. Compared with themeasured profiles of these surfaces, the
proposed model showed a high level of accuracy. Wang et al. [28] developed an approach
for the prediction of surface roughness evaluation during an EDM process based on fractal
theory and measurements of the actual surface. Rafols and Almqvist [29] created self-affine
fractal surfaces with a non-Gaussian distribution in order to study contact mechanics
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problems. Zhao et al. [30] simulated the topography of real surfaces based on fractal
functions in order to study their lubrication characteristics. Beyond these studies, FE
models were also developed based on an explicit representation of surface morphology by
fractal functions, especially regarding contact problems, between a smooth and a rough
surface [31] or even between two rough surfaces [32], as well as in forming processes [33].

Beyond the models that predict values of roughness, there is a lack of models repre-
senting the surface at microscopic levels, a lack that is conspicuous given that even the
most detailed simulation models for surface topography, including analytical, empirical,
FE, or even stochastic, capture machined surfacesatmore macroscopic levels. Only in spe-
cific cases are there relevant models, similar to those used for shot peening or problems
regarding asperities and contact between rough surfaces [34]. For example, Gao et al. [35]
presented an FE model for the simulation of scratches on rough surfaces based on images
of real topography. Megalingam and Mayuram [36] created gaussian random surfaces
for FE modeling of the contact between surfaces with asperities. Kartini et al. [37] also
generated gaussian random surfaces in order to study the contact between a smooth and
a rough surface. Wang et al. [38] created a model regarding shot peening by taking into
account the impact of multiple particles on the surface and compared the resulting surface
topography with the experimentally developed one, achieving better accuracy compared
withthe analytical models.

Withspecial regard towaterjet peening, Xie and Rittel [39] developed a rough surface
model based on single droplet impact FE analysis with droplets of different diameter and
speed. They later improved thisby considering the effects of multiple particles impacting
on the workpiece surface for different initial average surface roughness values [40]. In
subsequent works, this scientific team [41,42] created FE models of the same process by
taking into account the initial surface heights. After the analysis of the deformation of
the surface, the obtained profile was compared with the simulated ones under different
conditions. He et al. [43] simulated abrasive waterjet peening with a view to predicting
surface topography and residual stresses. In this model the effect of consecutive shots
on the workpiece surface was taken into account and was compared with the results of a
theoretical model.Finally, in the case of ultra-high precision grinding, molecular dynamics
models were adopted in order to study the surface alterations [44].

However, given that the use of models incorporating information from multiple rough-
ness indicators in the case of AWJ milling is still lacking and that existing studies on similar
processes focus either on uniformly distributed or Gaussian random surfaces—despite
the experimental evidence that real surfaces are usually non-Gaussian—it was considered
important to carry out a comprehensive study regarding anevaluation of the applicability
of various statistical distributions for the modeling of roughness profile height distribution
of a surface treated by AWJ milling using the values of multiple roughness indicators,
excluding Ra. Thismethod involves the use of a statistical distribution for the heights of the
surface profile, one which will be able to simulate the real surface based on information
about average roughness (Ra), maximum roughness (Rz), peak and valley dimensions
(Rp, Rv), as well as skewness (Rsk) and kurtosis (Rku). The selection of the appropriate
statistical distribution will be performed in threedistinct steps e.g., evaluation of distri-
butions which can simulate the experimentally measured skewness and kurtosis values,
evaluation of distribution which can simulate the Ra and Rz values and, finally, the accuracy
whenpredicting Rp and Rv.

2. Materials and Methods
2.1. Scope of the Present Work

This study aims at the evaluation of the applicability of different probability distribu-
tions for the prediction of a surface profile based on surface roughness indicator values. For
that reason, data from experiments of the AWJ milling of rectangular shaped blind pockets
will be used. As several works have focused on Gaussian random surfaces, e.g., adopting
the normal distribution for the description of height distribution for the machined surfaces,
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one of the tested distributions will be the normal distribution. However, the research will
also include other distributions which could potentially model the height distribution, such
as the Rayleigh, gamma, asymmetric generalized normal and skew normal distributions,
as well as the Weibull distribution, which is more versatile than the others and can be
more directly regulated to reproduce different types of rough surfaces which are usually
non-Gaussian in the case of machined profiles [45]. Thus, motivated by the lack of studies
related to surface roughness modeling based on multiple roughness indicators and the lack
of realistic descriptions of rough surfaces, occurring after non-conventional machining or
similar treatments, the objectives of this work are the following:

(1) Determination of the feasibility of employing a statistical distribution as an alternative
means of reliably simulating several characteristics of the surface roughness profile
during AWJ pocket milling through modeling of its height distribution. In this
case, a basic requirement is that the statistical distribution can accurately simulate
fundamental indicators, such as Rsk and Rku or the Rp/Rv ratio, beyond the usual
height parameters, such as Ra or Rz.

(2) Determination of the most promising statistical distribution forrepresenting the sur-
face roughness profile in the case of AWJ pocket milling by modeling its height
distribution. In this case, a basic requirement is that the statistical distribution should
not be very complicated in order for its implementation to be feasible without the
need of highly specialized knowledge. The representation of the surface roughness
profile should be based on multiple indicators, such as Ra, Rz, Rp, Rv, Rsk and Rku.

Based on the detailed description of the objectives of this work and in terms of the
comprehensive evaluation of the machined surface topography, it becomes evident that
this work intends neither to substitute the modeling approach of several researchers based
on the particular characteristics of the AWJ pocket milling process, such as its physics
and kinematics, nor to disregard or neglect the importance of other surface roughness
indicators, such as the functional parameters related to the material ratio curve. On the
contrary, it aims to determine the possibility of using an alternative approach based on the
modeling of the surface height distribution after AWJ pocket milling in order to describe
some of its fundamental characteristics based on a set of indicators which can be directly
determined even by portable devices.

Regarding the evaluation procedure for the probability distributions, it is worth
noting that every probability distribution which will be tested will belong to the category
of continuous and univariate probability distributions. Moreover, complex or hybrid
probability distributions will also notbe considered in order to avoid further and more
increaseddifficulty in the implementation of the proposed method and the consequently
reduced practicality.

The evaluation will be carried out in three stages, as will be discussed later and in more
detail. At first, the applicability of the selected probability distributions regarding modeling
of surface profile after AWJ milling will be evaluated based on Rsk and Rku indicators.
These two indicators determine the morphology of the height distribution to a large extent;
thus, they should be more accurately predicted in order to ensure that the simulated profile
exhibits the same tribological or wear properties as the real one. Ba et al. [46] selected
Rsk and Rku as important roughness parameters along with functional parameters such
as Rk, Rpk and Rvk, mentioning that thesehave a more direct relation to the tribological
properties of surfaces than height parameters such as Ra, Rz or Rt. Dzierwa [47] noted
that roughness plays a significant role on friction levels but that theparameters usually
employed by designers cannot describe contact surfaces appropriately, whereas parameters
such as Rsk, Rku can be correlated with a friction coefficient, as well as with more advanced
parameters such as average slope of the profile ∆a or core roughness depth Rk. In this work,
the author attempted to correlate roughness parameters with friction and wear parameters,
deducing that kurtosis is correlated with wear volume and friction force, whereas skewness
in some cases can alsobe related to wear volume. Sedlaček, Podgornik and Vižintin [48]
performed grinding and polishing experiments in order to produce specimens with similar
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Ra but different Rsk and Rku values. Based on the analysis of their experiments, they were
able to observe that higher Rku and negative values of Rsk lead to a decrease in friction.
Ba et al. [49] also underlined the necessity to use parameters other than Ra or Rq, such as
Rsk and Rku, in order to characterize the surface quality more comprehensively, especially
regarding tribological parameters. In their work, they showed that, although both Rsk
and Rku are related theoretically to the tribological characteristics of surfaces, given that
most authors regard surfaces with negative Rsk and Rku > 3 as ideal, Rsk can be used
todistinguish surfaces with similar Ra but that are produced by different processes e.g.,
turning or milling, as it has also been previously shown that different processes can be
distinguished based on more advanced roughness indicators [50].

Then, the ability of these probability distributions toalso model Ra and Rz values,
based on the experimental measurements, will also be assessed, as it is not possible to
regulate Rsk, Rku, Ra and Rz simultaneously with every type of probability distribution, at
least without a significant deviation from the experimental values. Finally, given that the
magnitude of peaks and valleys in the roughness profile (characterizing the existence and
specific volume of material and voids on the surface, respectively [51]), as well as their ratio,
mentioned also as a solidity factor parameter [52] and regarded as an alternative to the
emptiness coefficient Rp/Rz [48], is also important from a tribological point of view [52–55],
the accuracy of predicting Rp and Rv will be assessed. Given that the ratio of these values
has a close relation to the values of Rsk, it is anticipated that a successful modeling of Rsk
will ensure an appropriate representation of Rp and Rv and also the accurate prediction of
Rz will probably impact the prediction of Rp and Rv favorably.

The present work aims to determine a suitable alternative methodology for creating
reliable simulated profiles based on multiple roughness indicators beyond Ra and Rz. In
fact, while conventional height parameters such as Ra or Rz are commonly employed in
order to surface roughness of workpieces, their value in product design can be limited.
Given that these parameters only provide information about the amplitude of the roughness
but not regarding its complexity or anisotropy, such as parameters related to direction or
orientation of surface roughness, the effect of a machining process on the functionality of a
surface cannot be totally explained by the height parameters [56]. For that reason, advanced
methods for surface roughness profile analysis, such as fractal analysis, can provide a
deeper insight into the nature of the surfaces under different conditions and also lead to
the establishment of correlations between them and friction and wear properties [57,58].
For example, the analysis of the fractal characteristics of surfaces can provide details
about the lubrication characteristics [59], such as the resistance to the flow or lubrication
film thickness [30].

However, although these analyses are considered beyond the scope of the present
work, which is mainly focused on the determination of the capability of statistical dis-
tributions to accurately model different height parameters, the inclusion of Rsk and
Rku parameters, which can provide more complex details about the surface character-
istics compared withsimple height parameters, such as Ra and Rz, can render this work
sufficiently comprehensive.

2.2. Description of Research Methodology

In the first stage of the present work, a selection of different continuous univariate
probability distributions will be conducted in order for them to be used tomodel the height
distribution of roughness profiles under different conditions. Some of these functions
arealso being used for modeling other quantities relevant to machining processes, e.g., tool
wear progression, but have not yet beenused for the proposed task. Obviously, non-
continuous or multivariate distributions or distributions which cannot provide realistic
value for the different surface roughness indicators, as described in detail below, were ruled
out from the investigations. Furthermore, complicated probability distributions, requiring
higher computational burden, will also be avoided in order to retain the practical nature of
the proposed approach.
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More specifically, the first stage of the evaluation will be focused on the skewness
(Rsk) and kurtosis (Rku) parameters. Both parameters are crucial for the characterization
of surfaces, as they determine their functionality and can be regarded as distinct features
related to a specific process. If Rsk and Rku parameters are plotted in a common graph, the
values of (Rsk, Rku) pairs can be related to different processes according to their position
on the graph, based on experimental evidence, and as shown in the relevant literature [55].

Given that each statistical probability distribution is related to different skewness
and kurtosis values, which may be either constant or variable, the accuracy of predicting
the experimental roughness indicators will be different for each distribution. Thus, it is
important to evaluate the deviation of the Rsk and Rku values of the generated rough
surfaces fromthose of thereal rough surfaces. The most suitable parameter values of the
distributions will be selected for the second stage. It is to be noted that the optimum
parameter values for the statistical distribution, determined by an optimization approach
based on the achievable convergence for the defined objectives (Rsk, Rku–Ra, Rz–Rp, Rv),
may not yield the exact desired value, as an analytic solution, but the error is negligible
and does not affect the conclusions.

More specifically, during the first stage of investigations the following probability
distributions will be used: Gaussian (normal) distribution, Rayleigh distribution, gamma
distribution, asymmetric generalized normal distribution, skew normal distribution and
Weibull distribution.In each case, the probability density function (PDF) is described by
Equations (1)–(6), respectively [60,61]:
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In Equation (1), µ represents the mean value andσ the standard deviation; in Equation (3),
Γ represents the gamma function, k is a shape parameter and θ a scale parameter; in
Equation (4), ξ is a location parameter, α a scaling parameter and κ a shape parameter, in
Equation (5) ξ is a location parameter, ω a scale parameter and α a shape parameter; and in
Equation (6), k is a shape parameter and λ is a scale parameter. In Equation (4), φ represents
the standard normal PDF and y is given by:

y =

{
−1
κ log

[
1 − κ(x−ξ)

α

]
, i f κ ̸= 0

x−ξ
α , i f κ = 0

(7)

As a second stage, the capabilities of the probability distributions regarding the
modeling of other roughness indicators, such as Ra and Rz, will alsobe investigated. Finally,
the different distributions will be evaluated based on their overall accuracy during the
third stages, which will also involve Rp and Rv indicators. In Figure 1, a schematic relevant
to the proposed methodology is presented. It is to be noted that the question marks (“?”)
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in Figure 1 indicate each of the three stages of the evaluation of the different probability
distributions.
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In conclusion, the proposed investigation aims to highlight the strengths and lim-
itations of different probability distributions regarding the modeling of rough surfaces
produced during AWJ milling, based on a set of indicators which are more advanced
than Ra and Rz, but which can be determined even by simple devices, such as portable
stylus-type roughness measurement devices, without the need tousea more expensive 3D
profilometer. Moreover, the use of more advanced parameters, such as those pertinent to
the material ratio curve or parameters related to exact recording roughness profile will be
avoided. This approach is rather low cost as it does not involve a complicated framework
of statistical tools that are difficult to be implemented by non-experts, andneitherwill it
require very specialized software.

The derived curves which can predict the characteristic properties of a surface with
high accuracy can provide useful insight about potential tribological behavior, wear and
also lubrication etc. and may be used in simulations to achieve a more realistic result.

2.3. Experimental Details

For the development of the aforementioned statistical probability distribution models,
experimental data from an actual experiment on the AWJ machining of pockets using an
eco-friendly abrasive, namely walnut shell, will be used. Using aTaguchi L9 orthogonal
array, experiments under different jet pressures, abrasive mass flow rates and standoff
distance values were carried out at three levels each, as can be seen in Table 1. The experi-
ments were performed in an HWE-1520 H.G. RIDDER Automatisierungs GmbH machine
(H.G. RIDDER H., Hamm, Germany). Rectangular pockets were created on a titanium
grade 2 (commercially pure titanium) workpiece with eco-friendly walnut shell abrasives
(HERUBIN, Dobra, Poland) by adopting a zig-zag strategy, e.g., straight paths with alter-
nating velocity. The factors which were kept constant during the experiments include the
traverse feed rate (100 mm/min), the jet impingement angle (90◦) and the stepover value
(0.6 mm). The nominal size of the rectangular pockets was 30 mm × 9.6 mm. After the
experiments were conducted, surface roughness indicators were measured using VHX-7000
ultra-deep-field microscope (KEYENCE, Mechelen, Belgium). The cutoff (denoted as λc)
used for the filtering of roughness profile was chosen based on ISO 4288-1996 standard [62],
given the magnitude of the Ra values. As the Ra values were between 2 and 10 µm in cases
1, 2 and 6, λc was selected as 2.5 mm and the evaluation length 12.5 mm, whereas for the
other cases, λc was selected as 8 mm and the evaluation length 40 mm.In total, the values
of six different indicators, including Ra, Rz, Rp, Rv, Rsk and Rku, were measured and will
be used for the development of the roughness models. More specifically, Ra is an indicator
which represents the average surface roughness calculated as the arithmetic average of
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height deviations from the mean line, Rz is an indicator which is defined as the maximum
peak-to-valley height of the roughness profile, and the Rp and Rv indicators represent the
maximum peak height above the mean line and maximum valley depth below the mean
line, respectively. Additionally, Rsk represents the third standardized moment of height
profile, namely skewness, which is related to the degree of asymmetry of the profile about
the mean line. Finally, the Rku indicator represents the fourth standardized moment of
height profile, which is related to the intensity of features of the roughness profile about
the mean line.

Table 1. Values of surface roughness indicators from the AWJ pocket milling experiments.

Case h (mm) ma (g/s) P (MPa) Ra (µm) Rz (µm) Rp (µm) Rv (µm) Rsk (−) Rku (−)

1 3 2 150 6.622 28.694 14.537 15.408 −0.046 2.098
2 3 4 250 5.756 25.758 15.543 15.240 −0.118 2.524
3 3 6 350 78.207 426.930 205.123 234.357 −0.570 2.360
4 7 2 250 11.746 53.598 24.966 28.706 −0.104 2.146
5 7 4 350 86.673 460.477 324.185 193.083 0.127 2.690
6 7 6 150 9.933 52.500 24.053 29.997 −0.060 2.300
7 11 2 350 107.450 537.975 216.690 260.027 −0.790 3.010
8 11 4 150 10.447 59.740 33.333 26.407 0.233 2.777
9 11 6 250 13.730 79.767 40.567 39.203 0.140 2.823

3. Results
3.1. Evaluation of Rsk and Rku Prediction Based on Different Probability Distributions

The first stage of investigations will involve the evaluation of the applicability of
different probability distributions in the case of surface roughness during AWJ milling of
blind pockets, witha focus on skewness and kurtosis. As has been previously explained, it
is assumed that the height distribution of the roughness profile can be modeled by each
of the different probability distributions, with probability density functions described by
Equations (1)–(5). In the case of normal or Gaussian distribution, the skewness and kurtosis
values are fixed and independent from the values of mean and standard deviation of the
distribution, as can be seen from Equation (1), given that there are no additional parameters
to alter the scaling or shape of this distribution. Thus, in every case, the adoption of a
Gaussian distribution for the modeling of the surface roughness profiles can lead to the
generation of surfaces with skewness equal to 0 and kurtosis equal to 3. Thus, the height of
the profile will be symmetrically distributed around the mean value, implying that neither
the peaks nor the valleys of the surface will be dominant nor that the surface will exhibit
considerably sharp peaks. Although this assumption may seem unrealistic, it can be seen
from the results of Table 1 that, in some of the cases e.g., 1 or 6, skewness values are very
close to 0 and also that kurtosis is close to 3.0 in several cases, such as 5, 7, 8, 9. More
specifically, for kurtosis values between 2.7 and 3.3, the percentage error in comparison
withthe kurtosis of the normal distribution is, at most, 10%, which is often regarded as an
acceptable limit for prediction. As a result, the surface profile could be modeled by the
normal distribution in some cases, but it is not possible to achieve both accurate values for
Rsk and Rku. In Figure 2, an indicative surface roughness profile generated by random
samples from a normal distribution is depicted and, in Figure 3, its corresponding height
distribution is plotted in order to verify the validity of the aforementioned statements.
From Figures 2 and 3, it can be directly observed that the anticipated characteristics based
on the constant skewness and kurtosis values are evident as both peaks and valleys occur
in the profile and the distribution of height is mainly symmetrical around the mean line.
Finally, in Table 2 the suitability of the normal distribution for predicting skewness and
kurtosis values is evaluated by calculating the errors between Rsk and Rku values from the
experimental cases and theoretical Rsk and Rku. In the last two columns of Table 2, for the
sake of clarity, a qualitative evaluation of the accuracy of the predicted Rsk and Rku values
is depicted, with the abbreviation A indicating predicted values with an acceptable value of
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error (defined as error<10%), MA indicating predicted values with a marginally acceptable
value of error (defined as 10% < error < 20%) and U indicating predicted values with an
unacceptable value of error (defined as error > 20%). Furthermore, it has to be noted that,
based on the conventional percentage error definition, the error of Rsk is 100% for each case
as the theoretical Rsk is zero, thus this error cannot directly reflect the difference between
theoretical and experimental values andnot applicable (N/A) is mentioned in Table 2
instead. The results of Table 2 suggest that, though the kurtosis of normal distribution
is constant, it can still provide surfaces with almost acceptable values of error in some
cases but, given that skewness cannot be altered, the use of normal distribution cannot
be recommended when seeking to model the roughness profile of pockets produced by
AWJM process.
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Table 2. Comparison of the values Rsk andRku from the normal distribution (theoretical values) and
experimental values (please note the abbreviations A: acceptable error, MA: marginally acceptable
error, U: unacceptable error, N/A: not applicable).

Case Rsk,
Theor.

Rku,
Theor. Rsk, Exp. Rku, Exp. Error Rsk (%) Error Rku (%) Evaluation

1 0 3 −0.046 2.098 N/A −42.993 U U
2 0 3 −0.118 2.524 N/A −18.859 U MA
3 0 3 −0.570 2.360 N/A −27.119 U U
4 0 3 −0.104 2.146 N/A −39.795 U U
5 0 3 0.127 2.690 N/A −11.524 U MA
6 0 3 −0.060 2.300 N/A −30.435 U U
7 0 3 −0.790 3.010 N/A 0.332 U A
8 0 3 0.233 2.777 N/A −8.030 U A
9 0 3 0.140 2.823 N/A −6.270 U A

In the case of Rayleigh distribution, as can be seen from Equation (2), there are no
parameters available for the regulation of scaling or shape of this distribution. In every
case, the fixed values of skewness and kurtosis are 0.631 and 3.245, respectively. As a
result, they exhibit higher variation from the experimentally obtained values and will
not be selected for further investigation as they cannot be applied tocases in whichthe
skewness values can also be negative. In the case of gamma distribution, the skewness and
kurtosis values are not constant but depend on a single parameter, as can be seen from
Equation (3), namely the shape factor, which can regulate both values based on a specific
function. When the shape factor k increases, Rsk and Rku, beginning from relatively large
positive values, will asymptotically reach the values of skewness and kurtosis obtained
by the normal distribution (0 and 3, respectively) for high values of k; however, it seems
that this distribution is more convenient when used tomodel surfaces with high kurtosis
and highly positive skewness (e.g., higher than 1), thus it will also not be considered for
further investigation.

Other types of distribution which can exhibit improved results compared withthe
normal distribution, such as variable skewness with both negative and positive values and
variable kurtosis, include modified terms in order to account for height distributions with
different skewness and kurtosis values. Two relevant distributions are the asymmetric
generalized normal distribution and the skew normal distribution, which aredescribed by
Equations (4) and (5).

In the case of asymmetric generalized normal distribution, the predicted values for Rsk
and Rku are depicted in Table 3 in comparison withthe experimental values. Although this
distribution, mainly by regulating the shape parameter κ andas presented in Equation (4),
can provide the exact values for Rsk, its predictive ability regarding Rku is rather limited.
This is because the values of Rku are higher than 3.0, meaning that kurtosis is overestimated
in every case, mostly above the acceptable limits. Thus, although this distribution offers
higher flexibility when modeling surfaces with both negatively and positively skewed
height distributions, its inability to accurately depict surfaces with Rku < 3 is a signifi-
cantreason tonot select this distribution as a potentially useful one for modeling the surface
roughness profile of pockets created by AWJM.

In the case of the skew normal distribution, the predicted values for Rsk and Rku
are depicted in Table 4 in comparison with the experimental values. It can be seen that
the results are mostly similar to the results of Table 3, indicating a close resemblance to
the results of asymmetric generalized normal distribution. The predicted Rsk and Rku
values for this distribution can be regulated by changing the values of shape parameter α
from Equation (5) in order to create profiles as close as possible to the experimental ones.
The results of Table 4 suggest that, although skew normal distribution can also predict
Rsk with high accuracy, it tends to overestimate Rku in most cases, above the acceptable
limits. Although this distribution is also more flexible than the normal distribution and
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can model both negatively and positively skewed surfaces, it cannot be used for creating
highly accurate surface profiles for pockets machined by AWJ.

Table 3. Comparison of the values Rsk andRku from the asymmetric generalized normal distribution
(theoretical values) and experimental values (please note the abbreviations A: acceptable error,
MA: marginally acceptable error, U: unacceptable error).

Case Rsk,
Theor.

Rku,
Theor. Rsk, Exp. Rku, Exp. Error Rsk (%) Error Rku (%) Evaluation

1 −0.046 3.004 −0.046 2.098 0.457 43.174 A U
2 −0.118 3.025 −0.118 2.524 0.008 19.840 A MA
3 −0.570 3.584 −0.570 2.360 0.074 51.866 A U
4 −0.104 3.019 −0.104 2.146 0.163 40.694 A U
5 0.127 3.029 0.127 2.690 0.024 12.591 A MA
6 −0.060 3.006 −0.060 2.300 0.017 30.713 A U
7 −0.790 4.131 −0.790 3.010 0.041 37.235 A U
8 0.233 3.097 0.233 2.777 0.006 11.511 A MA
9 0.140 3.035 0.140 2.823 0.199 7.509 A A

Table 4. Comparison of the values Rsk andRku from the skew normal distribution (theoretical
values) and experimental values (please note the abbreviations A: acceptable error, MA: marginally
acceptable error, U: unacceptable error).

Case Rsk,
Theor.

Rku,
Theor. Rsk, Exp. Rku, Exp. Error Rsk (%) Error Rku (%) Evaluation

1 −0.046 3.014 −0.046 2.098 0.075 43.681 A U
2 −0.118 3.051 −0.118 2.524 0.014 20.865 A U
3 −0.570 3.414 −0.570 2.360 0.081 44.654 A U
4 −0.104 3.043 −0.104 2.146 0.061 41.790 A U
5 0.127 3.056 0.127 2.690 0.000 13.600 A MA
6 −0.060 3.021 −0.060 2.300 0.148 31.330 A U
7 −0.790 3.639 −0.790 3.010 0.003 20.891 A U
8 0.233 3.125 0.233 2.777 0.029 12.548 A MA
9 0.140 3.063 0.140 2.823 0.000 8.522 A A

Another option which will be considered is the use of the Weibull distribution. The
Weibull distribution, as can be seen in Equation (6), has additional parameters, like the
gamma, asymmetric generalized normal and skew normal distributions, but it can achieve
more favorable values regarding the modeling of the skewness and kurtosis of height
distribution in the present case, not only for surfaces with height distribution close to
the Gaussian distribution. Moreover, it is important to note that, in contrast withnormal,
Rayleigh and gamma distributions, the Weibull distribution can generate surfaces with
both negative and positive skewness by simply varying the shape parameter. It is also
important to note that the variation of kurtosis is not monotonic, allowing for more complex
combinations to be achieved [63,64]. However, it is still not possible to alter the skewness
and kurtosis independently. In Table 5, results regarding the Rsk and Rku values which can
be obtained through Weibull distribution are compared withthe experimental ones. As the
achievement of a more exact value for Rsk is considered more important, the determination
of these values was based mostly on the Rsk value. Thus, given that Rku cannot be
regulated independently, the error values for Rku are anticipated to be higher. In the last
two columns, a qualitative evaluation is carried out regarding the degree of error in every
case, as was conducted previously. In Table 5, it can be seen that it is possible to create
a Weibull distribution for surface profile height with the same value of Rsk but that the
Rku values vary in each case. For example, for the results of the experimental cases 2, 5,
8 and 9, the error of Rku values is below 10%, indicating that in these cases the surface
characteristics described by the Rsk and Rku indicators can be sufficiently modeled using
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the Weibull distribution. These cases correspond withexperimental conditions, such as
moderate-to-high jet pressure and abrasive mass flow rate. The results of Table 5 suggest
that, though the kurtosis values exhibit increased error values in some cases, in more
than half of the studied cases, surfaces with both skewness and kurtosis values close to
the experimental ones can be created by the proposed approach, so that the use of the
Weibull distribution can be recommended when modeling the roughness profile of pockets
produced by the AWJM process under various conditions.

Table 5. Comparison of the values Rsk andRku from the Weibull distribution (theoretical values) and
experimental values (please note the abbreviations A: acceptable error, MA: marginally acceptable
error, U: unacceptable error).

Case Rsk,
Theor.

Rku,
Theor. Rsk, Exp. Rku, Exp. Error Rsk (%) Error Rku (%) Evaluation

1 −0.046 2.730 −0.046 2.098 −0.065 −30.123 A U
2 −0.118 2.765 −0.118 2.524 −0.322 −9.556 A A
3 −0.571 3.410 −0.570 2.360 −0.170 −44.477 A U
4 −0.104 2.757 −0.104 2.146 −0.033 −28.461 A U
5 0.127 2.718 0.127 2.690 −0.176 −1.031 A A
6 −0.061 2.736 −0.060 2.300 −0.345 −18.944 A MA
7 −0.793 4.014 −0.790 3.010 −1.316 −33.369 A U
8 0.233 2.760 0.233 2.777 −0.086 0.628 A A
9 0.140 2.721 0.140 2.823 −0.286 3.616 A A

Thus, it can be concluded that the comparison of predicted and experimental results
shows rather promising indications, as the modeling of height distribution for surfaces
without symmetric height distribution by the Weibull distribution can be successful in
several cases and with high precision. This is especially so when compared withthe normal
distribution, which is often used for modeling rough surfaces after machining, in which
case itcan clearlyprovide more realistic surfaces.

In Figure 4 an indicative surface roughness profile generated by random samples
from a Weibull distribution is depicted and in Figure 5 the respective height distribution is
plotted in order to verify that the profile using the Weibull distribution is clearly skewed.
From Figure 4, it can be directly observed that the anticipated characteristics based on
the given skewness and kurtosis values are evident as the valleys are more dominant in
the profile of the negatively skewed surface. In Figure 6, the suitability of the Weibull
distribution for each experimental point is directly depicted in the Rsk–Rku graph when
compared withthe experimental data.
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3.2. Evaluation of Ra and Rz Prediction Based on Different Probability Distributions

For the second stage of the evaluation of the probability distributions, only the best per-
forming of these, namely the Weibull distribution, will be investigated, along with normal
distribution, which will serve as reference for the comparison. During this investigation,
it will be assumed that the average roughness, Ra, corresponds witha modified expected
value of each statistical distribution, given that it does not represent the average value of
the height distribution but the average of its deviations from the mean line.Additionally,
the Rz value corresponds withthe 95% confidence interval for the statistical distributions
and can be estimated by the cumulative density function (CDF) [65]. Thus, the respective
Ra and Rz values will be determined in each case, taking into consideration the parameter
values used toobtain the Rsk and Rku values during the previous step as well.
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In the case of the Weibull distribution, given the optimum values of the shape pa-
rameter, determined during the previous step of the investigation, it is possible to directly
determine a suitable value of the scale parameter in order for the Ra values to be equal to
those of the experiments. In the case of Rz values, as can be seen in Table 6, the predicted
values also exhibit quite high accuracy, especially in cases 1, 2, 4, 5, 6 and 7, meaning
that, in various cases, the surface roughness profiles related to AWJ milling, regarding
both the average value and range, can be adequately predicted using an appropriate
Weibull distribution.

Table 6. Comparison of values of Rz from the Weibull distribution (theoretical values) and experi-
mental values (please note the abbreviations A: acceptable error, MA: marginally acceptable error,
U: unacceptable error).

Case Rz,
Theor. Rz, Exp. Percentage Error (%) Evaluation

1 28.694 31.600 10.128 MA
2 25.758 25.800 0.163 A
3 426.930 370.700 −13.171 MA
4 53.598 56.350 5.135 A
5 460.477 412.000 −10.528 MA
6 52.500 48.200 −8.190 A
7 537.975 501.500 −6.780 A
8 59.740 47.530 −20.439 U
9 79.767 64.460 −19.190 MA

On the other hand, the normal distribution has a clear advantage towards the predic-
tion of the exact values for Ra and Rz, given that the mean and variance of the probability
distribution can be independently altered. This result implies that, in the case with low
skewness and kurtosis close to 3.0, the normal distribution can simulate the machined sur-
face with a high accuracy based on the values of four different surface roughness indicators.

3.3. Evaluation of Rp and Rv Prediction Based on Different Probability Distributions

Finally, the capabilities of different probability distributions will be compared regard-
ing the values of Rp and Rv. Based on the results of the previous subsection, one can see
that, although the Weibull distribution cannot achieve theprediction of the exact experimen-
tal values for both Ra and Rz simultaneously, it is possible that a good approximation of Rz
can be provided. Thus, based on the fact that the Weibull distribution can also predict Rsk
accurately, it may be able to predict the Rp and Rv values. On the other hand, the normal
distribution can predict the exact Rz value, but, due to its zero skewness, assumes that
Rp = Rv, something that is not correct in most experimental cases. The results produced
by the Weibull distribution are presented in Table 7, indicating the anticipated limitations
of the probability distributions to match the Rp and Rv values. In fact, regarding the Rp
values, acceptable accuracy was observed only in cases 1, 4 and 7, indicating that the peak
height is relatively difficult to predict with a high degree of accuracy. On the other hand,
the degree of accuracy for the prediction of Rv is fairlyhigh, with error values below 10%
for cases 1, 3–7.

However, the results should alsobe evaluated from another perspective, that of practi-
cal application. For many applications, only Ra is taken into account as a consideration
and most authors have identified the importance of Rsk and Rku regarding the friction and
wear properties of the surface. Similarly, regarding Rp and Rv andbased on the relevant
literature [52–55], it has been pointed out that the ratio of these two indicators is more
important than their nominal values, given that the ratio Rp/Rv characterizes the volume
of material and voids on the profile.
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Table 7. Comparison of the values of Rp and Rv from the Weibull distribution (theoretical values) and
experimental values (please note the abbreviations A: acceptable error, MA: marginally acceptable
error, U: unacceptable error).

Case Rp, Theor Rp, Exp. Rv, Theor. Rv, Exp. Percentage
Error (%)

Percentage
Error (%) Evaluation

1 15.616 14.537 16.384 15.408 7.420 6.336 A A
2 12.426 15.543 13.375 15.240 −20.057 −12.241 U MA
3 152.331 205.123 218.369 234.357 −25.737 −6.822 U A
4 27.231 24.966 29.118 28.706 9.072 1.437 A A
5 212.332 324.185 189.668 193.083 −34.503 −1.769 U A
6 19.563 24.053 28.637 29.997 −18.667 −4.534 MA A
7 225.474 216.690 276.026 260.027 4.054 6.153 A A
8 25.209 33.333 22.321 26.407 −24.372 −15.473 U MA
9 33.360 40.567 31.100 39.203 −17.766 −20.669 MA U

In Table 8, the values of the ratio Rp/Rv from the experiments and the respective val-
ues resultingfrom the Weibull distribution are depicted. As can be seen, in most cases, such
as 1, 2, 4, 7, 8, and 9, the values are below or close to 10%.As a set of parameters, including
Rsk, Rku and Rp/Rv, is often considered during the evaluation of critical components, such
as implants [52,66,67], the ability to capture their values by the proposed methodology
isimportant. Finally, these results indicate that, although in some cases the exact prediction
of nominal values of individual roughness indicators cannot be realized, the modeling of
roughness profiles using statistical probability distributions, such as the Weibull distribu-
tion, can essentially provide a higher degree of realism thanGaussian surfaces, and without
involving a high computational cost or complex calculations.

Table 8. Comparison of the values of Rp/Rv from the Weibull distribution (theoretical values) and
experimental values (please note the abbreviations A: acceptable error, MA: marginally acceptable
error, U: unacceptable error).

Case Rp/Rv,
Theor. Rp/Rv, Exp. Percentage Error (%) Evaluation

1 0.953 0.943 1.019 A
2 0.929 1.020 −8.907 A
3 0.698 0.875 −20.300 U
4 0.935 0.869 7.528 A
5 1.119 1.679 −33.324 U
6 0.683 0.802 −14.805 MA
7 0.817 0.833 −1.977 A
8 1.129 1.262 −10.527 MA
9 1.073 1.035 3.660 A

4. Conclusions

In this work, an evaluation of the possibility of the use of various statistical probability
distributions for the purpose of modeling surface roughness profiles during AWJ pocket
milling is carried out. A three-stage evaluation procedure was carried out in order to
determine whether the six selected probability distributions were able to be used to predict
the values of different surface roughness indicators. After the investigations were carried
out, several important conclusions were able to be drawn.

Regarding both the Rsk and Rku values, which are important for the characterization
of the tribological and lubrication properties of the surfaces, the Weibull distribution
exhibited the highest potential, as it can directly approximate Rsk and can also predict Rku
inseveral cases, based on appropriate values of the shape parameter. On the other hand,
distributions lacking a special shape parameter, such as the normal distribution, are not
ableto approximate the values of these parameters, apart from in specific cases.
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Average surface roughness Ra can be easily approximated by every distribution, due
to their mean or scale-related terms. The Weibull distribution can lead to high levels of
accuracy in several cases for fixed Rsk, Rku and Ra values compared withthe experimentally
derived value of Rz, whereas the normal distribution can directly predict both Ra and Rz,
due to its terms which can be independently related to the mean and the variance of the
height distribution.

Although the nominal values of the Rp and Rv indicators cannot be directly andsi-
multaneously predicted for every case, either by the Weibull distributionor the normal
distribution, given that it predicts zero skewness values, it has beenshown that their ratio,
which has a significant practical importance regarding friction and wear properties, can be
approximated with acceptable error levels in most cases by the Weibull distribution.

In conclusion, thisthorough three-stage investigation has revealed that, although it
is not possible to simultaneously predict the values of every roughness indicator in the
case of the AWJ milling of pockets, the proposed methodology successfully leads to the
modeling of the height distribution of the surface profile, leading to the approximation of
crucial indicators of practical significance, such as Ra, Rz, Rsk, Rku and Rp/Rv, and with
adequate precision in several cases. Based on this methodology, it is possible to generate
more realistic rough surfaces than those usually used under the assumptions of normally
distributed height or that rely only on Ra and Rz, without high computational cost.
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15. Kundrák, J.; Felhő, C. Topography of the machined surface in high performance face milling. Procedia CIRP 2018, 77, 340–343.

[CrossRef]
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