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Abstract: Developing countries have been undergoing dramatic urban growth over the past three
decades. It is essential to understand and simulate the urban growth process for smart urban
planning and sustainable development purposes. Cellular automata (CA) modeling is an efficient
approach to simulating urban land use/cover change; however, the traditional CA method has
limitations in simulating the various urban growth patterns and processes. This study aims to
analyze the influences of different urban growth characteristics on the effectiveness of CA modeling
by conducting a case study over the area in the Pearl River Delta of Southern China. We used the
growth rate, landscape expansion index, and spatial dependency to quantify the urban growth
characteristics. The effectiveness of CA modeling was measured through a comparison of the
simulation results with the reference data. The simulation results and validation analyses reveal that
the traditional CA is not applicable for the following three situations: (1) the urban growth pattern
characterized by less growth area or a higher ratio of outlying expansion; (2) the urban region that
includes several subregions with disparate growth characteristics; and (3) the existence of temporal
differences in growth characteristics over a long period.

Keywords: landscape expansion index; cellular automata; logistic CA; urban growth; Pearl
River Delta

1. Introduction

Urban growth, a complex spatial process, is an important social and economic phenomenon in
developing countries. Dramatic changes in the urban landscape (built-up areas) have occurred in the
fast-developing regions over the past three decades. Critics of rapid growth are concerned with the
alleged negative impacts, such as increased energy consumption, environmental pollution, residential
crowding, traffic congestion, and irreversible damage to ecosystems [1–6]. Therefore, analyzing and
predicting the spatio-temporal dynamics of urban growth is significant for smart urban planning,
resource management, and sustainable development in rapidly changing environments [6,7].

Dynamic spatial modeling is essential for the analysis and especially for the simulation and
prediction of the urban growth process [6,8]. Rapid progress in computer science, remote sensing, and
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geographic information systems technology have facilitated the emerging of various efficient dynamic
spatial modeling approaches, such as cellular automata (CA), CLUE-S models [7], and multi-agent
models [9]. Using these models, urban planners and policy-makers can analyze the different scenarios
of urban growth and further evaluate their impacts to support policy-making on urban planning
and sustainable development [10]. Among those spatial modeling approaches, the CA method is the
most widely used for modeling urban dynamics. It is a bottom-up simulation approach that relies
on the transition rules to model the behavior of complex systems [11]. Effective urban CA models
have been developed based on statistical or data-mining techniques [12–16]. These techniques require
observational data or historical data for the study area to calibrate the CA transition rules.

Despite the fact that the CA models have provided insights into the urban expansion dynamics,
some empirical studies point out that the effectiveness of CA varies when it is applied to different
cities [17]. Using fixed transition rules can result in large simulation errors because of the
spatio-temporal heterogeneity at a large spatial scale or over a long period [18,19]. Previous studies
have noted the relationship between urban growth characteristics and effectiveness (or applicability)
of CA. However, the majority of related studies focus on qualitative analyses, whereas others lack
quantitative studies.

In general, CA is implemented by using newly collected samples to rebuild the models.
However, collecting the samples of land use/cover change from remote sensing imagery is extremely
time-consuming and inefficient for most cases (e.g., for inexperienced users or in relatively inaccessible
locations) [20]. Li and Liu have proposed the domain adaptation of CA by coupling logistic CA with
a knowledge transfer technique [17]. They used the old samples that were collected from different
cities to calibrate the CA transition rules and then apply these improved rules to a new urban growth
simulation. This study indicates that the CA models, without using knowledge transfer, can be used
to simulate the urban growth dynamics on the condition that the historical trend of urban growth
continues. The reusability (or domain adaptation) of CA in different urban growth simulation models
is appealing for a number of reasons: (1) inexperienced users do not need to build a brand new CA
model; (2) collecting a new set of samples is not necessary; and (3) past experiences or old data are
useful for capturing long-term trends. However, less attention is paid to the reusability of CA for
urban growth simulations in different cities.

This paper aims to study the applicability of CA modeling for different cities that are characterized
by disparate spatio-temporal characteristics of urban growth. We attempt to measure the urban growth
spatio-temporal characteristics based on urban growth area and rate, spatial distance relationships, and
landscape expansion index (LEI). The measurements are compared with the logistic CA to determine
the accuracy of modeling urban growth processes in different scenarios. Urban growth over two time
periods, 1990–2000 and 2000–2009, in the Pearl River Delta of Southern China is analyzed and modeled.

2. Materials and Methods

2.1. Study Area

The Pearl River Delta (PRD) is an emerging metropolitan area on the southern coast of China.
The study area represents the core of the PRD, which is a typical large, complex urban growth area.
This area comprises nine cities/districts, which include Guangzhou (GZ), Huadu (HD), Zengcheng
(ZC), Conghua (CH), Foshan (FS), Zhongshan (ZS), Shenzhen (SZ), Dongguan (DG), Panyu, and
Nansha (PN) (Figure 1). The growth characteristics of these cities vary because their economic
structures and natural conditions are distinctive [21–23]. This area has experienced significant gross
domestic production growth and unprecedented land-use changes in the last three decades [24].
Many land-related problems have been identified, including rapid urban sprawl, agricultural land
loss, water pollution, soil erosion, and an increase in the magnitude and frequency of flooding [25].
The problems confronted in the PRD may soon be found in other rapidly-growing regions in developing
countries [26,27].
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A single Landsat Thematic Mapper (TM) image (no. 122-44 in the Reference System of China
Remote Sensing Ground Station) nearly covers the nine cities and districts. Only some corners of
Conghua, Shenzhen, and Zhongshan fall outside the scene. The use of a single image makes the
research technically simpler, as it does not require creating an image mosaic.

Figure 1. Study area and urban region in 2009.

2.2. Land-Use Data Processing

Three sets of cloud-free TM images were used in this study. These images were acquired on
13 October 1990, 14 September 2000, and 2 November 2009, respectively. Land-use classification was
applied to each TM image. These images were radiometrically and geometrically corrected before the
classification. Firstly, the dark-object subtraction (DOS) method was used to minimize the influences
of weather and light conditions on land-use classification using the dark subtract tool of ENVI 5.1 [28].
Secondly, these images were geometrically corrected according to ground control points. The total
RMS error of the geometric correction was controlled to less than 0.5 pixels. These corrected images
were then classified using a series of techniques, including object-based supervised classification,
manual editing, and intensive field labeling with GPS. The classification error rate for built-up land-use
identified by field checking is about 3.11–8.97%.

2.3. Indicators for Measuring Urban Growth

A large volume of research has been devoted to the study of urban growth [5,29,30] and many
indices for measuring sprawl have been developed [22,31]. In this study, three indicators that are
most related to CA modeling were selected to measure urban sprawl in the study area: growth rates,
landscape expansion types, and spatial dependence.

• Growth Rate

The simpler land-based measures of sprawl are growth rate and the percentage change in land-use
area [32,33]. The growth rate reveals the amount of available land converted to built-up land-use,
while the percentage increase normalizes urban growth rates from initial built-up land-use areas.
Growth rate (Mue) can be defined using Equation (1):
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Mue =
4Ui

4t× TLAi
× 100% (1)

where4t is the study period,4Ui is the increasing area of urban land use during the study period,
and TLAi is the initial urban land use area.

• Landscape Expansion Type

Landscape-expansion process analysis is used in urban-growth-measurement research and
aims to understand the complex relationships between patterns in urban landscape change [34].
Urban landscape expansion involves three main types of spatial patterns: infilling growth,
edge-expansion, and outlying growth. Other patterns can be regarded as variants or hybrids of
these three basic forms [35–37].

LEI is used to identify patterns in new growth patches: (1) for infilling growth, the buffer zone of
the new patch is mostly occupied by the old patch; (2) for edge-expansion growth, the buffer zone is
mixed with vacant land (or other landscapes) and the old landscape; and (3) for outlying growth, the buffer
zone is composed exclusively of vacant land. The LEI for a new patch can be evaluated using Equation (2):

LEI = 100× Ao

Ao + Av
(2)

where LEI is the landscape expansion index for a newly grown patch, Ao is the intersection between
the buffer zone and occupied land, and Av is the intersection between the buffer zone and vacant
land. The value of LEI varies between 0 and 100. When LEI ≥ 50, the newly-grown patch is identified
as an infilling patch; when 0 < LEI < 50, the new patch is identified as edge-expansion; and when
LEI = 0, the new patch is identified as outlying. A detailed description and calculation tool of LEI can
be available at http://www.geosimulation.cn/LEI.html.

• Growth Spatial Dependence

The distance of land from city centers and roads is crucial for land zoning. Existing urban
areas and roads are important spatial variables when building a land-use-change simulation model.
As a result, analyzing the new growth patch’s spatial dependence is necessary when studying urban
growth and its effect in the CA model.

Similar to the buffering procedure used by Xu et al. [38], Schneider [39] and Shi et al. [40], the
newly-developed urban patch polygons were overlaid with a hundred buffer zones at 0.3 km from
district centers (Figure 2a) and fifty buffer zones at 0.06 km from main roads (Figure 2b). These buffer
zones were used to extract and calculate the area of the newly developed urban patch in each buffer
ring. A line chart was then produced for each study city and the period to show the city center and
road dependence of new growth patches.

Figure 2. Buffering zone of district centers (a) and buffering zone of main roads (b).

http://www.geosimulation.cn/LEI.html
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2.4. Logistic CA Urban Growth Simulation Model

A logistic CA model was selected for the study’s urban growth simulation. The logistic CA is
simple to define and convenient to calibrate using sampling data [41]. The methodology used here
would be similar if the calibrating method were replaced by other data-mining methods, such as
ANN-CA [42] and genetic CA [43]. The logistical model can be used to evaluate the development
probability of non-urban land converting to urban land for simulating urban growth dynamics [41].
The development probabilities of urban CA are subject to change according to a series of urban growth
related factors. The development probability of logistic CA can be calculated as Equation (3):

st
ij =

exp
(
zt)

1 + exp
(

zt
ij

) =
1

1 + exp
(
−zt

ij

) (3)

where st
ij is the development probability for cell ij at time t, zt

ij is a combined assessment score for
development suitability (zt

ij = a0 + a1x1 + . . . + amxm + . . . + aMxM), a0 is a constant, xm is a spatial
(physical) variable representing a driving force for urban growth, and am is the parameter (weight)
associated with variable xm.

The above combined score st
ij only addresses global factors in terms of proximity variables.

However, urban growth is influenced by interactions at local levels, as well as global levels. Moreover,
some spatial constraints can be incorporated to reflect the site conditions that also affect urban growth.
By integrating all these geographical factors, the probability for development is further revised as
Equation (4) [17]:

pt
ij =

(
1 + (− ln γ)α)× st

ij × f
(

Ωt
ij

)
× conij (4)

where γ is a stochastic factor ranging from 0 to 1, α is a parameter to control the stochastic degree,
f (Ωt

ij) is the built-up land intensity in the neighborhood of Ωij, which is calculated by Equation (5),
and conij is the total constraint score ranging from 0 to 1:

f (Ωt
ij) = n/N (5)

where n is the number of cells of built-up area in the neighborhood of Ωij, N is the total number of
cells in the neighborhood of Ωij.

Finally, pt
ij is compared with a threshold value to determine if a non-urbanized cell will be

converted into an urbanized cell at each iteration of the simulation as Equation (6):

St+1
ij =

Converted, pt
ij ≥ Qland

NonConverted, pt
ij < Qland

(6)

where St+1
ij is the state (non-urbanized or urbanized) of cell ij at next time (t + 1) and Qland is a threshold

value that is related to the amount of land conversion.
The threshold (Qland) is estimated using observational data or an exogenous growth model to

predict built-up land demand. This value can be chosen such that the total number of converted cells
will be equal to the real number calculated from the observed remote sensing data.

In the following experiments, we use a figure of merit (FoM) [44] and Kappa index [45] to assess
the accuracy of simulation results. The FoM measurements in this study were derived from overlays
of the reference map of the initial time, the reference map of the subsequent time, and the prediction
map for the subsequent time. This indicator focuses on change (the cells urbanized during the study
period) instead of predicting persistence. FoM is a ratio ,which is calculated by Equation (7), where the
numerator is the intersection of the observed change and predicted change while the denominator is
the union of the observed change and predicted change [46]. The FoM can range from 0%, meaning no
overlap between observed change and predicted change, to 100%, meaning perfect overlap between
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observed change and predicted change. A land change simulation model is acceptable when its
performances is better than Null model that predicts pure persistence (no change between the map
of the initial time and prediction map for the subsequent time) [47]. Pontius had compared 13 land
change model applications with Null model [46]. Among the 13 applications, he found that, when the
FoM is larger than 0.21, the model has a satisfactory predictive ability (better than the Null model).

Figure of merit = B/(A + B + C + D) (7)

where A is the area incorrectly predicted to persist, B is the area correctly predicted to change, C is the
area incorrectly predicted to wrong land-use type, and D is the area incorrectly predicted to change.

A Kappa index was employed by many land use change studies to assess the accuracy of the
results [21,45,48,49]. The Kappa index is calculated as Equation (8):

Kappa =
M ∑r

i=1 xii −∑r
i=1(xi+ ∗ x+i)

M2 −∑r
i=1(xi+ ∗ x+i)

(8)

where xii are the elements on the main diagonal of the error matrix, xi+ is the sum of the ith row of the
error matrix, and x+i is the sum of the ith column of the error matrix.

3. Results and Discussion

3.1. Urban Growth Measurement

• Growth Rate

The study period is divided into two periods (T1: 1990–2000 and T2: 2000–2009). According to the
land-use classification of the study area, the growth ratio is calculated using Equation (2). During the
study period, the study area experienced rapid urban area expansion, increasing from 790.52 km2 to
4803.00 km2. Figure 3 shows the urban growth during the period 1990–2009, with the annual urban
growth ratio ranging from 2.52% to 21.43%.

Figure 3. Consistency of urban land use over the study period.
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As shown in Figure 3, the variation of each district’s urban area is different. The detailed data
of built-up area and annual growth rate can be found in Table 1. According to the table, Dongguan
and Foshan are growing quickly during T1 and T2. Both districts have the largest increase in built-up
areas among the study area. The growth area (2.12 km2) and growth rate (2.52%) of Conghua during
T1 is the lowest among all of the districts. However, the rate of Conghua is higher in T2 because
Conghua is a satellite city of Guangzhou and its urbanization started late. The growth rates of Panyu and
Nansha, Huadu, Zengcheng, and Zhongshan are similar, ranging from 15% to 20%. The growth rates
of Guangzhou and Shenzhen are low because their urbanizations started early and they are developed
regions. The growth rate of Zengcheng is also ranges from 15% to 20%, but its annual growth area is small.

Table 1. Annual built-up area growth number and growth rate of the nine cities over two periods.

No.
Period 1990–2000 (T1) 2000–2009 (T2)

Region Growth Area (km2) Growth Rate (%) Growth Area (km2) Growth Rate (%)

1 Dongguan 313.05 21.43 724.35 17.53
2 Foshan 244.31 16.89 736.20 21.03
3 Conghua 2.12 2.52 19.87 20.99
4 Panyu & Nansha 64.28 16.42 181.01 19.44
5 Guangzhou 139.39 7.20 299.41 9.99
6 Huadu 27.72 17.40 108.04 27.50
7 Zengcheng 30.42 20.03 76.99 18.76
8 Shenzhen 182.11 9.28 447.84 13.16
9 Zhongshan 95.30 15.53 290.07 20.58

• Landscape Expansion (Urban Growth) Types

The LEI was calculated for each new growth patch according to Equation (3). The buffer zones of
the new urban patches were created by using a constant distance of 1 m.

Figure 4 shows the spatial distribution of three different urban growth types in the two periods.
Table 2 shows the ratio of three urban growth types in different districts for the two periods. The urban
landscape shows distinct growth patterns in different periods. During T1 (1990–2000), urban growth
was dominated by edge expansion in most of the districts. However, outlying growth ratios are high
in Panyu and Nansha, Huadu, Conghua, Shenzhen, Dongguan, Fashan, and Zhongshan, exhibiting
a disordered and scattered pattern. Although infilling growth was also identified in the period, it was
much less common, occurring only in the city proper. During T2 (2000–2009), fewer new outlying
patches were found, while edge expansion and infilling growth became dominant (GZ, HD, ZC, and
DG). However, edge expansion had decreased. Infilling growth intensified around district centers
in some developed districts. Meanwhile, outlying growth increased, and edge expansion became
dominant in Conghua because Conghua’s rapid urbanization began during this period.

Table 2. Growth type ratios of nine districts for periods T1 and T2.

Period T1: 1990–2000 T2: 2000–2009

District Outlying Edge-Expansion Infilling Outlying Edge-Expansion Infilling

GZ 9.29% 74.78% 15.93% 2.02% 37.39% 60.59%
PN 16.14% 73.32% 10.54% 6.81% 59.24% 33.96%
HD 18.62% 78.63% 2.75% 5.29% 47.17% 47.54%
ZC 6.89% 86.75% 6.36% 4.16% 42.60% 53.24%
CH 3.08% 87.83% 9.09% 10.70% 60.76% 28.54%
SZ 10.93% 72.44% 16.62% 3.26% 50.22% 46.51%
DG 20.16% 71.00% 8.84% 2.61% 46.96% 50.44%
FS 12.42% 71.80% 15.78% 5.27% 48.31% 46.43%
ZS 18.93% 73.21% 7.86% 5.53% 56.32% 38.14%
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Figure 4. Spatial distribution of three urban growth types.

• Growth Spatial Dependence

The newly developed urban patch polygons were overlaid with district-center (Figure 2a) and
major-road (Figure 2b) buffer zones to calculate the spatial dependence of urban growth. The line
charts in Figures 5 and 6 show the district-center dependence and the road dependence of the newly
developed urban patches. The X-axis is the distance from the district centers or roads, and the Y-axis is
the area of the newly developed urban land during the study periods.

Figure 5. Spatial dependence of urban growth from district centers over two time periods. (a) Period
T1: 1990–2000 and (b) Period T2: 2000–2009.
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Figure 6. Spatial dependence of urban growth from major roads over two time periods. (a) Period T1:
1990–2000 and (b) Period T2: 2000–2009

As shown in Figures 5 and 6, the spatial dependence of each district’s new-growth built-up areas
varies. In T1 (1990–2000), the new growth of urban land in Guangzhou, Zengcheng, and the new
growth urban land of Shenzhen and Foshan were mainly grouped around district centers. The new
growth urban land of Dongguan was mainly grouped around multiple centers, and these centers tend
to connect with each other along the major road network. There are two reasons that Dongguan has
this spatial dependence: (1) Guangzhou and Shenzhen, which are adjacent cities of Dongguan, have
more influence than does Dongguan’s center; (2) the main source of the economy is the manufacturing
industry, and the products need to be exported by road. Meanwhile, new development mainly took
place along major transportation networks in most study districts, except Guangzhou, Huadu, and
Conghua. During T2, district-center dependence is more notable (Figure 5b). There is dependence on
major roads in all districts except Guangzhou and Conghua.

3.2. Urban Growth Simulation

The experiment seeks to explore CA simulation results that are calibrated with sample datasets
from different districts. Logistic CA were applied to nine districts, simulating the urban growth process
over two periods. Logistic CA uses global interaction and local interaction to address urban area
dynamics. Global interaction (or development probability) is a function (Equation (3)) of proximity
factors (distance to the district centers, distance to major roads), which is calibrated through a logistic
regression. Local interaction is a function ( f (Ωt

ij)) of neighboring land-use types (the amount of
built-up land in the neighborhood). The importance of proximity factors and neighborhood effects to
urban simulations has been extensively discussed [7,17,41,50,51].

In the experiments, a 30 m × 30 m cell (pixel) was set as the basic analysis unit of the CA model.
A total of 328 new growth sites were investigated for the period T1. Within these sites, a total of
3211 samples were randomly extracted. A total of 312 new growth sites were also identified for
the period T2. These sites randomly yielded a total of 2109 pixels as the sample data. The samples
were divided into 18 combinations according to the district and period. Development probability
(st

ij) was calibrated using a logistic regression model for each combination. The dependent variable is
binary (whether the land use is a built-up area) and independent variables, include the distance to
the district centers and the distance to major roads, land elevation (DEM), and slope. Configuration
of the neighborhood (Ωij) used a 3 × 3 neighborhood, and the threshold value (Qland) was set to 0.8.
Figure 7 displays the FoM and Figure 8 show the Kappa index in nine districts during the two periods.
These figures clearly show that the FoM (ranging from 0.25 to 0.40) are high and satisfactory in GZ,
SZ, and DG. The FoM (around 0.20) are low in CH and ZC. The reasons for the change in FoM for
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different districts and periods will be discussed in Section 3.3. The Kappa indices of each district are
better than the Kappa of the Null model and range from 0.50 to 0.65 for the simulation of urban growth
(excepting DG in T1) in the two periods. This range of Kappa means the consistency of the reference
map and the prediction map is moderate or substantial, and the Kappa values are close with other
studies [17,21,42,43,48] on CA modeling of the urban dynamics over the PRD areas.

Figure 7. Figure of merit (FoM) of the simulation results for nine districts.

Figure 8. Kappa indices of the simulation results for nine districts.

3.3. Expansion Type Ratio and Spatial Dependence Play a Key Role in CA Model Applicability

In the real-world situation, the new growth urban land is affected by many factors, which include
some artificial factors such as the aspiration of the city authorities, urban planners, or investors. This is
especially obvious in China. As a result, predicting the location of a few new growth patches is
difficult. CA can be used to model the possibility and the location of the whole region. As shown in
Figure 9a, if the quantity of the new growth areas is low, the randomization of the growth location is
increased and the performance of the CA is decreased. In our case study, we find that there is a positive
correlation between the growth rate and CA mode performance.

CA is a neighborhood-based model. As a result, a traditional CA model (such as logistic CA)
is only applicable to edge expansion and infilling growth patches. Figure 9b clearly demonstrates
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that logistic CA performance is sensitive to the ratio of the outlying growth type. The performance
of logistic CA tends to decrease when the ratio of outlying expansion increases (negative correlation
between FoM and the “outlying ratio”). There are three cases (CH T1, ZC T1, and CH T2) that can be
found in the figure showing that their outlying ratios are low while the CA models’ performance is
poor. This is because the growth area quantities of these cases are low.

Figure 9. Correlation between model performance and growth characteristics: (a) Correlation between
FoM and growth area; (b) correlation between FoM and outlying ratio.

3.4. Domain Adaption of the CA Model

The urban-growth characteristics of each district vary, even when they belong to the same
metropolitan area. The logistic CA model and other technical, data-mining land-use-change
models require sample collection from the study area to calibrate the model. Hence these types
of land-use-change models are not applicable to large regions that contain districts with different
growth characteristics. Furthermore, samples collected from cities with similar growth characteristics
can be used to calibrate a new land-use-change model. Additional experiments were implemented to
test this hypothesis.

The aim of these experiments was to test whether the samples collected in other districts could be
used to simulate the target district. The target district was set to Panyu and Nansha during the period
2000–2009. Four logistic CA models were built with different data sets. The data sets included samples
collected from PN during T2 (D1), ZC during T2 (D2), PN during T1 (D3) and DG during T2 (D4).
The growth characteristics of the four urban growth processes are shown in Table 3.

The final simulated patterns of urban growth for Panyu and Nansha were obtained using these
four models. The simulation patterns are shown in Figure 10. The areas in green were correctly
simulated, while those in yellow (persistence simulated as change) and red (change simulated as
persistence) were falsely simulated. The CA model calibrated with D1 is a reference pattern. We found
that calibrating CA with D4 performed much poorer (the FoM and Kappa are the lowest in four cases)
than calibrating CA with D2 and D3 (Figure 10b–d). We also found that the simulation result of the
model calibrated with D4 has similar growth characteristics with DG T2. The new growth urban land
is mainly grouped around multiple centers, and these centers tend to connect with each other along
the major road network.

According to Table 3, although the source of D1 and D3 are in the same district, the difference of
growth characteristics between source districts of D1 and D2 is less obvious than the difference between
source districts of D1 and D3. The model that was calibrated with D2 can reach 94.3% performance
(FoM) of the reference model. It is acceptable in application. The low growth characteristics diversity
is the main reason why samples from other similar districts can be used to calibrate CA models.



Sustainability 2017, 9, 796 12 of 15

Table 3. The growth characteristics of four trained data sources.

Trained
Data Set

Data
Source

Growth
Area (km2)

Outlying
Ratio

District Center
Dependence

Major Road
Dependence

D1 PN, T2 181.01 6.81% Single center (4.0–14.0 km) Low
D2 ZC, T2 76.99 4.16% Single center (7.0–16.0 km) Low
D3 PN, T1 64.28 16.42% Multi-center Low
D4 DG, T2 724.35 2.61% Multi-center High

Figure 10. Simulation patterns of four cellular automata (CA) models: (a) CA calibrated with D1;
(b) CA calibrated with D2; (c) CA calibrated with D3, and (d) CA calibrated with D4.

4. Conclusions

Land-use-change models (such as the CA model) are powerful tools for studying and simulating
the spatio-temporal and dynamic process of urban growth. Any land-use-change modeling requires
decisions to be made, such as choosing the best-fit statistics for use during the calibration process.
A preliminary study of urban-growth characteristics before building a land-use-change model is
an important but often neglected step. Our results demonstrate how different growth characteristics
impact on the overall performance of an urban land-use-change model.

According to our case studies, the performance quality of logistic CA tends to increase with
an increased area of new growth and decrease with an increased ratio of outlying expansion. Traditional
logistic CA is not applicable in three situations: (1) the urban growth process with a low growth area or
high ratio of outlying expansion; (2) a large region that includes several districts/cities with different
growth characteristics; and (3) a long period where the urban growth trend of the study area is shifting.
Spatial dependence (such as proximity to district centers and major transportation networks) of the
new growth patch plays a key role in CA model reusability. We can use samples from different districts
to calibrate the CA model if these districts have similar growth characteristics.

We suggest that growth-characteristic analyses be conducted with each application such that
the variability in map output can be assessed and incorporated into the interpretation of results with
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an acceptable level of confidence. Furthermore, the traditional logistic CA is reusable when applied
to cities with the same growth characteristics. When the model needs to be applied to cities with
different growth characteristics, we suggest using another technique (such as knowledge transfer or
ensemble modeling) to improve the domain adaptive ability of the CA model. Future studies should
also examine how other exogenous forces, such as land-use policies, are related to the urban-growth
dynamic process and land-use-change modeling performance. These patterns reveal an interesting fact:
the falsely simulated patches are usually situated in more remote areas. Future efforts are required to
improve the simulation accuracy in these remote areas.
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