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Abstract: Industrial sectors account for around 70% of the total energy-related CO2 emissions in
China. It is of great importance to measure the potential for CO2 emissions reduction and calculate the
carbon price in industrial sectors covered in the Emissions Trading Scheme and carbon tax. This paper
employs the directional distance function to calculate the marginal abatement costs of CO2 emissions
during 2005–2011 and makes a comparative analysis between our study and the relevant literature.
Our empirical results show that the marginal abatement costs vary greatly from industry to industry:
high marginal abatement costs occur in industries with low carbon intensity, and vice versa. In the
application of the marginal abatement cost, the abatement distribution scheme with minimum cost is
established under different abatement targets. The conclusions of abatement distribution scheme
indicate that those heavy industries with low MACs and high carbon intensity should take more
responsibility for emissions reduction and vice versa. Finally, the policy implications for marginal
abatement cost are provided.

Keywords: marginal abatement cost; CO2 emissions; distance function; industrial sectors; abatement
distribution scheme

1. Introduction

Following several reports issued by the IPCC (Intergovernmental Panel on Climate Change),
which have pointed out that climate change is closely related to human activities [1,2], mounting
pressure from the international community has called for a series of efforts in reducing global carbon
dioxide emissions in order to alleviate the greenhouse effect [3]. In 2006, China became the largest
carbon emitter, surpassing the United States for the first time and encountering more pressure from
other countries. The Chinese government has promulgated an emissions reduction target that requires
carbon intensity (CO2 emissions per unit of gross domestic product) to be reduced by 40%–45% by
2020, with 2005 as the reference year.

In the context of pursuing climate policy targets, China has made a great effort to mitigate its
rising trend of CO2 emissions [4]. There are two main types of emissions reduction policies based
on market mechanisms: carbon tax policy and Emissions Trading Scheme (ETS) [5]. The former is
characterized by price control [6], and the latter is characterized by total amount control [7], both
of which can influence the market by use of price leverage [8]. Against this backdrop, the Chinese
government drew on foreign experience and gradually carried out the ETS and carbon tax. This raises
two questions. (1) How can the maximum social benefit be reaped? Lots of previous studies proposed
that an optimal tax rate should be equal to the marginal abatement cost (MAC) of CO2. A low-level
tax rate cannot stimulate emissions reduction, and a high tax rate can cause erosion of industries’
competitiveness [9]; (2) How can mandatory emissions reduction targets be reached in an effective
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way? The market price of an ETS and the MAC of CO2 are certainly the information every enterprise
needs [10]. The enterprises will screen a list of policy options to devise the best abatement strategies,
such as cutting carbon emissions, buying emissions allowances, selling emissions allowances, and so
on, all of which depend on the comparison between the MAC and the price of the emissions allowance.

Marginal abatement cost has recently become a standard policy tool in assessing climate change
mitigation schemes [11,12]. Estimating the MAC of CO2 in some industrial sectors in China can provide
valuable information for enterprises to optimize the carbon abatement strategies [13]. Furthermore,
a clear perspective of the MAC in each industry can also help the government to set an optimal carbon
tax rate.

We try to use the environmental directional distance function to estimate the CO2 marginal
abatement cost in some industrial sectors. Then, we also discuss the practical application of marginal
abatement cost, including the estimation of a marginal abatement cost curve and the establishment of
an abatement distribution scheme. Finally, based on the conclusions in this paper, we put forward
some policy recommendations. In brief, the results and analyses in this paper can provide policy
recommendations for the Chinese government to shape an optimal emissions reduction policy. The rest
of the paper is organized as follows: Section 2 presents the literature review. Section 3 provides a model
description. Section 4 shows the results and analyses, and Section 5 discusses the conclusions and
policy implications.

2. Literature Review

Facing international pressure to reduce GHG emissions, more and more scholars have begun to
study emissions reduction costs at home and abroad. Unfortunately, though, knowledge about carbon
pricing is still limited in China.

Marginal abatement cost refers to the costs associated with eliminating an additional unit of
undesirable output. According to previous studies, the estimation methods of marginal abatement cost
and the marginal abatement cost curve can be separated into several categories, such as a computable
general equilibrium (CGE) model [14], a dynamic optimization approach [15], a hybrid model [16],
and so on [17,18]. Among them, the distance function stands out due to its accuracy and modest
data requirement. The distance function was first proposed for the analysis of shadow prices by
Färe et al. [19–22], which can be regarded as an analytical framework consisting of a sequence of
models. Classified by different estimation methods, two estimation methods, namely parametric and
nonparametric ones, have been widely applied to estimate distance function [23].

As its name implies, the parametric method needs a pre-defined specific functional form.
The translog form and the quadratic form are the two main forms used in estimating the parameters.
We can divide the parametric method into two categories. The first category is Shephard distance
functions, including Shephard input and output distance functions. Islas and Grande [24] calculated
the MAC of SO2 from 51 coal-fired power plants in the United States. Lee and Zhang [25] calculated
the MAC of CO2 in 30 Chinese manufacturing industries, and the results showed that the average price
is $3.13/ton. Both of them used translog Shephard input distance functions. Moreover, the translog
Shephard output distance functions are also applied by many scholars. Lee [26] calculated the MAC
of CO2 from 52 fossil-fueled electric power generators in South Korea. Ke et al. [27] divided China
into eastern, central, and western areas and estimated the MAC of SO2 in the three areas. The second
category of the parametric method is directional distance functions. Translog function form is always
used in Shephard functions, but it is unsuitable for the directional distance function due to the
low performance of transfer property [28]. However, quadratic function can perfectly match the
characteristics of directional distance function [29]. Zhou et al. [30] applied the quadratic directional
distance function (DDF) approach to estimate the shadow price in several industrial sectors in Shanghai.
Molinos et al. [31] estimated the MAC of CO2 for wastewater treatment plants. Duan et al. [32]
evaluated the energy and CO2 emissions performance of China’s thermal power industry.
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Another estimation method is the non-parametric method. It is widely acknowledged that
data envelopment analysis (DEA), which was developed by Charnes and Cooper, is a popular
non-parametric technique for parameter estimation [33]. With the deepening of the research and the
increasing focus on the undesirable outputs, the DEA theory was banded together with the distance
functions to solve energy, efficiency, and marginal cost issues. The first pioneer was Turner [34],
who employed a sub-vector Shephard output distance function and a DEA model to estimate
the abatement cost of several pollutants. From then on, the non-parametric method was widely
accepted. Leleu [35] introduced a hybrid DEA model to solve a set of methodological debates in
nonparametric shadow-pricing approaches. Mekaroonreung and Johnson [36] estimated a technical
change effect on MAC of U.S. coal power plants. Chang and Hu [37] introduced a total-factor energy
productivity change index to evaluate the energy productivity change of regions in China with
a total-factor framework.

Note that, although there are lots of studies on MAC of CO2 in China, most of them focused on
the provincial level. Zhang et al. [38] estimated MAC of carbon emissions at the provincial level in
China using both Shephard and directional distance functions. Wang et al. [39] calculated the MAC
of CO2 in 28 provinces using the nonparametric method. In addition, some related studies on other
emissions were carried out by some scholars. Kaneko et al. [40] calculated the MAC of SO2 in thermal
power sector and explored empirical evidence for two hypotheses through a macro productivity
analysis. Yuan and Cheng [41] calculated the MAC of SO2, waste water, and soot using the data for
284 industrial sectors. In summary, the above literature provides a comprehensive discussion of the
marginal abatement costs, but there are still some limitations in previous studies. There is a lack
of research estimating the MAC of CO2 in China’s industries. Meanwhile, further discussion of the
applications of MAC is also scanty. On this basis, we have made an effort to estimate the marginal
abatement cost of CO2 at the industrial level, and explore the practical applications of marginal
abatement cost.

3. Model Description

3.1. Sectors and Data

Selecting the evaluation object, as the first step of model analysis, is of great importance.
Considering the “Classification and Code Standard of National Economy Industry” in China
(GB/T4754-2011), we disaggregated the whole economy into two categories (light and heavy industry).
Among them, the light industry and heavy industry are further disaggregated. The heavy industry
is divided into 19 typical industrial sectors and the light industry is correspondingly divided into
20 typical industrial sectors. Finally, by merging and unifying the category of national production
activities, a total of 39 sectors are obtained. For convenience, we marked the sectors as SEC 01, SEC 02,
SEC 03, etc. The sectors and their corresponding codes are shown in Table 1.

Table 1. Names and codes of 39 sub-sectors.

Sectors Code Sectors Code

Mining and Washing of Coal SEC 01 Manufacture of Foods SEC 21

Extraction of Petroleum and Natural Gas SEC 02 Manufacture of Beverages SEC 22

Mining and Processing of Ferrous Metal Ores SEC 03 Manufacture of Tobacco SEC 23

Mining and Processing of Non-Ferrous Metal Ores SEC 04 Manufacture of Textile SEC 24

Mining and Processing of Nonmetal Ores SEC 05 Manufacture of Textile Wearing Apparel,
Footwear, and Caps SEC 25

Mining of Other Ores SEC 06 Manufacture of Leather, Fur, Feather and
Related Products SEC 26

Processing of Petroleum, Coking, Processing of
Nuclear Fuel SEC 07 Processing of Timber, Manufacture of Wood,

Bamboo, Rattan, Palm, and Straw Products SEC 27
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Table 1. Cont.

Sectors Code Sectors Code

Manufacture of Raw Chemical Materials and
Chemical Products SEC 08 Manufacture of Furniture SEC 28

Manufacture of Non-metallic Mineral Products SEC 09 Manufacture of Paper and Paper Products SEC 29

Smelting and Pressing of Ferrous Metals SEC 10 Printing, Reproduction of Recording Media SEC 30

Smelting and Pressing of Non-ferrous Metals SEC 11 Manufacture of Articles For Culture,
Education and Sport Activity SEC 31

Manufacture of Metal Products SEC 12 Manufacture of Medicines SEC 32

Manufacture of General Purpose Machinery SEC 13 Manufacture of Chemical Fibers SEC 33

Manufacture of Special Purpose Machinery SEC 14 Manufacture of Rubber SEC 34

Manufacture of Transport Equipment SEC 15 Manufacture of Plastics SEC 35

Manufacture of Electrical Machinery
and Equipment SEC 16 Manufacture of Communication Equipment,

Computers and Other Electronic Equipment SEC 36

Production and Distribution of Electric Power and
Heat Power SEC 17

Manufacture of Measuring Instruments and
Machinery for Cultural Activity and
Office Work

SEC 37

Production and Distribution of Gas SEC 18 Manufacture of Artwork and
Other Manufacturing SEC 38Production and Distribution of Water SEC 19

Processing of Food from Agricultural Products SEC 20 Recycling and Disposal of Waste SEC 39

After finishing the selection and classification of sectors, we explain the data collection here
to provide a clearer model setting. In order to estimate the industrial MAC of CO2, we selected
five variables that can be classified into three kinds. The desirable output is industrial output value,
the undesirable output is CO2 emissions, and the inputs contain labor, capital, and energy. The variables
are shown in Table 2.

Table 2. Data collection and specification.

Category Indicator Unit Data Collection

Desirable output Industrial output 108 China Yuan (CNY)
China Statistical Yearbook, China
Industrial Economic Statistical Yearbook

Undesirable output CO2 emissions a 104 ton
China Energy Statistical Yearbook,
Guidelines for National Greenhouse Gas
Inventories (IPCC)

Input

Labor input 104 People
China Industrial Economic
Statistical Yearbook

Capital input 108 CNY
China Industrial Economic
Statistical Yearbook

Energy input b 104 tons of coal equivalents
(tce)

China Energy Statistical Yearbook,
China Statistical Yearbook

a CO2 emissions is unavailable from any of the statistical yearbook; this data is calculated by the author himself;
b All the energy input are converted into tce (tons of coal equivalents).

However, the data for CO2 emissions are not directly available from any of the statistical yearbook.
Following the previous studies [38], we calculated CO2 emissions using Equation (1):

CO2 =
n

∑
j=1

aj · Cj · Ej · COEj, (1)

where j (j = 1, 2, . . . , 6) represents different types of fossil fuels. In order to avoid any repeated
calculation, three kinds of traditional fossil fuels are taken into consideration. In addition, crude oil is
further divided into gasoline, kerosene, diesel, and fuel oil. In Equation (1), aj is the loss coefficient,
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Cj is the consumption of fossil fuels, Ej is the standard coal conversion factor, and COEj is the emissions
coefficient. Conversion factors and emissions coefficients are shown in Table 3.

Table 3. Conversion factors and emissions coefficients of fossil fuels.

Energy Loss Coefficient Conversion Factor Emissions Coefficient

Coal 3.2% 0.7143 tce/ton 2.7716 tCO2/tce
Gasoline 3.1% 1.4714 tce/ton 2.0306 tCO2/tce
Kerosene 3.7% 1.4714 tce/ton 2.1058 tCO2/tce

Diesel 3.6% 1.4571 tce/ton 2.1699 tCO2/tce
Fuel Oil 3.6% 1.4286 tce/ton 2.2667 tCO2/tce

Natural gas 2.1% 1.33 kgce/m3 1.6438 tCO2/tce

3.2. Directional Distance Function

First, we marked 39 industries as i (i = 1, 2, . . . , 39). The desirable industrial output values are
marked as vector y and the CO2 emissions are marked as vector b. In addition, capital input, labor
input, and energy input are marked as vector k, l, and e, respectively. Then, input vector x = (k, l, e) is
introduced here. The joint production process can be modeled by a production technology that can be
represented by an output possibility set P(x) = {(y, b) : x can produce (y, b)}. The directional distance
function is depicted in Figure 1.

In the directional distance function, a production unit E(b,y) is in the internal area of output
possibility set. “Abate Emissions” is a typical CO2 reduction path based on the selected direction
vector. The direction vector d = (dy,−db) is a typical reduction strategy direction vector, which
requires a proportional increase of industrial output value and a decrease in CO2 emissions. The unit
E moves along the direction vector EE’ to point E’, whose coordinate is (b − β1 ∗ db, y + β1 ∗ dy).
Compared to E, the desirable output increased by β1 ∗ db and the CO2 decreased by β1 ∗ dy. Moreover,
there is another path named “Fixed Emission”. The unit E moves along the direction vector EE” to
point E”. Given the same input, the CO2 emissions are fixed while the desirable output is expanded.
After comparing these two scenarios, we can notice that the emissions reduction strategy requires
enterprises to sacrifice their immediate profits. Thus, the ratio of ∆y and ∆b can tell us the cost of
emissions reduction.
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Formally, the directional distance function is defined in Equation (2). There are three reasons
to select g = (1, −1) as the direction vector. First and foremost, it means that the expansion of the
desirable output is accompanied by the shrinkage of the undesirable output under a given level of
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inputs. Another reason is that this vector can help us simplify the process of estimating the unknown
parameters and reduce the parameters to be estimated. Moreover, it also can meet with the transfer
property of the directional distance function.

→
D0(x, y, b; gy,−gb) = max{β : (y + βgy, b− βgb) ∈ P(x)} (2)

Based on former studies and the transfer property [11,30], we selected a quadratic function form
to parameterize the directional distance function. Quadratic function of output directional distance
function is depicted in Equation (3):

→
D0(xi, yi, bi; 1,−1) = α +

3
∑

n=1
βnxni + γyi + ηbi +

1
2

3
∑

n=1

3
∑

n′=1
αn,n′xnixn′i +

1
2 λy2

i +
1
2 θb2

i

+
3
∑

n=1
δnxniyi +

3
∑

n=1
ωnxnibi + ϕyibi

. (3)

After determining the specific form of directional distance function, the estimation of the
parameters in the function is a key step. Many studies put forward that minimizing all the deviation
between decision-making units (DMUs) and efficient production frontiers can help us estimate all
parameters [11]. Following the trace of previous studies, a target programming model is established.
The statement is shown in the following equations:

min
39

∑
i=1

[
→
D0(xi, yi, bi; 1,−1)− 0] (4)

s.t.
→
D0(xi, yi, bi; 1,−1) ≥ 0, i = 1, 2 . . . 39 (5)

∂
→
D0(xi, yi, bi; 1,−1)

∂b
≥ 0, i = 1, 2 . . . 39 (6)

∂
→
D0(xi, yi, bi; 1,−1)

∂y
≤ 0, i = 1, 2 . . . 39 (7)

∂
→
D0(xi, yi, bi; 1,−1)

∂xn
≥ 0, i = 1, 2 . . . 39 (8)

γ− η = −1 λ = θ = ϕ δn = ωn, n = 1, 2, 3 αn,n′ = αn′ ,n, n = 1, 2, 3. (9)

In Equations (4)–(9), there are 24 parameters that need to be estimated. The number of parameters
drops to 15 because of the direction vector g = (1, −1). Finally, the shadow price pi is shown in
Equation (10). In addition, the detailed formula derivation process is provided in Appendix A.

pi = −pyi
∂
→
D0(xi, yi, bi; 1,−1)/∂b

∂
→
D0(xi, yi, bi; 1,−1)/∂y

(10)

3.3. Allocation Scheme of CO2 Abatement

In this part, we aim to provide an allocation scheme of CO2 abatement with minimal cost so the
Chinese government can keep its emissions reduction promise. Before the calculation of the optimal
allocation scheme of CO2 abatement, the marginal abatement cost curve (MACC) is needed. Recently,
MACC has been widely applied in climate change policy; its growing popularity is mainly because of
its simple representation of the complex relationship between different reduction rates and MACs.

It is noteworthy that our definition of MACC differs from the traditional one. To simplify the
expression of MACC and pinpoint the relationship between marginal abatement cost and carbon
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intensity, carbon intensity is introduced here to substitute for the absolute quantity of CO2 abatement.
The MACC in this paper is shown in Figure 2.

Substituting carbon intensity for absolute quantity will not affect our results. Furthermore,
adopting this MACC aligns our analysis with those carbon intensity reduction policies in China [23].
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Based on the MACC, we can measure the optimal allocation scheme of CO2 abatement in every
industry to minimize the total abatement cost under the nationwide constraint of carbon emissions
intensity. This scheme can be achieved by a nonlinear programming model.

min
39

∑
i=1

cost = min
39

∑
i=1

[Gt
i

Xt
i∫

X0
i

f (x) dx] (11)

s.t. ERt · GDPt =
39

∑
i=1

Gt
i · Xt

i (12)

Pt
i ≥ X0

i · G
t
i − Xt

i · Gt
i , (13)

where f (x) denotes the MACC, and X0
i and Xt

i denote the original and the target carbon intensity,
respectively, in industry i. Gt

i is the output value of industry i in time t. ERt denotes the nationwide

target carbon intensity in time t. Pt
i = X0

i · Gt
i ·
→
D0(xi, yi, bi; 1,−1) is the potential of emissions

reduction. The objective function in Equation (11) aims at minimizing the total cost of the reduction.
Furthermore, the constraint conditions include: the summation of carbon emissions in every industry
is equal to the total carbon emissions; the real emissions reduction is constrained by the potential of
emissions reduction.

3.4. Statistical Test for Parameter Estimation

After estimating the parameters, the reliability and credibility of the parameter estimation need to
be checked. Hence, statistical testing is imperative. Table 4 reports the parameter estimates and their
corresponding t-statistics and p-value under 95% confidence intervals. The estimation and statistical
test procedure is implemented by SPSS software.

Except for several matrix elements in a diagonal matrix αn,n, the t-statistics and p-value under 95%
confidence intervals show that the null hypotheses for the other 19 coefficients are overwhelmingly
rejected. Therefore, it is reliable to calculate the marginal abatement cost of CO2 using these
coefficient estimates.
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Table 4. Parameters estimates and statistical test.

Coefficient t-Statistic Probability Coefficient t-Statistic Probability

α 7.42 0.0000 α23 0.25 0.4172
β1 8.97 0.0000 α31 11.24 0.0000
β2 7.69 0.0000 α32 0.25 0.4172
β3 14.32 0.0000 δ1 −23.44 0.0000
γ 10.69 0.0000 δ2 −10.22 0.0000
η 9.47 0.0000 δ3 −19.82 0.0000

α11 1.06 0.2166 ω1 −23.44 0.0000
α22 8.66 0.0000 ω2 −10.22 0.0000
α33 5.42 0.0000 ω3 −19.82 0.0000
α12 1.51 0.1974 λ 14.62 0.0000
α13 11.24 0.0000 θ 14.62 0.0000
α21 1.51 0.1974 ϕ 14.62 0.0000

4. Results and Analysis

4.1. MACs in Industrial Level

The subdivision of industry enables us to understand the MACs in industrial level. The results
are shown in Figure 3 and the detailed calculation results are shown in Appendix B. There are two
situations that need to be tested. First, the results in boxplots demonstrated that MACs across industries
may vary dramatically. For instance, the marginal abatement costs in some sectors are markedly lower
than others and the gap between the lowest one and the highest one reached 60,000 CNY/ton CO2.
In order to find out the internal causes, the carbon intensity that is most closely related to both desirable
and undesirable output is taken into consideration. Furthermore, we can see that MACs in the same
industry fluctuate widely over time, such as Manufacture of electrical machinery and equipment
(SEC 16), Printing, reproduction of recording media (SEC 30), Manufacture of articles for culture,
education and sport activity (SEC 31), Manufacture of communication equipment, computers and
other electronic equipment (SEC 36), and Manufacture of measuring instruments and machinery for
cultural activity and office work (SEC 37), most of which manifest a growing trend over time. Can we
say with certainty that the MACs show a positive correlation with time? To verify this, we applied the
kernel density function.

Carbon intensity, as an indicator for the relationship between carbon dioxide emissions and
gross domestic product (GDP), has become a restrictive indicator used in China’s emissions reduction
campaign. The average carbon intensities (denoted as ACI) from 2005 to 2011 in 39 industries are
shown with red lines in Figure 4; the average MACs (denoted as AMAC) from 2005 to 2011 in
39 industries are also displayed. The vertical axis depicts the kernel probability density estimation,
which is applied to estimate the density of unknown functions. The kernel density of ACI reveals that
ACI mainly concentrates in 0 to 0.5 intervals, which implies that the majority of ACIs are relatively low.
Nevertheless, in several sectors such as Mining and washing of coal (SEC 01), Processing of petroleum,
coking, and nuclear fuel (SEC 07), and Production and distribution of electric power and heat power
(SEC 17), all of which are energy-intensive industries, the ACIs are significantly higher than in others.

It is noticed that the figure roughly represents a trend that a high AMAC always occurs in an
industry with a low ACI and vice versa. In other words, compared with those heavy industries, the
light industries tend to have higher MACs. Although the highest ACI appeared in Production and
distribution of electric power and heat power (SEC 17), its AMAC only reached 1870 CNY/ton CO2.
Conversely, Manufacture of communication equipment, computers and other electronic equipment
(SEC 36), whose ACI is lowest, evidences the highest AMAC of 62,923 CNY/ton CO2.
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Figure 4. The average MAC and CI.

It is not peculiar to obtain this result. Obviously, CO2 emissions mainly come from the use
of fossil fuels. Hence, energy utilization, which is the reason for CO2 emissions, can exert a great
influence on CO2 emissions. Given the low potential for CO2 abatement induced by high energy
efficiency, advanced energy saving technology, and relatively low energy consumption, further energy
savings and emissions mitigation in those light industries would be cost-inefficient. On the contrary,
energy-intensive heavy industries have relatively large flexibility in reducing CO2 emissions owing
to their lower energy efficiency and tremendously wasteful use of energy. Thus, energy saving
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in energy-intensive heavy industry is more promising and less costly. From the perspective of
emissions reduction technology, the large-scale application of emissions reduction technology in
energy-intensive industry can lead to a scale effect, which can also reduce MAC in energy-intensive
industries. Additionally, a basic principle of environmental economics states that the marginal
abatement cost is inversely related to emissions when the production process is inefficient, which has
perfectly verified the above conclusions.

Then, in order to testify whether the MACs have a conspicuous rising tendency over time, the
kernel probability density estimation is used for the second time. The kernel density of MAC in 2005,
2008, and 2011 are reported individually in Figure 5. In 2005, the MACs mainly deviate from about
0 to 10,000 CNY/ton CO2 with the majority of the estimates clustering around the 7000 CNY/ton
CO2 mark. In 2011, the MACs deviate from about 0 to 15,000 CNY/ton CO2, with the majority of the
estimates clustering around the 9000 CNY/ton CO2 mark.
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Different from previous studies [23,42], the rightward shift of kernel density curves is not obvious
enough in our research. It is co-determined by two major opposite effects. First, the space for resetting
the given resources to cut CO2 emissions is getting squeezed over time, which means that the potential
for cutting CO2 emissions will be compressed in the future. So the MAC of CO2 emissions will
inevitably go up. Meanwhile, in consideration of technology improvement, industrial structure
adjustment, energy conservation measures, rational allocation of energy resources, and learning
effects, the ongoing advancement of technology and learning effects, in both energy conservation and
emissions reduction, can continuously lift the efficiency of the DMU and reduce the MAC of CO2

emissions. However, large-scale technological innovations and obvious learning effects are difficult to
get and spread in the short term. Hence, there is a weak increasing trend over time.

4.2. Comparative Analysis

Before a deeper analysis, the validity and rationality of the results of MACs in our paper need to
be tested. Nine relevant previous studies were selected to testify the rationality of the results and find
similarities between the different cases. A summary of the literature is shown in Table 5.
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Table 5. Summary of studies estimating MACs with distance functions.

Research Area/Range/Object Sample Methods Weight Value (CNY/Ton)

1 Our research China/Industry/MAC of CO2 39 P/Q-DDF Weighted by CO2 3517
/ 13,131

2 Yuan et al. [28] China/Industry/MAC of CO2 24 N/DDF / 16,360

3 Chen [42] China/Industry/ MAC of CO2 38
P/T-DDF / 32,687
N/DDF / 26,829

4 Zhou et al. [30] Shanghai/Industry/MAC of CO2 10

P/T-SIDF Weighted by CO2 678
P/T-SODF Weighted by CO2 395
P/Q-DDF Weighted by CO2 582
N/DDF Weighted by CO2 1906

5 Chen et al. [43] Tianjin/Industry/MAC of CO2 28 N/DDF / 766

6 Choi et al. [13] China/Province/MAC of CO2 30 N/SBM-DEA / 56

7 Zhang et al. [38] China/Province/MAC of CO2
30 P/T-SODF / 24
30 P/Q-DDF / 80

8 Wang et al. [39] China/Province/MAC of CO2 28 N/DDF / 475

9 He [44] China/Province/MAC of CO2 29 P/T-DDF / 104

10 Yuan and Cheng [41]
China/Nation/MAC of Waste water / P/Q-DDF / 178

China/Nation/MAC of SO2 / P/Q-DDF / 51,580
China/Nation/MAC of Soot / P/Q-DDF / 45,970

Note: N = Nonparametric; P = Parametric; T = Translog functional form; Q = Quadratic functional form;
SODF = Shephard output distance function; SIDF = Shephard input distance function; DDF = Directional
distance function; SBM = Slack-based measure; DEA = Data envelopment analysis.

All the previous studies can be divided into four categories. The first category is MAC of industrial
sector in China; the second category is MAC of industrial sector in a certain province or region; the third
is MAC at provincial level in China; and the last is the nationwide MAC. Meanwhile, the undesirable
output is not limited to CO2; other pollutants are also taken into consideration, such as SO2, NOx,
BOD, COD, waste water, etc.

Compared with Zhou et al. [30] and Chen et al. [43], the results of our study are apparently
higher than those industrial sectors in a certain province, which can be attributed to the changes in
production frontier. It should also be noted that “efficiency” is the real driving factor determining the
changes in production frontier, but efficiency varies dramatically within the same industry in different
regions. Hence, the different results are not at all surprising in view of the tremendous differences
between countries and regions. Although there are notable divergences among the results, what is
noteworthy is that the trend of MACs in our paper is consistent with the relevant research. Furthermore,
although MAC at a provincial level is smallest in the above studies at first sight, such estimates are not
comparable due to the different objects. When analyzing our study and Yuan and Cheng [41], we can
conclude that the rank of MAC for different pollutants is as follows: SO2 > Soot > CO2 > Waste water.
This conclusion is reasonable because it is directly proportional to its negative externality.

By comparing DDF (Directional distance function) and SDF (Shephard distance function), we find
that the results calculated by the former method are basically larger than that of the latter. For the

DMU (b, y), if and only if g = (y,−b), the equation
→
D0(x, y, b; y,−b) = 1/D0(x, y, b)− 1 ideally holds.

Or, put another way, the emissions reduction path in DDF is artificially selected, whereas the path in
SDF is model-driven. Different from the simultaneous expansion between desirable and undesirable
outputs in the Shephard function, the directional distance function can increase economic output
while cutting the growth in CO2 emissions. Therefore, MACs calculated by DDF are greater than SDF.
In addition, the direction vector, as another key factor, is a reflection of environmental policy. Generally
speaking, a flat vector always corresponds to a more stringent policy environment, which means the
increase in total output is accompanied by a significant reduction in CO2 emissions.

In brief, different evaluation objects, time spans, estimation methods, and in particular, direction
vectors, can significantly affect the results.
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4.3. Estimation of MACC

Empirically, there are commonly five kinds of non-linear functional forms, including quadratic,
logarithmic, exponential, power, and hyperbolic functional forms. In order to select the optimal fitting
function, the scatter diagram is shown in Figure 6.
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From the above analyses, we can conclude that AMAC and ACI basically change in the
reverse direction, and the marginal abatement cost curve is on a downward slope. We can observe
an unambiguous nonlinear relationship between these two variables. The downward sloping curve
implies that it is more costly to reduce an additional unit of CO2 emissions for those sectors with
lower carbon intensities. To estimate the relationship between the marginal abatement cost and carbon
intensity, a hyperbolic function is taken into consideration. The statistics of Equation (14) are depicted
in Table 6.

MACi = a/CIi + b (14)

Table 6. The regression estimates for MACC.

F-Statistic R-Squared Coefficient Standard Error t-Statistic Probability

a
89.129 0.696

0.0488 0.00517 9.4408 0.0000
b 0.42087 0.15711 2.6789 0.0108

The t-statistics show that the null hypotheses for both of the parameters are overwhelmingly
rejected. F > F0.05(1, 39) = 4.08 means the equation passes the hypothesis testing. R-squared means
the fitting equation can interpret 70% of the dependent variable changes. It is considered that this
equation can be applied to explain the relationship between the MAC and CI. The function plot is
depicted in Figure 6 in a red line, and its overall trend basically agrees with the sample data.

4.4. The Abatement Distribution Scheme

“The Improved Action to Address Climate Change” submitted to U.N. top climate officials by the
Chinese government suggested that the peak value of carbon emissions will be achieved around 2030,
and meanwhile the CO2 emissions per unit of GDP is required to be reduced by 60%–65% compared
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to 2005. Affected by international commitment, an energy revolution involving emissions mitigation,
improvement of energy efficiency, and transformation of the energy structure was proposed by the
Chinese government. Since the nationwide emissions reduction target was issued, how to allocate
the total emissions reduction target to every industry has been a burning question. Our detailed
classification of industry not only enables us to look at the MACs at an industrial level, but also to seek
the most applicable and optimal allocation scheme of CO2 abatement for the Chinese government.

In this part, we calculated the abatement distribution scheme with minimum total abatement
cost under four different emissions reduction targets, i.e., 5%, 10%, 15%, and 20%. The results are
demonstrated in Table 7. What is noteworthy is that the change of abatement distribution scheme
is broadly consistent across the four scenarios. Therefore, we only illustrate the results under the
circumstance of 20% emissions reduction.

The results show that nearly all sectors must contribute to the emissions reduction, but the
emissions reduction rates vary greatly from industry to industry. Along with the transformation of
China’s economic development mode, emissions reduction becomes an important task. As the focus
of the national implementation of energy saving and emissions reduction, heavy industry will face
greater pressure and more challenges. Mining and washing of coal (SEC 01), Extraction of petroleum
and natural gas (SEC 02), Processing of petroleum, coking, and nuclear fuel (SEC 07), Manufacture
of raw Chemical materials and chemical products (SEC 08), Smelting and pressing of ferrous metals
(SEC 10), and Production and distribution of electric power and heat power (SEC 17), whose reduction
rates reach 21.84%, 23.23%, 21.57%, 31.13% 29.73%, and 19.25%, respectively, are the six main energy
saving and pollution emissions reduction industries. Moreover, besides the above six sectors, there
are several sectors whose reduction rates are maintained above 10%, i.e., Manufacture of non-metallic
mineral products (SEC 09), Smelting and pressing of non-ferrous metals (SEC 11), Manufacture of
general purpose machinery (SEC 13), Production and distribution of gas (SEC 18), and Production
and distribution of water (SEC 19). The rest contribute poorly to the abatement, with an emissions
reduction rate below 10%.

These findings are understandable. First, as for those sectors with high emissions reduction
proportions, they are a group with something in common—lower MACs and higher carbon intensities.
Under a circumstance of 20% nationwide emissions reduction target, the allocated emissions reduction
rate in Manufacture of raw chemical materials and chemical products (SEC 08) reaches 31.13%, ranking
first. Undoubtedly, low MACs and a large amount of energy consumption in these sectors result
in a promising future in CO2 reduction. Then, the question arises: why does the Production and
distribution of electric power and heat power (SEC 17), whose carbon intensity is highest, not make the
greatest contribution to emissions reduction? The electric and heat power industry, which relies heavily
on coal, has its own particularity. The reason can be traced back to inter-links between upstream and
downstream industries. Apparently, it is a downstream industry of the coal sector and upstream of most
economic sectors. Emissions reduction is subject to the conditions of upstream and downstream industries.
To put it another way, big cuts in CO2 emissions may induce capacity cutting and price booming, which
can induce a contracting demand upstream and rising cost downstream. The co-effects of upstream and
downstream constrained the potential for emissions reduction in the electric and heat power industry.

Compared with those industries that have high emissions reduction rates, the emissions reduction
rates in light industries and some equipment manufacturing industries are lower than 10%. Among
them, the lowest emissions reduction rate appears in Manufacture of measuring instruments and
machinery for cultural activity and office work (SEC 37), which scarcely contribute to the emissions
reduction. These industries should not become the focus of the emissions reduction; otherwise society
will pay a high cost.
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Table 7. The abatement distribution schemes under different emissions reduction rates.

Classification Sectors Average MAC
Emissions Reduction Rates

5% 10% 15% 20%

Heavy Industry

SEC 01 0.25 8.32% 12.84% 15.94% 21.84%
SEC 02 0.222 1.65% 4.35% 13.60% 23.23%
SEC 03 0.183 0.00% 0.00% 0.00% 3.78%
SEC 04 0.187 0.00% 0.00% 2.62% 3.86%
SEC 05 0.217 1.31% 2.34% 2.82% 2.72%
SEC 06 0.141 0.00% 0.00% 6.08% 8.35%
SEC 07 0.168 5.40% 9.95% 14.58% 21.57%
SEC 08 0.545 1.35% 17.15% 24.81% 31.13%
SEC 09 1.307 0.00% 1.74% 8.17% 11.48%
SEC 10 0.191 5.26% 13.25% 21.24% 29.73%
SEC 11 0.741 0.00% 3.72% 7.70% 11.07%
SEC 12 1.522 0.00% 0.00% 0.00% 2.31%
SEC 13 2.235 0.00% 0.00% 8.03% 10.47%
SEC 14 2.598 0.00% 0.00% 1.32% 2.18%
SEC 15 1.843 0.00% 0.00% 0.00% 1.77%
SEC 16 3.572 0.00% 0.00% 0.00% 0.87%
SEC 17 0.187 6.60% 11.06% 15.61% 19.25%
SEC 18 0.15 1.96% 5.45% 11.23% 16.77%
SEC 19 0.153 0.00% 6.43% 9.64% 13.09%

Light Industry

SEC 20 0.824 0.00% 0.00% 0.00% 3.86%
SEC 21 0.421 0.00% 0.00% 0.00% 1.84%
SEC 22 0.51 0.00% 0.00% 0.00% 1.98%
SEC 23 1.656 0.00% 0.00% 0.00% 1.99%
SEC 24 1.608 0.00% 0.00% 4.30% 5.21%
SEC 25 1.763 0.00% 0.00% 0.00% 1.94%
SEC 26 1.228 0.00% 0.00% 0.00% 3.27%
SEC 27 0.373 0.00% 0.00% 0.00% 2.83%
SEC 28 1.755 0.00% 0.00% 0.00% 2.20%
SEC 29 0.291 0.00% 0.00% 5.43% 8.28%
SEC 30 3.547 0.00% 0.00% 0.00% 1.42%
SEC 31 3.342 0.00% 0.00% 0.00% 1.21%
SEC 32 1.118 0.00% 0.00% 0.57% 1.15%
SEC 33 0.687 0.00% 0.00% 0.27% 1.35%
SEC 34 1.127 0.00% 0.00% 0.00% 1.40%
SEC 35 1.369 0.00% 0.00% 0.09% 0.75%
SEC 36 6.292 0.00% 0.00% 2.37% 2.89%
SEC 37 5.641 0.00% 0.00% 0.00% 0.00%
SEC 38 0.449 0.00% 0.00% 0.00% 2.10%
SEC 39 0.798 0.00% 0.00% 0.00% 4.54%

5. Conclusions and Policy Implications

Looking back to this paper’s research questions, this paper tries to calculate the MACs of CO2

in China’s industrial level. The directional distance function combined with panel data covering
39 sectors for the period 2005–2011 were used. Additionally, a MACC was established to reflect the
association between marginal abatement cost and carbon intensity. Moreover, we set up a model to
measure the abatement distribution scheme with minimum cost. The conclusions are as follows.

The results of this paper show that MACs vary greatly from industry to industry; high MACs
always occur in industries with low carbon intensity and vice versa. Additionally, the rightward shift
of kernel density curves is not obvious enough in our research. The space for resetting the given
resources to cut CO2 emissions is getting squeezed over time. Meanwhile, the ongoing advancement of
technology and learning effects, in both energy conservation and emissions reduction, can continuously
lift the efficiency of DMU and cut the MAC of CO2 emissions. These two major, opposite effects ensure
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that there is a weak increasing trend over time in MACs. To establish the MACC, a hyperbolic function
is set up to estimate the relationship between the carbon intensity and MAC. The downward sloping
curve means that it is more costly to reduce an additional unit of CO2 emissions for sectors with
lower carbon intensity. Furthermore, this paper addresses the importance of an abatement distribution
scheme. The results of the abatement distribution scheme indicate that those heavy industries with
low MACs and high carbon intensities should shoulder the responsibility for emissions reductions,
and those light industries with high MACs should not become the focus of the emissions reduction;
otherwise society will pay a high cost.

The above conclusions theoretically provide information for stakeholders and policymakers to
shape optimal policy schemes for reducing CO2 emissions. However, a deep analysis of the policy
implications is necessary. Hence, some policy implications for how to apply the MAC are as follows.

(1) Clean Development Mechanism (CDM), as one of the flexible mechanisms of the Kyoto Protocol,
plays a decisive role in the European Union Emissions Trading Scheme (EU ETS). At present,
although China has become the biggest exporter of CDM, there is still a lack of pricing power on
CDM. The largest buyer, the European Union, predominantly influences the price of certified
emissions reductions (CERs), which results in a huge gap between the final transaction price and
the international market price and the loss of carbon assets in China. Measuring the emissions
reduction cost can help the Chinese government increase the voice of China in the field of EU ETS.

(2) The MAC of environmental pollution is the cornerstone of environmental policy, or, more
precisely, it can provide reliable evidence for carbon tax. A high carbon tax will increase the
financial burden of enterprises and a low carbon tax will have a weak effect on environmental
dividends. The MAC of CO2 in this paper reflects the real cost of CO2 reduction and provides
a reference for the Chinese government’s policy decisions on carbon tax.

(3) MAC can represent the MRTS (Marginal Rate of Technical Substitution) of the undesirable
outputs for desirable outputs. i.e., MRTS = ∆y/∆b = MAC. Therefore, according to the
MAC in industrial level, the government can assess the impact of short-term output changes on
environmental quality in a certain sector.

(4) Under the market mechanism, various sectors will determine their emissions reduction behaviors
based on their own abatement costs. Due to the distinctness of an industry’s features and
development, a “one size fits all” traditional abatement distribution approach is obsolete.
“Differential treatment” is critical while developing and implementing carbon reduction policies.
What the results of an abatement distribution scheme mean for policy is that heavy industries
with low MACs should take more responsibility for emissions reduction and vice versa.
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Appendix A. The Formula Derivation

P(x) can describe all possible input and output vectors. It is worth noting that the desirable
output is accompanied with the undesirable output. The strong disposability indicates that inputs
(or desirable output) can be increased (or decreased) without bearing any costs. The weak disposability
imposed onto the joint production of desirable output and CO2 emissions, i.e., (y, b) ∈ P(x) and y′ ≤ y,
imply (y′, b) ∈ P(x), which indicates that the reduction of CO2 emissions is at the cost of proportional
reduction of desirable output. Unless the entire production process is ceased, CO2 emissions will
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inevitably be generated. The null-jointness can be expressed as: If (y, b) ∈ P(x) and b = 0, so y = 0.
Without the undesirable output, the desirable output cannot be produced.

Price vector of desirable output p = (p1, . . . pM); Price vector of undesirable output q = (q1, . . . qJ);
Price vector of input l = (l1, . . . lN).

The profit maximization objective function is as follows:

R(l, p, q) = maxx,y,b{py − qb − lx : (y, b) ∈ P(x)}. (A1)

Production unit (y,b) is on the production frontier or within the production frontier, in other words,
→
D0 = (x, y, b : g) ≥ 0. Based on this point, profit function can also be expressed as in Equation (A2):

R(l, p, q) = maxx,y,b{py− qb− lx :
→
D0 = (x, y, b : g) ≥ 0}. (A2)

If (y, b) is on the production frontier (y, b) ∈ P(x),

(y + βgy, b− βgb) = {(y +
→
D0(x, y, b : g)gy, b−

→
D0(x, y, b : g)gb) ∈ P(x)}. (A3)

According to the above equation, if the equation is true to (y,b), after the elimination of the
inefficiency, the equation also can be obtained. Thus, the profit function can also be expressed as:

R(l, p, q) ≥ (py− qb− lx) + p
→
D0(x, y, b : g)gy + q

→
D0(x, y, b : g)gb. (A4)

(py− qb− lx)+ p
→
D0(x, y, b : g)gy + q

→
D0(x, y, b : g)gb means the real profit and extraneous income

after the elimination of technical inefficiency. When and only when a DMU reaches the production
frontier, the equality can be achieved.

R(l, p, q)− (py− qb− lx)
pgy + qgb

≥
→
D0(x, y, b : g) (A5)

→
D0(x, y, b : g) = min{R(l, p, q)− (py− qb− lx)

pgy + qgb
} (A6)

Based on the data envelope theorem, we can deduce the following two equations:

∇y
→
D0(x, y, b : g) = − p

pgy + qgb
≤ 0 (A7)

∇b
→
D0(x, y, b : g) =

q
pgy + qgb

≥ 0. (A8)

Finally, the marginal abatement cost of the undesirable output is calculated:

qj = py
∂
→
D0(xi, yi, bi; gy, gb)/∂bj

∂
→
D0(xi, yi, bi; gy, gb)/∂ym

. (A9)
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Appendix B. The Detailed MACs in All Industrial Sectors

Table B1. The MAC estimates in every industry.

Sectors Average Carbon Intensity
Marginal Abatement Cost (10,000 CNY/Ton)

2005 2006 2007 2008 2009 2010 2011

SEC 01 2.579 0.128 0.154 0.182 0.211 0.144 0.445 0.488
SEC 02 0.74 0.173 0.173 0.216 0.218 0.23 0.258 0.287
SEC 03 0.093 0.13 0.187 0.206 0.19 0.175 0.204 0.186
SEC 04 0.076 0.168 0.191 0.232 0.198 0.18 0.179 0.162
SEC 05 0.613 0.186 0.195 0.239 0.233 0.23 0.225 0.21
SEC 06 0.263 0.164 0.131 0.145 0.131 0.141 0.141 0.13
SEC 07 7.033 0.078 0.123 0.171 0.196 0.186 0.189 0.232
SEC 08 1.192 0.338 0.357 0.546 0.586 0.651 0.712 0.627
SEC 09 2.032 0.742 1.079 1.133 1.207 1.82 1.58 1.591
SEC 10 1.251 0.13 0.199 0.193 0.1 0.197 0.228 0.293
SEC 11 0.374 0.521 0.679 0.713 0.734 0.812 0.873 0.852
SEC 12 0.048 1.568 1.629 1.906 1.099 1.918 0.926 1.609
SEC 13 0.038 1.64 2.064 2.446 2.642 2.198 1.955 2.699
SEC 14 0.083 2.561 2.563 2.735 2.663 2.562 2.469 2.63
SEC 15 0.052 1.723 1.789 1.528 1.864 1.937 2.019 2.04
SEC 16 0.019 3.094 3.199 3.663 3.495 3.571 3.896 4.083
SEC 17 8.977 0.087 0.098 0.116 0.16 0.214 0.295 0.342
SEC 18 1.729 0.13 0.136 0.143 0.172 0.184 0.1 0.189
SEC 19 0.093 0.072 0.165 0.123 0.1 0.187 0.173 0.25
SEC 20 0.129 0.597 0.582 0.821 0.993 0.975 0.958 0.841
SEC 21 0.271 0.459 0.334 0.403 0.423 0.417 0.428 0.484
SEC 22 0.252 0.43 0.449 0.465 0.449 0.471 0.686 0.621
SEC 23 0.05 1.359 1.423 1.487 1.612 1.792 1.896 2.022
SEC 24 0.237 1.193 1.352 1.445 2.015 1.435 1.741 2.072
SEC 25 0.052 1.68 1.471 1.764 1.601 1.751 2.262 1.814
SEC 26 0.031 1.217 1.259 1.34 1.308 1.138 1.254 1.082
SEC 27 0.177 0.203 0.286 0.394 0.44 0.431 0.456 0.4
SEC 28 0.023 1.512 1.58 1.756 1.773 1.946 1.873 1.844
SEC 29 1.019 0.305 0.296 0.348 0.323 0.302 0.268 0.197
SEC 30 0.035 2.995 3.237 3.668 3.268 3.611 3.828 4.222
SEC 31 0.017 2.71 2.955 3.072 3.495 3.451 3.704 4.011
SEC 32 0.174 0.883 0.93 0.998 1.292 1.27 1.249 1.201
SEC 33 0.37 0.495 0.565 0.558 0.465 0.638 0.989 1.1
SEC 34 0.214 1.041 1.025 1.03 1.292 1.288 0.983 1.233
SEC 35 0.066 2.164 2.151 2.219 0.795 0.784 0.824 0.644
SEC 36 0.01 6.397 6.626 6.685 5.991 5.898 6.545 5.904
SEC 37 0.011 5.671 5.694 5.352 5.339 5.297 5.853 6.283
SEC 38 0.238 0.394 0.387 0.507 0.496 0.455 0.447 0.459
SEC 39 0.015 0.712 0.739 0.755 0.853 0.846 0.844 0.837
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