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Abstract: Urban expansion is considered as one of the most important problems in several developing
countries. Bangkok Metropolitan Region (BMR) is the urbanized and agglomerated area of Bangkok
Metropolis (BM) and its vicinity, which confronts the expansion problem from the center of the
city. Landsat images of 1988, 1993, 1998, 2003, 2008, and 2011 were used to detect the land use and
land cover (LULC) changes. The demographic and economic data together with corresponding
maps were used to determine the driving factors for land conversions. This study applied Cellular
Automata-Markov Chain (CA-MC) and Multi-Layer Perceptron-Markov Chain (MLP-MC) to model
LULC and urban expansions. The performance of the CA-MC and MLP-MC yielded more than
90% overall accuracy to predict the LULC, especially the MLP-MC method. Further, the annual
population and economic growth rates were considered to produce the land demand for the LULC
in 2014 and 2035 using the statistical extrapolation and system dynamics (SD). It was evident that
the simulated map in 2014 resulting from the SD yielded the highest accuracy. Therefore, this study
applied the SD method to generate the land demand for simulating LULC in 2035. The outcome
showed that urban occupied the land around a half of the BMR.

Keywords: urban land use; urbanization; urban expansion; cellular automata; markov chain;
multi-layer perceptron; system dynamic; Bangkok Metropolitan Region

1. Introduction

In the past three decades, the cities in developing countries have experienced a rapid increase
in the rate of the population growth. According to the world urbanization prospects 2014 revision,
the trend in urbanization recently has been focusing on the population transition between urban and
rural [1]. Developing land for an urbanization and migration of people from rural areas is a global
phenomenon. The statistical report endorses that about 53 percent of the population live in urban
areas in 2015. About 77 percent of those people living in urban areas come from developed countries
and 48 percent come from developing countries [2]. This change in urban population is continuously
increasing year by year. By 2035, the world’s population living in urban areas will reach 5000 million,
principally in African and Asian countries [3]. This situation will result in land use, economic, and
environmental deterioration problems if each country does not have a suitable approach for better
urban planning.
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Bangkok Metropolis (BM) is one of the largest primary cities in Southeast Asia [4]. BM has
expanded rapidly in both size and population since the 1960s. Local organizations have tried to
improve the management to keep up with the changes; however, it fails to stop the growth. The issue
of the primacy of the city of Bangkok is even more pronounced. The main cause is that BM has defined
roles in the National Social and Economic Development Plan (NESDP) virtually in every issue for
the prosperity of the country in all forms [5]. It is the administrative center of the country, as well as
the center of investment in real estate development, various business services, and industrial center.
This results in the expansion of the built-up area in its vicinity and the characteristics of a metropolitan
region have become more noticeable.

There is a policy to develop major and minor cities in each region of the NESDP to decentralize BM.
In contrast, the NESDP continues to promote the development of the metropolitan region that combines
BM and five surrounding provinces called Bangkok Metropolitan Region (BMR). The metropolitan
role of the BM focuses on supporting the diversification of production and serves as a residential area
to prevent the evacuation of the population. The urbanization pattern in the BMR was initially found
along the Chao Phraya River and then expanded itself along the transportation network and centers of
minor cities. Nowadays, the major transportation network plays as an important factor in extending
the urban areas [6].

Presently, land use and land cover (LULC) analysis has been extensively used to monitor urban
expansion forms in specific space and time. Many satellite images have been used by scientists to
comprehend the spatial-temporal evolution of an urban area [7]. However, they could not account the
need for prediction of future LULC without an incorporation of land use models [8,9]. These models
are powerful techniques that can support the policy making and future land demand evaluation, and
simulate the spatial pattern of the land use based on the driving factors [10]. The LULC simulation
models in an urban study are developed from the theories of urban morphology and dynamic process
of LULC to forecast the urban expansion in different patterns and scales [11,12]. Those models can
be categorized into four types: (i) empirical and statistical models such as Markov Chain (MC),
logistic regression, etc. [13,14]; (ii) dynamic models such as cellular automata (CA), agent-based model
(AGB), genetic algorithm (GA), artificial neural network (ANN), system dynamic (SD), etc. [15–21];
(iii) integrated models such as conversion of land use and its effects at small regional extent (CLUE-S)
and Dyna-CLUE [22]; and (iv) hybrid models, like Metronamica, land transformation model (LTM),
land change modeling (LCM), SLUETH, etc. [23–29]. They are composed of the affirmation models,
which consider the past changes in the calibration step, and a sigmoidal pattern of the goodness of fit
in the change potential function [30–32].

To understand the urban expansion phenomena and LULC in BMR, this current study tries to
address the complex phenomenon of the urban context by integrating physical, demographic, and
economic data into the LULC model to calibrate and simulate the future land use change from the base
year 2014. This study also employs a multi-criteria evaluation and multilayer perception to determine
the driver factors from the CA-MC and LCM, respectively. Moreover, the projected population and
economic growth rates are applied to compute the transition probability by extrapolation, MC, and SD
to simulate the urban LULC in 2035.

2. Study Area

BMR is known as the biggest urban agglomeration in Thailand. It consists of BM and five
bordering provinces, Nakhon Pathom, Pathum Thani, Nonthaburi, Samut Prakan and Samut Sakhon,
which are located in the lower part of Chao Phaya Delta. The total area covers about 7762.00 km2

(Figure 1) [33].
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Figure 1. Study Area. 

The registered population in the BMR is about 11 million in 2014. More than half of the 
population lives in BM with the population density of 5258 people per km2. Samut Prakan is the 
second most populous province and it is also a Southeast Asian air transportation hub. The third 
province is Nonthaburi, which plays an important role as the government center and the major 
residential zone of the region. Pathum Thani is the center for education and research centers for 
science and technology as well as industrial and residential zones supporting the population in the 
Northern part. The other two provinces, Nakhon Pathom and Samut Sakhon, are the least populated. 
Both cities have a role in supporting the settlement of the population in the East as well as a space for 
agricultural activities and fishing [34]. Approximately 75 percent of the land in BMR is utilized for 
agriculture. The second largest LU is urban and built-up area, accounting for approximately 20 
percent. The other LUs are water, miscellaneous, and forest, sequentially. In the case of economics, 
BMR has a major role in driving the Gross Domestic Product (GDP) of Thailand because it is the 
center of economic activities. Around 97 percent of Gross Regional Product (GRP) in BMR comes 
from non-agriculture sections, which BM serves as the primary source [35].  

3. Data and Methodology 

In order to simulate the future urban LULC of BMR, this study implemented four major 
processes. The first process was the extraction of LULC data from the satellite images for several 
years. The second process was that of data input preparation for urban LULC modeling. This was 
the most important step to prepare the data set for each simulation period. In the third process, an 
analysis of the urban LULC change was taken into account to identify the major classes that had 
changed in each specific period. The last process was to model the urban LULC change using IDRISI 
Selva software packet version 17 developed by Clark Labs, Clark University [36]. The details of these 
four processes are explained in the following sections, and the overall operation of the methodology 
is shown in Figure 2. 
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The registered population in the BMR is about 11 million in 2014. More than half of the population
lives in BM with the population density of 5258 people per km2. Samut Prakan is the second most
populous province and it is also a Southeast Asian air transportation hub. The third province is
Nonthaburi, which plays an important role as the government center and the major residential zone of
the region. Pathum Thani is the center for education and research centers for science and technology
as well as industrial and residential zones supporting the population in the Northern part. The other
two provinces, Nakhon Pathom and Samut Sakhon, are the least populated. Both cities have a role in
supporting the settlement of the population in the East as well as a space for agricultural activities
and fishing [34]. Approximately 75 percent of the land in BMR is utilized for agriculture. The second
largest LU is urban and built-up area, accounting for approximately 20 percent. The other LUs are
water, miscellaneous, and forest, sequentially. In the case of economics, BMR has a major role in
driving the Gross Domestic Product (GDP) of Thailand because it is the center of economic activities.
Around 97 percent of Gross Regional Product (GRP) in BMR comes from non-agriculture sections,
which BM serves as the primary source [35].

3. Data and Methodology

In order to simulate the future urban LULC of BMR, this study implemented four major processes.
The first process was the extraction of LULC data from the satellite images for several years. The second
process was that of data input preparation for urban LULC modeling. This was the most important
step to prepare the data set for each simulation period. In the third process, an analysis of the urban
LULC change was taken into account to identify the major classes that had changed in each specific
period. The last process was to model the urban LULC change using IDRISI Selva software packet
version 17 developed by Clark Labs, Clark University [36]. The details of these four processes are
explained in the following sections, and the overall operation of the methodology is shown in Figure 2.
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process, a coupler of image in the same year applied a geometric correction and re-projection into a 
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map from the Royal Thai Survey Department (RTSD). Then the other images were corrected through 
an image-to-image rectification method based on the corrected 2014 image. The total root mean 
square error (RMSE) of each image was assessed to confirm the geometric error, which was less than 
one pixel. Furthermore, the Landsat images were classified into five classes by the maximum 
likelihood classification. This method applies the Bayesian theory [37] to categorize the image data 
into the interested LULC map. The sets of training data were used to predict the probability of each 
pixel being classified in each class. Moreover, an accuracy assessment was applied to confirm the 
quality of the resulted LULC maps by the overall accuracy and Kappa coefficient. The reference data 
to be used in this process were very high resolution images of IKONOS and QuickBird, Landsat 
RGB, and ground truth data provided by Land Development Department (LDD) or gathered 
directly from the field survey. All classified results have an overall accuracy greater than 80% and 
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3.1. Preparation of Satellite Image and LULC Classification

Extracting LULC information from the satellite images is one of the most important processes
in data preparation. Multiple dates of the Landsat data, acquired from the U.S. Geological Survey
(USGS) via the USGS Global Visualization Viewer site, were utilized in this study. The five periods
of satellite images were generated using the Landsat 5-TM images in November of 1998, 2003, 2008,
and 2011 and by Landsat 8-OLI image for 2014 of path/row 129/50 and 129/51. After the mosaic
process, a coupler of image in the same year applied a geometric correction and re-projection into a
common UTM zone 47 North. The first 2014 Landsat image was geo-reference using topographic map
from the Royal Thai Survey Department (RTSD). Then the other images were corrected through an
image-to-image rectification method based on the corrected 2014 image. The total root mean square
error (RMSE) of each image was assessed to confirm the geometric error, which was less than one
pixel. Furthermore, the Landsat images were classified into five classes by the maximum likelihood
classification. This method applies the Bayesian theory [37] to categorize the image data into the
interested LULC map. The sets of training data were used to predict the probability of each pixel
being classified in each class. Moreover, an accuracy assessment was applied to confirm the quality
of the resulted LULC maps by the overall accuracy and Kappa coefficient. The reference data to be
used in this process were very high resolution images of IKONOS and QuickBird, Landsat RGB, and
ground truth data provided by Land Development Department (LDD) or gathered directly from the
field survey. All classified results have an overall accuracy greater than 80% and also a kappa value is
higher than 0.8, which shows perfective agreement.

3.2. Data Input for the Urban LULC Modeling

The affirmation satellite data pre-processing was an important step to extract the LULC in each
year of study. To model the urban LULC, however, there were many input data to collect, such
as demographic, economic data, and other geo-database of physical and environment related to
urban features including topography, transportation network, stream, and administrative boundary.
These data were created and stored in different formats and scaled according to the data owner.
The details of the input data are shown in Table 1.
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Table 1. Input data for the urban land use and land cover (LULC) modeling.

Data Year Scale/Resolution Sources

Demographic data: density of
population and housing, growth rate
of population and housing

1993, 1998, 2003, 2008,
2011, 2014 1:50,000 Department of Provincial

Administration

Economic data: Gross regional and
provincial product

1988, 1993, 1998, 2003,
2008, 2011, 2014 1:50,000

Office of the National
Economic and Social
Development Board

Geo-data base of physical and
environment related to urban features n.d. 1:25,000 to 1:50,000 Bangkok Metropolis

Administration GIS center

Digital Elevation Model (DEM) n.d. 30 m Bangkok Metropolis
Administration GIS center

Demographic data at the sub-district level and economic data at the provincial level were
converted through rasterization, performed using ArcGIS 10.3 (ESRI, Redlands, CA, USA), to produce
the raster input maps. Some distance maps were generated such as distance to river, transportation
network, agriculture, build-up, forest, and miscellaneous to use in the data analysis step. Finally, all
raster inputs were resized into 100-meter resolution.

3.3. Change Analysis

To investigate the changes in an urban area, change analysis is an important process to identify
the areas that have changed between the two time periods of interest. Change analysis is based on the
historical changes that can be assessed between time 1 and time 2 of the LULC maps. The changes
identified are transitions from one LULC state to another within the specific time period. It is likely
that with many LULC classes the potential combination of transitions can be complex. In this study,
a cross-tabulation analysis from the differential times was applied to determine the LULC change over
five periods: 1988–1993, 1993–1998, 1998–2003, 2003–2008, and 2008–2011.

3.4. Urban LULC Modeling

In this section, the study utilized the LULC model to quantify the urban and future LULC
changes as shown in Figure 3. On the whole, the analysis workflow is the following: (i) Cellular
Automata-Markov Chain; (ii) Multi-Layer Perceptron-Markov Chain; (iii) Model validation; and
(iv) Model application. The details of each part are described in the following subsections.
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3.4.1. Cellular Automata-Markov Chain (CA-MC)

It is a combination of a sophisticated method between cellular automata (CA) and Markov
chain (MC). Firstly, CA is a discrete model from disciplines of physics and biology [38]. It adopts
a natural adaptation from the John Conway’s Game of Life [36] to simulate and understand a
complex behavior [39]. The CA consists of four important elements: (i) a grid cell, which is a spatial
unit in a finite cellular space; (ii) the state, each cell also has an individual state in the system;
(iii) a neighborhood, which is a set of surrounding cells in the grid system; and (iv) a transition rule,
which applies a change to the cell state based on specific properties of the cell and its neighborhood.
Secondly, MC is a stochastic process and widely useful technique in examining LULC changes [40].
MC uses the knowledge based probability to predict the entire state of a given time (t2) from an earlier
time (t1) without historical consideration. A transition probability and area matrix are calculated to
illustrate the likelihood of the changes in the pixel status and total area for the next time step [36].
Moreover, a set of condition probability images is also created to identify the probability that areas
will be changed in the next generation. The CA-MC, built in IDRISI Selva version 17 [36], requires
two different periods of LULC maps. The time interval for the future LULC prediction is based on a
number of iterations determined by a user. The 5 ˆ 5 mean filter of the contiguity constraint of the CA
was used for the future land allocation.

3.4.2. Multi-Layer Perceptron-Markov Chain (MLP-MC)

This method uses the combination between multi-layer perceptron (MLP) and MC to predict
the future LULC. The MLP-MC performed in Land Change Modeler (LCM) utilizes three stepwise
processes: change analysis, transition potential modeling and change prediction [28,36]. The details of
each process are examined in detail.

‚ Change Analysis

This step comes with two times of LULC maps like change analysis process. It uses these to
identify the major transitions that can be modeled separately like sub-model in the next step.

‚ Transition Potential Determination

The transition potential analysis is also an important part to determine driver factors that cause
a conversion between a pair of LULC classes [31,41,42]. Some affirmation data were passed through
the Euclidean distance function to generate distance maps. Statistical data such as slope, population,
and economic data are also used to calculate the density and growth rate maps. All of these factors are
shown in Table 2.

Table 2. Definition of driving factors of LULC conversion in each specific time.

Data Detailed Description

Distance to agriculture Distance to any agricultural activity
Distance to BTS and MRT Distance to BTS and MRT line
Distance to built-up area Distance to any man-made construction
Distance to forest Distance to any forest
Distance to main road Distance to any permanent road
Distance to miscellaneous Distance to any open land and grassland
Distance to river Distance to permanent flowing water and surface sources
Distance to urban center Distance to city center
Growth rate of economics Growth rate of GPP
Growth rate of housing Annual growth rate of housing
Growth rate of population Annual growth rate of population
Housing density Housing unit density per square kilometer
Population density Persons per square kilometer
Slope Mean slope in degrees
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In the driving factors identification, Cramer’s V, a popular nominal scale measurement, based
on qui-square, was applied to identify the most associated factors between two categorical maps.
Equation (1) shows the formula of Cramer’s V statistic where ϕ (phi) is the coefficient of contingency
and t is the smaller of the number of rows minus one or the number of columns minus one [41].

V “

c

ϕ2

t
(1)

According to the literature, if the Cramer’s V value is about 0.15 or higher, it means that the
association is useful. Moreover, if its value is greater than 0.4, the association is good [38].

Once all the explanatory factors were tested in each land transition, the LCM adopted MLP to
generate the transition potential maps. The MLP is a feed-forward artificial neural network in which
all data are passed from input layers to output layers. Each neuron calculates a combined value
that is the result of the multiplication of values in the nodes of the previous layer by the connection
weights between the nodes. This combined value is then the input to an activation function of the
node, typically a non-linear activation function such as a sigmoid function [43,44]. Further, a back
propagation training algorithm is typically used for the supervised training of the neural network.
The algorithm iteratively changes the weights of the neural connections between the nodes of the
different layers in such a manner that the error between the nodes’ outputs and their desired outputs
is minimized [45]. In each land transition sub-model of this study, the MLP generates a random set of
sample cells that have and have not experienced the transition. Therefore, each sub-model, consisting
of one transition and two examples of classes, including one transition class and one persistence
class, was fed. The MLP constructs a network of neurons between two example classes and driving
factors, together with a web of connections that consist of sets of weights. Then, the sample cells are
divided into two groups. The first 50% of the sample cells are used for training and the second 50%
for validation [31,45,46]. This process is to develop the relationship between explanatory factors and
activation levels of the transition potential. Thus, the weight has been adjusted to minimize the error to
improve accuracy [46,47]. When the accuracy rate is more than 80% or reaches the maximum iteration
(1000 epochs), the transition potential map of each sub-model, which is an output of the MLP, yields
the suitability of LULC classes for the future period.

‚ LULC Change Prediction

The LCM uses a change prediction process to determine the quality of the future LULC in specific
time modeled by MC. It produces two types of results. The first is a hard prediction model which
results from a projected LULC map through a land allocation function [36]. The second is a soft
prediction which is a comprehensive vulnerability map based on the set of transition. Generally, the
values of the soft prediction outputs are between 0 and 1 [28].

3.4.3. Model Validation

The validation is a process to assess the quality of the simulated LULC results by comparing with
the reference maps from the classified images in the years of 1998, 2003, 2008, and 2011. This study
used the cross tabulation based accuracy assessment to calculate an overall accuracy of each predicted
map [48]. Moreover, the Kappa analysis was also used to examine the quality of results [49].

3.4.4. Model Application

Once all predicted LULC maps were assessed for acceptable accuracy, the model was used to
predict the future LULC in 2014 and 2035. Although the demographic and economic data were
introduced as inputs of the model already, much literature [50–53] also suggests that it will improve
the good performance of the model to incorporate the population and economic growth rate for
future predictions. This study considers that reason to integrate both important data to transition rate
calculation through the statistical extrapolation and SD.
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Statistical extrapolation is a method to estimate the land demand (transition probability) based on
the future population. The probabilities of land changes were predicted from an existing LULC and
population change. The predicted values were generated by simple linear regression [31]. In this study,
the change in population throughout the specific time period was compared with the change in each
LULC category to develop a ratio of the future change using ordinary forecast and trend functions.

SD is a non-spatial simulation technique developed in the late 1950s by Jay W. Forrester of the
Massachusetts Institute of Technology. SD was originally applied in the engineering field called
“Industrial Dynamics” and also applied in the urban planning field, namely “Urban Dynamics”. It has
attracted adequate attention as a tool for system characteristics investigation rather than predictions
based on numerical simulations [54]. To calculate the transition probability of land demand using
SD, this study applied the existing and projected population proposed by DOPA and NESDB in
2014 and 2035, respectively, to compute annual growth rates. The economic growth rates, calculated
from the GPP, were also used in the model. The process in SD for land demand calculation can
be divided into two parts: the first is driving factors module and the second is a land use module.
The driving factors module handled the impact of population and economic growth while the land
use module paid attention to the interaction and conversions of land use classes that were driven by
population and economic data. For example, the demand for the urban class would be increased if
the population and GPP growth rates increased. On the other hand, the agriculture and forest classes
would decrease because of those factors. This study calculated the land demands using STELLA
software from isee system. It was used to design the stocks (land use classes) and flows (driving forces)
and to automatically generate relevant equations according to the feedback loop of the land demand in
the SD environment. Once all were completed, the model estimated the land demands for each LULC
class of the interested year, which were then converted into the transition probability matric.

4. Results and Discussion

In order to understand the LULC changes and dynamics of urban expansion in the BMR, this
study divides the results into four sections: (i) LULC classification and accuracy assessment from
the satellites images; (ii) Analysis of LULC change in the study periods; (iii) LULC prediction and
validation; and (iv) LULC model application.

4.1. LULC Classification and Accuracy Assessment

The LULC maps for the six years of the Landsat images, 1988, 1993, 1998, 2003, 2008, and 2011,
were analyzed through the maximum likelihood algorithm and improved the map qualities using
auxiliary datasets (Figure 4). The classification results from the six LULC maps indicated that the
agricultural class was the predominate land in the BMR throughout the study period. However, its
share decreased dramatically. In contrast, urban land seems to be increased continuously due to the
land demand for residential and industrial purposes. There was a slight fluctuation in the amount of
miscellaneous class. Water and forest areas were relatively stable.

This study employed the advantages of total accuracy value and the kappa value for evaluating
the classified LULC maps, as listed in Table 3. The overall accuracy values of the LULC maps were
observed to be 85.19, 86.25, 90.12, 86.95, 87.65, and 89.1 percent for the six time periods, respectively.
Furthermore, the kappa values of the maps were 0.80, 0.82, 0.87, 0.83, 0.83, and 0.86, respectively.
All values of the overall accuracy and the kappa coefficient were greater than 85 percent and 0.80,
which indicated a strong perfect agreement between the classified maps and the ground truth data.
Therefore, the accuracy of the LULC maps was satisfactorily accurate for investigating the future urban
LULC simulations.
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Table 3. Accuracy Assessment of the LULC maps for the years 1988, 1993, 1998, 2003, 2008, and 2011. 

Years Overall Accuracy Kappa 
1988 85.19% 0.80 
1993 86.25% 0.82 
1998 90.12% 0.87 
2003 86.95% 0.83 
2008 87.65% 0.83 
2011 89.11% 0.86 

4.2. Change Analysis  

To quantify the changing in an urban area, the LULC is the most important. A cross tabulation 
process was applied to identify the major changes between two LULC maps of the specified time 
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Table 3. Accuracy Assessment of the LULC maps for the years 1988, 1993, 1998, 2003, 2008, and 2011.

Years Overall Accuracy Kappa

1988 85.19% 0.80
1993 86.25% 0.82
1998 90.12% 0.87
2003 86.95% 0.83
2008 87.65% 0.83
2011 89.11% 0.86

4.2. Change Analysis

To quantify the changing in an urban area, the LULC is the most important. A cross tabulation
process was applied to identify the major changes between two LULC maps of the specified time
periods. The LULC change maps together with a number of changes in each class from the five periods
are displayed in Figure 5.

It can illustrate evidently that, firstly, the conversion between agriculture and urban was the most
distinctive change of the study period. The amount of change increased gradually from approximately
300 km2 in 1988–1993 to about 850 km2 in 2008–2011. The second was the transition from agriculture to
miscellaneous, which could be found from the analysis. The percentage of its change was less
than 10 percent from the first four periods. On the other hand, in the last period (2008–2011),
a significant increase in this transition was observed. The third was the conversion from miscellaneous
to agriculture, which could be detected from the change analysis with a lower rate of change when
compared to the second. Moreover, the conversion between miscellaneous land and urban was another
influence that could be seen in the LULC change. Nevertheless, the change analysis indicated other
transitions in each LULC class, which also had effects on the urban growth and LULC changes in
the BMR.
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Figure 5. LULC change during: (a) 1988–1993; (b) 1993–1998; (c) 1993–2003; (d) 2003–2008; and
(e) 2008–2011; (f) The amount of change in each period.
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4.3. Urban LULC Prediction

4.3.1. Identification of Driving Factors

After detecting the changes in particular time periods, the identification of the driving factors
was investigated regarding the changes in the specific time duration. To determine the association
between the changes and the factors for the LULC modeling and simulation, Cramer’s V values were
calculated. The factors that had a Cramer’s V value higher than 0.15 were selected to generate the
transition potential map of land transition in each sub-model based on a root mean square error (RMSE)
value less than 0.1 within 10,000 iterations of the MLP neural network parameters. Table 4 shows the
influence factors that were used to generate a transition potential map for each specific period for
the simulation.

Table 4. Sub-modules and Cramer’s V value for simulation in the years of study.

Year Factor Overall V A W U F M

1998

Distance to agriculture 0.4533 0.6302 0.9938 0.2662 0.9176 0.1941
Distance to built-up area 0.3843 0.8002 0.7752 0.2400 0.8207 0.0654
Distance to center of city 0.1725 0.2229 0.3752 0.1268 0.3429 0.0918

Distance to forest 0.1863 0.3178 0.2590 0.1170 0.2409 0.3127
Distance to miscellaneous 0.1514 0.1373 0.1381 0.0618 0.1085 0.0806

Distance to road 0.1349 0.1758 0.2737 0.0717 0.2902 0.0338

1998

Distance to water 0.2699 0.3649 0.3191 0.5405 0.2517 0.0658
Economic growth rate 0.1582 0.5003 0.3029 0.0994 0.3112 0.1283

Elevation 0.2913 0.1914 0.1896 0.6409 0.0989 0.0349
Slope 0.0652 0.0151 0.0532 0.1273 0.0303 0.0216

2003

Distance to agriculture 0.4498 0.7677 0.9949 0.2285 0.9328 0.1356
Distance to built-up area 0.4526 0.4701 0.9383 0.1378 1.0000 0.0389
Distance to center of city 0.1698 0.2121 0.3648 0.1209 0.3362 0.0958

Distance to forest 0.1790 0.9365 0.2334 0.1086 0.2193 0.3051
Distance to miscellaneous 0.4520 0.3931 0.1998 0.0646 0.1342 0.0283

Distance to road 0.1462 0.2646 0.3036 0.0633 0.3181 0.0284

2003

Distance to water 0.2481 0.7880 0.2448 0.5162 0.1779 0.0759
Economic growth rate 0.1547 0.8363 0.3090 0.0788 0.3102 0.1182

Elevation 0.2722 0.3918 0.1625 0.6009 0.0945 0.0247
Housing density 0.2401 0.6925 0.5083 0.1114 0.5019 0.0555

Housing growth rate 0.1643 0.9972 0.3150 0.0954 0.3137 0.1450
Population density 0.2337 0.9773 0.4975 0.0964 0.4939 0.0362

Population growth rate 0.1997 0.6992 0.4047 0.0927 0.3997 0.1077
Slope 0.0776 0.1496 0.0582 0.1694 0.0297 0.0180

2008

Distance to agriculture 0.3668 0.5380 0.7965 0.1635 0.7814 0.0837
Distance to BTS and MRT 0.2466 0.3331 0.5356 0.0902 0.5235 0.0696
Distance to built-up area 0.3918 0.7218 0.8035 0.2060 0.8427 0.0534
Distance to center of city 0.1734 0.1824 0.3712 0.1161 0.3462 0.0753

Distance to forest 0.2033 0.5839 0.3141 0.2883 0.2908 0.2760
Distance to miscellaneous 0.1347 0.6038 0.2719 0.0159 0.2650 0.0557

Distance to road 0.1651 0.0806 0.3463 0.0751 0.3564 0.0322
Distance to water 0.2943 0.6357 0.2366 0.6190 0.1979 0.0859

Economic growth rate 0.1802 0.3877 0.3675 0.1105 0.3495 0.1177
Elevation 0.2585 0.3879 0.1397 0.5676 0.1075 0.0219

Housing density 0.2430 0.6503 0.5161 0.1292 0.5009 0.0691
Housing growth rate 0.2061 0.3140 0.4045 0.1720 0.3869 0.1101
Population density 0.2384 0.4323 0.5101 0.1147 0.4940 0.0687

Population growth rate 0.2079 0.3740 0.4047 0.1504 0.3915 0.1454
Slope 0.0661 0.1865 0.0284 0.1447 0.0260 0.0137
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Table 4. Cont.

Year Factor Overall V A W U F M

2011

Distance to agriculture 0.4496 0.5449 0.9966 0.1789 0.9238 0.1283
Distance to BTS and MRT 0.2466 0.5991 0.5356 0.0902 0.5253 0.0696
Distance to built-up area 0.4723 0.7801 0.9306 0.3010 1.0000 0.0656
Distance to center of city 0.1734 0.7794 0.3712 0.1161 0.3462 0.0753

Distance to forest 0.2027 0.4043 0.2934 0.1734 0.2912 0.2918
Distance to miscellaneous 0.2338 0.4055 0.3398 0.0567 0.2914 0.0384

Distance to road 0.1651 0.0109 0.3463 0.0751 0.3564 0.0322

2011

Distance to water 0.3646 0.5748 0.2449 0.7866 0.1878 0.0899
Economic growth rate 0.1801 0.0298 0.3674 0.1104 0.3495 0.1172

Elevation 0.2585 0.6823 0.1397 0.5676 0.1075 0.0219
Housing density 0.2404 0.5694 0.5053 0.1330 0.4951 0.0776

Housing growth rate 0.2322 0.2842 0.4554 0.1634 0.4384 0.1609
Population density 0.2370 0.4840 0.5058 0.1209 0.4909 0.0648

Population growth rate 0.2136 0.7338 0.4244 0.1551 0.4086 0.1311
Slope 0.0661 0.1697 0.0284 0.1447 0.0260 0.0137

2014

Distance to agriculture 0.4491 0.6516 0.9981 0.1619 0.9456 0.1127
Distance to BTS and MRT 0.2272 0.3075 0.4932 0.0771 0.4896 0.0627
Distance to built-up area 0.4559 0.7176 0.9484 0.2107 0.4552 0.0821
Distance to center of city 0.1681 0.4045 0.3639 0.0916 0.3325 0.0939

Distance to forest 0.2069 0.6778 0.2977 0.1547 0.3009 0.3128
Distance to miscellaneous 0.2781 0.4165 0.0854 0.2331 0.1068 0.0794

Distance to road 0.1545 0.2389 0.3302 0.5810 0.3345 0.0318
Distance to water 0.2663 0.4229 0.1508 0.0660 0.0980 0.0786

Economic growth rate 0.1700 0.1255 0.3366 0.0718 0.3415 0.1443
Elevation 0.2764 0.0618 0.1358 0.6100 0.1003 0.0275

Housing density 0.2251 0.2134 0.4769 0.0991 0.4732 0.1076
Housing growth rate 0.1847 0.1065 0.3495 0.1267 0.3514 0.1670
Population density 0.2218 0.2052 0.4712 0.0880 0.4671 0.1105

Population growth rate 0.2075 0.3831 0.4078 0.1104 0.3978 0.1905
Slope 0.0814 0.0361 0.0595 0.1719 0.0431 0.0182

Note: A = agriculture; W = water; U = Urban; F = forest; M = miscellaneous.

4.3.2. Transition Probability Analysis

To simulate the future LULC and urban expansion, this study considered a sophisticated method
to estimate the rate of land transition in each specific time using the conventional scheme of the MC
and application of the projected population to calculate the transition probabilities from statistical
extrapolation and SD approach. The details of this analysis are discussed in two separate sections.

‚ Transition probability calculation from the MC

The MC was used to quantify the change between a pair of LULC maps. It created a transition
probability matrix for each LULC category to be converted to any other categories (Table 5).
The contingency matrix, which displays the relative frequencies of change in a certain time step,
was utilized to calculate the transition probability. The resulted matrices were then used with the
transition potential map in the next step of the change prediction.
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Table 5. Transition probabilities of LULC change.

Class Agriculture Water Urban Forest Miscellaneous

1998

Agriculture 0.9486 0.0025 0.0418 0.0032 0.0039
Water 0.1121 0.8490 0.0358 0.0005 0.0026
Urban 0.0000 0.0041 0.9880 0.0000 0.0079
Forest 0.3487 0.0073 0.0160 0.6236 0.0044

Miscellaneous 0.6223 0.0180 0.3080 0.0000 0.0516

2003

Agriculture 0.9465 0.0022 0.0451 0.0013 0.005
Water 0.1745 0.7905 0.0269 0.0034 0.0047
Urban 0.0000 0.0032 0.9905 0.0002 0.0061
Forest 0.6245 0.0016 0.0186 0.3524 0.0029

Miscellaneous 0.7160 0.0272 0.1657 0.0067 0.0843

2008

Agriculture 0.9112 0.0022 0.0682 0.0042 0.0141
Water 0.1277 0.8167 0.0446 0.0051 0.0059
Urban 0.0000 0.0030 0.9795 0.0011 0.0164
Forest 0.294 0.0010 0.0805 0.6245 0.0000

Miscellaneous 0.5427 0.0069 0.2602 0.0024 0.1878

2011

Agriculture 0.9357 0.0025 0.0458 0.0015 0.0144
Water 0.1349 0.8521 0.0126 0.0005 0.0000
Urban 0.0000 0.0021 0.9922 0.0002 0.0055
Forest 0.2310 0.0155 0.0463 0.6426 0.0646

Miscellaneous 0.3111 0.0051 0.4806 0.0000 0.2033

2014

Agriculture 0.8221 0.0097 0.1586 0.0051 0.0045
Water 0.1542 0.7630 0.0650 0.0158 0.0021
Urban 0.0000 0.0000 1.0000 0.0000 0.0000
Forest 0.3185 0.0159 0.0494 0.6148 0.0015

Miscellaneous 0.5736 0.0077 0.3688 0.0142 0.0357

2035

Agriculture 0.1780 0.0140 0.8023 0.0046 0.0010
Water 0.2400 0.0849 0.6624 0.0111 0.0015
Urban 0.0000 0.0000 1.0000 0.0000 0.0000
Forest 0.2504 0.0213 0.7122 0.0147 0.0015

Miscellaneous 0.1327 0.0105 0.8525 0.0036 0.0008

‚ Integration of the future population and economic demand for the transition probability of urban
expansion in 2014 and 2035

To quantify the future LULC in 2014, this study considered the existing population data collected
by DOPA, Ministry of Interior. Based on the population growth calculation between 2011 and 2014,
the annual growth rate of population was observed as 0.01 per year. As reported by NESDB, the future
population in the BMR would reach up to 16,632,220 in 2035. The increase in the rate of the population
when compared with the base year 2014 was 0.15 per year. Moreover, the economic growth rate
obtained from the GPP change in the same period would approach a value of 0.12 per year. Here, both
data were used to derive the transition probability using simple extrapolation and the non-spatial
technique of SD. Tables 6 and 7 show the estimated transition values in 2014 and 2035, respectively.
Then, the LULC transitions were applied in the CA-MC and MLP-MC environments to generate the
transition potential maps in each sub-model for the simulation.
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Table 6. Transition probability rate in each LULC class calculated by extrapolation and system dynamic
model for 2014.

Classes Agriculture Water Urban Forest Miscellaneous

Extrapolation

Agriculture 0.8426 0.0099 0.1393 0.0030 0.0052
Water 0.1541 0.7854 0.0481 0.0125 0.0000
Urban 0.0000 0.0000 1.0000 0.0000 0.0000
Forest 0.2861 0.0234 0.0326 0.6255 0.0324

Miscellaneous 0.0809 0.0030 0.7959 0.0056 0.1146

SD

Agriculture 0.8995 0.0055 0.0896 0.0029 0.0026
Water 0.2016 0.7976 0.0007 0.0002 0.0000
Urban 0.0000 0.0000 1.0000 0.0000 0.0000
Forest 0.4011 0.0001 0.5986 0.0002 0.0000

Miscellaneous 0.0079 0.0001 0.0051 0.0002 0.9868

Table 7. Transition probability rate in each LULC class calculated by extrapolation and system dynamic
model for 2035.

Classes Agriculture Water Urban Forest Miscellaneous

Extrapolation

Agriculture 0.5941 0.0000 0.3860 0.0022 0.0177
Water 0.1717 0.7269 0.0728 0.0286 0.0000
Urban 0.0000 0.0000 1.0000 0.0000 0.0000
Forest 0.1458 0.0862 0.6602 0.1000 0.0078

Miscellaneous 0.7859 0.0136 0.0000 0.0009 0.1996

SD

Agriculture 0.5365 0.0253 0.4130 0.0133 0.0118
Water 0.1535 0.7644 0.0647 0.0158 0.0017
Urban 0.0000 0.0000 1.0000 0.0000 0.0000
Forest 0.2276 0.0012 0.7668 0.0042 0.0002

Miscellaneous 0.1366 0.0018 0.7703 0.0034 0.0879

4.3.3. LULC Prediction and Validation

‚ LULC Prediction from CA-MC and MLP-MC

This study considered two different schemes for simulation based on the conventional model
to explore the urban LULC and urban expansion in the BMR. The simulated LULC maps in the
four time periods 1998, 2003, 2008, and 2011 were generated, as shown in Figure 6 and Table 8.
The validation procedure was investigated to confirm the reliability and efficiency of the CA-MC and
MLP-MC for the LULC prediction. The overall accuracy and several kinds of Kappa coefficients were
applied to validate the simulated maps with the LULC maps generated by the maximum likelihood
classification. After the superimposing, all simulated maps yielded overall accuracies greater than
80 percent. Furthermore, Kappa coefficients such as Kstandard, Kno, and KlocationStrata were also
calculated to assure the accurate result of the simulation, all of which had values higher than 0.8
(Table 8). However, the accuracy assessment from the simulated LULC maps proved that the MLP-MC
method contributed higher accuracy values than CA-MC. Since the MLP-MC deliberated the influence
in physical, demographic and economic factors on the LULC conversion, the simulated maps from
this method showed a higher accuracy when compared with the CA-MC results (Table 9 and Figure 6).
CA-MC does not, in contrast, consider the change spatially. This method is not always appropriate to
allocate future LULC in suitable locations [14,55].
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Figure 6. Comparison of LULC prediction and urban extend between Cellular Automata-Markov
Chain (CA-MC) and Multi-Layer Perceptron-Markov Chain (MLP-MC): (a) CA-MC 1998; (b) MLP-MC
1998; (c) CA-MC 2003; (d) MLP-MC 2003; (e) CA-MC 2008; (f) MLP-MC 2008; (g) CA-MC 2011; and
(h) MLP-MC 2011.
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Table 8. Accuracy assessment of simulated LULC maps from the MC in CA and MLP environments.

Types

Years

1998 2003 2008 2011

CA-MC MLP-MC CA-MC MLP-MC CA-MC MLP-MC CA-MC MLP-MC

Overall accuracy 92.3728 92.1738 88.4218 90.5811 89.4320 89.4969 85.5354 85.5690
K standard 0.9097 0.9108 0.8748 0.8979 0.8913 0.8924 0.8570 0.8571

Kno 0.9374 0.9383 0.9088 0.9257 0.9168 0.9171 0.8859 0.8863
KlocationStrata 0.9148 0.9146 0.9054 0.9298 0.9145 0.9072 0.9359 0.9356

Table 9. The simulated results of LULC maps from the MC transition probability in CA and MLP.

LULC Classes

Years

1998 2003 2008 2011

CA-MC MLP-MC CA-MC MLP-MC CA-MC MLP-MC CA-MC MLP-MC

Agriculture 6359.45 6339.11 6075.25 6067.47 5399.02 5478.06 5027.78 5101.09
Water 74.96 81.25 77.86 76.58 79.76 82.47 93.99 97.51
Urban 1184.09 1192.15 1468.49 1489.37 2031.3 2055.99 2429.72 2424.47
Forest 41.03 52.42 36.83 15.77 52.53 53.54 29.2 33.65

Miscellaneous 35.36 28.32 36.46 44.06 131.87 23.19 114.66 36.53

4.3.4. LULC Model Application

‚ Comparative study on the LULC prediction from the conventional MC and demographic–economics
data to estimate the transition probability

According to the previous section, the accuracy assessment confirms that the MLP-MC method
yielded a strong level of perfect agreement between the simulated maps and reference data. The model
application in this study adopted the transition rates calculated by MC in CA-MC and MLP-MC
methods to simulate the LULC in 2014. The transition probabilities calculated from the population
and economics via the extrapolation and SD were also utilized in the MLP as a platform to simulate in
2014. The LULC map in 2011 was used as a base map for the future simulation. The results from all
schemes are illustrated in Figure 7. All values of the overall accuracy and Kappa coefficients illustrated
and certify the performance of all schemes that were stratified to simulate the future LULC (Table 10).
The transition rate calculated using the SD displayed the highest accuracy when compared with others.
The SD scheme projected the urban area slightly lower than the existing LULC from the Landsat image;
however, it showed a strong performance in the simulation (Table 11). From the extrapolation scheme,
its result yielded an overestimation in the urban class and underestimation in agriculture class similar
to the results from the conventional MC scheme when performed in CA and MLP environments.
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Table 10. Accuracy assessment of simulated LULC maps in 2014 from four schemes.

Types CA-MC MLP-MC Extrapolation SD

Overall accuracy 90.4473 90.8636 93.5340 94.6711
Kstandard 0.8908 0.8949 0.9212 0.9324

Kno 0.9113 0.9148 0.9364 0.9451
KlocationStrata 0.9706 0.9634 0.9588 0.9754

Table 11. The actual and simulated area of LULC maps in 2014 from Landsat 8 and the transition
probability calculated by MC, the extrapolation, and SD.

LULC Classes Landsat 8 CA-MC MLP-MC Extrapolation SD

Agriculture 4368.03 3715.57 3715.6 3814.48 4265.74
Water 123.56 138.47 147.58 148.48 123.01
Urban 3179.87 3761.32 3750.99 3677.12 3254.88
Forest 8.76 56.44 57.38 49.66 43.38

Miscellaneous 13.03 21.45 21.70 3.51 6.24

‚ Simulation of the future urban LULC and urban expansion in 2035.

Because of the strong performance of the demographic–economics data, the transition probabilities
from the statistic extrapolation and SD schemes were applied to simulate the LULC and urban area.
Both transition probabilities were calculated from the estimated population and annual growth rate of
2035. The simulation, in this part, was based on the transition potential map created by the MLP of the
LCM model. Figure 8 illustrates the simulated results from both methods. It can visualize evidently
that, by using the SD scheme, the predicted urban area is 3750.77 km2 or 48.75 percent of the whole
area of the BMR. Agricultural land is almost equal to the urban class. The lands for water, forest, and
miscellaneous classes occupy the smallest amounts of land, sequentially (Table 12). In terms of the
simulation from the extrapolation, all of the LULC have a similar trend with the SD scheme. However,
the proportion of the LULC is different, especially in the urban class, which occupies around 64 percent
of land.
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The urban area expanded itself over administrative boundaries, particularly in the connected zone 
between BM and Pathum Thani, Nonthaburi, and Samut Prakan. Those provinces play an important 
role as residential areas supporting the BM population and also as lands for industrial purposes 
based on the fundamental function of the city. Moreover, the urban area expands in a linear form 
along the main roads that connect neighboring provinces to the BM. On the other hand, the center of 
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response to land demands for business and commercial enterprises. Since the construction of the 
Bangkok Mass Transit System (BTS) and Mass Rapid Transit (MRT), many condominiums with 
medium and high classes were built along those lines to respond to the demand for urban lifestyles 
with reduced commutes to work. Furthermore, there is a different pattern of urban expansion that 
occurred in Nakhon Pathom. Its urban area has expanded from the center of the province and will 
continuously extend until 2035. There is also a scattered random pattern in the built-up area, in 
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Table 12. The simulated area of LULC maps in 2035 from the transition probability calculated by the
extrapolation and SD.

LULC Classes
Extrapolation SD

km % km %

Agriculture 2478.6 32.22 3735.72 48.56
Water 217.19 2.82 147.67 1.92
Urban 4896.27 63.64 3750.77 48.75
Forest 98.55 1.28 57.45 0.75

Miscellaneous 2.64 0.03 1.64 0.02

To analyze the urban expansion of the BMR in 2035, this study used the simulated map from the
SD scheme to examine the urban extent (Figure 9). The conversion between agriculture and urban
areas plays as a primary role in the LULC change. The large urban agglomeration is located along
the Chao Phraya River where the urban and built-up areas have increased dramatically since 1988.
The urban area expanded itself over administrative boundaries, particularly in the connected zone
between BM and Pathum Thani, Nonthaburi, and Samut Prakan. Those provinces play an important
role as residential areas supporting the BM population and also as lands for industrial purposes based
on the fundamental function of the city. Moreover, the urban area expands in a linear form along
the main roads that connect neighboring provinces to the BM. On the other hand, the center of the
BMR remains as most population dene zone where all built up areas will be constructed in response
to land demands for business and commercial enterprises. Since the construction of the Bangkok
Mass Transit System (BTS) and Mass Rapid Transit (MRT), many condominiums with medium and
high classes were built along those lines to respond to the demand for urban lifestyles with reduced
commutes to work. Furthermore, there is a different pattern of urban expansion that occurred in
Nakhon Pathom. Its urban area has expanded from the center of the province and will continuously
extend until 2035. There is also a scattered random pattern in the built-up area, in which farmers
occupy the land near agricultural areas. This situation can be found predominantly in Nakhon Pathom.
If the spatial planners do not consider this, it will create urban sprawl, which is already a crucial
problem in that area.
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5. Conclusions

Recently, Thailand faces with the problem of urban expansion due to the national plan policy that
was established to confirm BM as the center for all aspects of the country. Moreover, industrialization
and innovation in the globalized world have turned BM into a modern city where everyone would like
to live. However, BM does not grow by itself, but rather brings about spatial planning problems in the
vicinity, which collectively can be called the BMR. This study used scientific methodology to explore
the urban expansion and LULC changes in a specific time period based on the innovation of satellite
imagery. Landsat images were utilized to generate LULC maps using the sophisticated maximum
likelihood classification in different times. Then, the change detection technique was investigated
to develop a pair of LULC maps in order to identify the land transformations. From this study, it
can noticeably evident that the major land conversion in this area is agriculture to urban. To explore
the future LULC and urban expansion in the future, this study applied the integrated methods of
CA-MC and MLP-MC to generate transition probabilities and transition rates for the simulations.
The simulated results in the years of 1988, 2003, 2008, and 2011 were validated to identify the best
method for the predictions. The accuracy of the simulations showed that MLP-MC yielded higher
accuracy than CA-MC. Therefore, the simulation in the years of 2014 and 2035 used the MLP as
a platform for the prediction.

To project the LULC to the year 2035, even though the physical and economic factors were
considered as input layers for the engendering the transition potential in each conversion, the future
population and economic growth were applied to control the transition rate of the land conversions.
The results from the study evidently confirm that in 2014 the predicted LULC maps from the SD and
statistics extrapolation shows reliable results with robust accuracy, particularly the projected result
from the SD method. Therefore, the transition probability rates, proposed by the SD method, within
the MLP environment were used to explore the urban expansion in 2035. The simulation illustrates
that urban and built-up area are the main LULC types and occupy about half of the land in the BMR.
Most of the agricultural land would be converted to urban or built-up area if proper measures are not
taken. This study shows that integration of the LULC modeling approach, remote sensing data, and
demographic and economic data can be professionally used to simulate the future LULC change and,
hence, the urban expansion phenomena in spatial distribution, direction, and time can be monitored.
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Future LULC is crucial information for planners and organizations to allocate important infrastructures
and manage sustainable land use in response to the diverse requirements of the people in this region.
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