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Abstract: As it is widely accepted, cycling tends to produce health benefits and reduce air pollution.
Policymakers encourage people to use bikes by improving cycling facilities as well as developing
bicycle-sharing systems (BSS). It is increasingly interesting to investigate how environmental factors
influence the cycling behavior of users of bicycle-sharing systems, as users of bicycle-sharing systems
tend to be different from regular cyclists. Although earlier studies have examined effects of safety
and convenience on the cycling behavior of regular riders, they rarely explored effects of safety
and convenience on the cycling behavior of BSS riders. Therefore, in this study, we aimed to
investigate how road safety, convenience, and public safety affect the cycling behavior of BSS riders
by controlling for other environmental factors. Specifically, in this study, we investigated the impacts
of environmental characteristics, including population density, employment density, land use mix,
accessibility to point-of-interests (schools, shops, parks and gyms), road infrastructure, public transit
accessibility, road safety, convenience, and public safety on the usage of BSS. Additionally, for a
more accurate measure of public transit accessibility, road safety, convenience, and public safety, we
used spatiotemporally varying measurements instead of spatially varying measurements, which
have been widely used in earlier studies. We conducted an empirical investigation in Chicago with
cycling data from a BSS called Divvy. In this study, we particularly attempted to answer the following
questions: (1) how traffic accidents and congestion influence the usage of BSS; (2) how violent crime
influences the usage of BSS; and (3) how public transit accessibility influences the usage of BSS.
Moreover, we tried to offer implications for policies aiming to increase the usage of BSS or for the
site selection of new docking stations. Empirical results demonstrate that density of bicycle lanes,
public transit accessibility, and public safety influence the usage of BSS, which provides answers for
our research questions. Empirical results also suggest policy implications that improving bicycle
facilities and reducing the rate of violent crime rates tend to increase the usage of BSS. Moreover,
some environmental factors could be considered in selecting a site for a new docking station.

Keywords: traffic accidents; traffic congestion; violent crime; crowdsourced geographic
information; Divvy

1. Introduction

Encouraging commuters to use active travel (cycling and walking) instead of inactive travel
(travel by motorized vehicles) would produce health benefits [1–7] and reduce air pollution [8–11].
Policymakers conduct environmental interventions to encourage cycling to work, such as improving
cycling infrastructure. This is explained by some studies focusing on the purposes of cycling, attitudes
toward cycling, and experiences of cycling [12–21]. Typically, a better cycling infrastructure is
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associated with positive experiences and positive attitudes, and thus tends to increase the usage
of bikes [15,17,19]. Recently, one new way in which cities seek to increase the usage of bikes is by
implementing bicycle sharing systems (BSSs) to facilitate short-term bicycle rental in urban areas [22].
New studies reveal that BSSs have positive health impacts [22,23], and reduce the usage of motor
vehicles [11,24].

Earlier studies reveal that the cycling behavior of regular riders (private bicycle riders) tends
to be influenced by environmental factors, including population density, land use mix, green space,
cycling facilities, and safety [25–30]. It is increasingly interesting to investigate how environmental
factors influence the cycling behavior of BSS cyclists, as BSS cyclists tend to be different from regular
cyclists. For instance, in the UK, the USA, and Australia, BSS riders are on average disproportionately
of higher education and income, and more likely to be male and white [31]. Therefore, in very recent
years, some studies started to investigate the impact of environmental factors on the cycling behavior
of BSS users [32–40]. For instance, some studies uncover that proximity to workplace or home tends to
increase the usage of BSS [33–35], and high population and high levels of public transit accessibility
also tend to increase the usage of BSS [36–38]. More importantly, improvement on bicycle facilities
(bicycle lanes or bicycle paths) seems to increase bicycle sharing ridership [36,37,39,40]. Potentially,
a better understanding of environmental effects on the cycling behavior of BSS riders could offer
suggestions for policymaking and urban planning. For instance, knowing how environmental factors
influence the cycling behavior of BSS riders will help in finding optimum places for docking stations
across a city [32].

Although earlier studies have examined the effects of safety and convenience on the cycling
behavior of regular riders [26–29], they have rarely explored the effects of safety and convenience
on the cycling behavior of BSS riders. Therefore, in this study, we aimed to investigate how
road safety, convenience, and public safety affect the cycling behavior of BSS riders by controlling
for other environmental factors. Specifically, we used traffic accidents, congestions, and violent
crimes to measure road safety, convenience, and public safety, respectively. Additionally, to more
accurately measure public transit accessibility, road safety, convenience, and public safety, we used
spatiotemporally varying measurements instead of spatially varying measurements that have been
widely used in earlier studies [32,37,41]. We also examined how space- and time-dependent public
transit accessibility influences the usage of BSS, since earlier studies employed space-dependent public
transit accessibility without any information on transit frequency [36–38].

Specifically, in this study, we investigated the impacts of environmental factors on the usage of
BSS. The environmental factors investigated in this study include socioeconomic factors, land use
and point-of-interest (POI) factors, road infrastructure factors, public transit accessibility factors, and
safety and convenience factors. Particularly, we attempted to answer the questions of: (1) how traffic
accidents and congestion influence the usage of BSS; (2) how violent crime influences the usage of
BSS; and (3) how public transit accessibility influences the usage of BSS. Moreover, we tried to offer
implications for policies aiming to increase the usage of BSS or for the site selection of new docking
stations. Particularly, we paid much attention to the necessity of reducing violent crime. We conducted
an empirical investigation in Chicago with cycling data from a BSS called Divvy. Divvy publicizes
cycling trips of BSS users (including both annual members and casual users) with start and end
docking stations as well as trip duration. The BSS data was contributed by individual riders, and thus
is considered a type of crowdsourced geographic information (CGI) and has high potential for studies
of active travel and sustainable transport.

The remainder of this paper is organized as follows. Section 2 introduces the BSS data and
environmental data, as well as the measures of environmental characteristics. Section 3 then describes
the empirical results, and finally Section 4 presents the conclusion and makes recommendations for
future work.
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2. Materials and Methods

In this section, the BSS data and environmental data employed are introduced. Subsequently,
the environmental characteristics of docking stations are introduced. Finally, with a linear mixed-effects
model, we examine the impacts of environmental factors on annual members’ usage of BSS.

2.1. Data

2.1.1. BSS Data

In this study, the cycling dataset was offered by Divvy (Motivate, Chicago, IL, USA), which is a
BSS in Chicago. It began operating in June 2013. Yearly historical Divvy data are publicly available [42].
The 2015 data includes two files: Trips and Stations. There are 3,183,439 cycling trips and 474 docking
stations in these two files, respectively. In the Trips file, each trip was anonymized and includes: bike
ID, trip start day and time, trip end day and time, trip start station ID, trip end station ID, trip duration,
user type. Divvy has two user types: Subscriber and Customer, representing annual members and
casual users, respectively. If a trip was made by a Subscriber, gender and year-of-birth of the Subscriber
is available. In the Stations file, each station includes: station ID, station name, and station location
(longitude/latitude). Figure 1 maps the docking stations of Divvy in Chicago. In 2015, there were
3,183,439 cycling trips, including 2,253,556 trips made by annual members (70%) and 929,883 made by
casual riders (30%). The average duration of all cycling trips was 17.1 min. Specifically, the average
duration of annual members’ trips was 12.1 min; while the average duration of casual users’ trips
was 29.2 min. Casual users tend to cycle for a longer duration than annual members do. On the other
hand, according to an estimate based on field observations [43], the average duration of regular riders’
trips in Chicago was roughly 45 min. Compared with the average duration of regular riders’ trips, the
average duration of Divvy riders’ trips is much shorter. This is mainly because only the first 30 min of
the Divvy system is free and users are encouraged to use Divvy for short trips [41]. Table 1 shows the
demographics of cycling trips of Divvy’s annual members in 2015. The majority of cycling trips were
made by male riders, while female riders tend to cycle for a longer duration. Users aged 26–34 years
made almost half of the total cycling trips, while users aged over 64 years tended to cycle for a longer
average duration.

Table 1. Demographics of Divvy cycling trips of annual members in 2015.

Gender Male Female

Percent of trips 74.8% 25.2%
Average trip duration (min) 11.5 13.7

Age Category Under 19 19–25 26–34 35–54 55–64 Over 64
Percent of trips 0.3% 14% 45.2% 33.7% 5.9% 0.9%

Average trip duration (min) 12.2 11.9 12.1 12.0 12.3 13.6

We further removed some noisy trips by the following steps:

(1) We first removed trips with a duration of more than 90 min (twice the average duration of regular
riders’ trips in Chicago [43]), as trips longer than 90 min are not typical bicycle-sharing rides and
could also be a result of misplacing the bicycle when returning it to the station [41];

(2) We further removed trips originating or arriving at a docking station with a unique ID of ‘394’, as
this docking station is missing in the Stations file and thus its geo-location is unknown.
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Figure 1. Divvy docking stations in Chicago (Basemap: OpenStreetMap, licensed under the Open 
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Specifically, data of residents and jobs were downloaded from US Census Bureau’s 
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Chicago’s open data portal [45]; while land use data were downloaded from Chicago Metropolitan 
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One-year records of geo-referenced and time-stamped traffic accidents and congestions from June 
2015 to May 2016 were collected since June 2015. As Bing Maps REST Services do not support 
downloading historical records, we do not have records before June 2015. Instead, we used records 
from June 2015 to May 2016 to represent traffic accidents and congestions in this study. A three-year 
dataset of geo-referenced and time-stamped violent crimes from 2013 to 2015 was used to represent 
violent crimes. The geographical levels of population and employment were obtained from census 
tracts. The population and employment data in 2014 were used, as they were the most updated. 
Also, we used the latest land use data generated based on aerial images from 2013. The public transit 

Figure 1. Divvy docking stations in Chicago (Basemap: OpenStreetMap, licensed under the Open
Database License).

2.1.2. Data for Environmental Factors

In this study, we took account of environmental factors, including socioeconomic factors,
land use and point-of-interest (POI) factors, road infrastructure factors, public transit accessibility
factors, and safety and convenience factors. Accordingly, data of residents and jobs were used to
measure socioeconomic factors; land use data and data of POIs were used to measure land use and
point-of-interest (POI) factors; data of road networks and bicycle lanes were used to measure road
infrastructure factors; data of public transit services was used to measure public transit accessibility
factors; and finally data of traffic accidents and congestion and data of violent crimes were used to
measure safety and convenience factors.

Specifically, data of residents and jobs were downloaded from US Census Bureau’s Longitudinal
Employer Household Dynamics (LEHD) synthetic data [44]. Data of road network, data of bicycle
lanes, data of public transit services, and crime data were downloaded from Chicago’s open data
portal [45]; while land use data were downloaded from Chicago Metropolitan Agency for Planning [46].
Data of POIs were downloaded from MapQuest via APIs [47]. Data of traffic accidents and congestion
were downloaded from Bing Maps REST Services via APIs [48]. One-year records of geo-referenced
and time-stamped traffic accidents and congestions from June 2015 to May 2016 were collected since
June 2015. As Bing Maps REST Services do not support downloading historical records, we do not
have records before June 2015. Instead, we used records from June 2015 to May 2016 to represent traffic
accidents and congestions in this study. A three-year dataset of geo-referenced and time-stamped
violent crimes from 2013 to 2015 was used to represent violent crimes. The geographical levels of
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population and employment were obtained from census tracts. The population and employment data
in 2014 were used, as they were the most updated. Also, we used the latest land use data generated
based on aerial images from 2013. The public transit data were obtained from a General Transit Feed
Specification (GTFS) dataset that was downloaded from the Chicago Transit Authority (CTA) system,
including stops, route patterns, and a full service schedule. The geography level and temporal level of
traffic and crime data were street level and second level.

2.2. Cycling Behaviour and Investigation Model

In this study, we focused on the cycling behavior of annual members rather than casual riders
because: (1) annual members tend to use BSS much more frequently than casual riders; and (2) 70% of
the cycling trips were made by annual members. Accordingly, we first partitioned the cycling trips
into trips made by annual members and trips made by casual riders, and then counted the cycling
trips of annual members departing from or arriving at each docking station during a one-hour time
slot separately. To characterize the cycling behavior of BSS riders (annual members), we measured the
usage of docking stations as an origin or destination by two indices: hourly number of departures and
hourly number of arrivals. A docking station’s hourly number of departures and hourly number of arrivals
represent the total number of cycling trips from and to this station during a one-hour time slot (e.g.,
7:00 a.m.–7:59 a.m.) on all workdays in 2015. Specifically, dependent variables are hourly number of
departures and hourly number of arrivals. In this study, we investigated the impact of environmental
factors on one of these two dependent variables each time. Consequently, there are 11,376 records
(24 h × 474 stations) of each dependent variable.

To quantitatively examine the effects of environmental factors with different data types (numeric
and categorical), a linear mixed-effects model (also called a linear mixed model) was employed in
this study. Moreover, a multilevel linear mixed model was employed to explicitly recognize the
dependencies associated with bicycle flows originating or arriving at the same station, as a traditional
linear regression model is not appropriate for studying data with multiple repeated observations [37].
Additionally, an earlier study [37] compared a linear regression model and a linear mixed model, and
its experimental results demonstrated the suitability of the mixed modeling approach employed in an
analysis for examining the determinants of BSS usage.

The general form of a linear mixed model is:

y = Xβ + Zγ + ε (1)

where y is an N × 1 response vector of the outflows or inflows of docking stations; N is the number
of observations (24 h × 474 stations); X is an N × p matrix of the p independent variables for the
fixed-effects; β is an N × 1 fixed-effects vector; Z is an N × q matrix for the q random-effects; γ is a
q × 1 random-effects vector; ε is an N × 1 vector of the residuals.

For simplicity, we only considered random intercepts in this study. Accordingly, we assume that:
apart from the capacity and visibly environmental factors of the docking stations, some other invisibly
environmental factors of the docking stations, e.g., building density, steep inclines, or the presence of
tourism sites nearby, might influence cyclists’ behavior in a way that is not seen in the present data. In
this study, the number of groups is equal to the number of docking stations.

2.3. Environmental Factors

In this study, we took account of population density, employment density, land use mix,
accessibility to POIs (schools, shops, parks and gyms), road infrastructure, public transit accessibility,
road safety and convenience, and public safety. Table 2 lists the independent variables, including station
capacity, time of the day, and environmental variables. Station capacity is the capacity of each docking
station. Time of the day is classified into six categories: Very Early AM Hours (12:00 p.m.–3:59 a.m.),
Early AM Hours (4:00 a.m.–5:59 a.m.), AM Peak Hours (6:00 a.m.–8:59 a.m.), Mid-Day Hours
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(9:00 a.m.–2:59 p.m.), PM Peak Hours (3:00 p.m.–5:59 p.m.), Early Evening Hours (6:00 p.m.–7:59 p.m.),
and Late Evening Hours (8:00 p.m.–11:59 p.m.).

We characterized the environmental factors at the level of the station’s surrounding area. Here,
the surrounding area of a docking station is defined as a circular buffer surrounding the docking station.
An earlier study [41] suggests that a 300-m buffer around each station was found to be an appropriate
walking distance, considering the distances between Divvy stations in the city of Chicago [11].
Therefore, we set a radius of 300 m to define the surrounding area for each docking station.

Table 2. Independent variables considered in this study.

Categories of Factors Independent Variables Type Varying Type

Non-environmental factors
Station capacity numeric -

Time of day categorical -

Socioeconomic factors
Residential density (/km square) numeric Spatially varying

Employment density (/km square) numeric Spatially varying

Road infrastructure factors
Length of roads (m) numeric Spatially varying

Length of bicycle lanes (m) numeric Spatially varying

Land use and POI factors

Land use mix numeric Spatially varying

Presence of colleges and universities categorical Spatially varying

Presence of schools categorical Spatially varying

Presence of grocery stores categorical Spatially varying

Presence of retail shops categorical Spatially varying

Presence of gyms categorical Spatially varying

Presence of parks categorical Spatially varying

Public transit service factors
Metro frequency numeric Spatially varying

Hourly bus frequency numeric Spatiotemporally varying

Road safety and convenience factors
Number of traffic accidents numeric Spatiotemporally varying

Number of traffic congestions numeric Spatiotemporally varying

Public safety factors
Number of on-street violent crimes numeric Spatiotemporally varying

Number of off-street violent crimes numeric Spatiotemporally varying

Based on the 300-m surrounding area, the environmental variables of docking station are defined
and calculated as follows:

Residential density and employment density is the density of residents and jobs in the 300-m buffer.
As a docking station’s buffer might overlap more than one census tract, we combined all overlapping
parts of census tracts and the 300-m buffer. Supposing that i is a docking station, we calculated
residential density and employment density of its buffer as:

res_den (i) = ∑
i∈S(i)

res_den sub (i, j)× area sub (i,j)
sum_area sub (i)

emp_den (i) = ∑
i∈S(i)

emp_den sub (i, j)× area sub (i,j)
sum_area sub (i)

sum_area sub (i) = ∑
i∈S(i)

area sub (i, j)

(2)

where res_densub (i, j) and emp_densub(i, j) represent the residential density and employment density
of the overlapping part of census tract j and the buffer, equaling residential density and employment
density of census tract j. Area sub (i, j) represents the area of the overlapping part of census tract j and
the buffer; S(i) is the set of overlapping parts of census tracts and the buffer.

Length of roads equals the total length of roads within the 300-m buffer. It is used to measure the
density of roads. As the buffer of each docking station is same size, the length of roads is not necessarily
divided by the area of the buffer to represent the level of road density.
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Length of bicycle lanes equals the total length of bicycle lanes within the 300-m buffer. It is used to
measure the level of cycling facilities.

Land use mix is the mix level of land use in the 300-m buffer. We used an entropy index to describe
the level of land use mix [28,49]. The higher the entropy index, the more homogeneous the distribution
of land types; in other words, the higher the level of land use mix. Supposing that there are N land use
types, the entropy-based land use mix is represented as:

LandUse_Entropy = −
N

∑
t=1

LUA(t)
LUA

log2
LUA(t)
LUA

(3)

where: LUA (t) represents the area of land use type t in the 300-m buffer; LUA represents the total
area of all of the land use types. In this study, N equals 7. The seven land use types are: commercial,
residential, industrial, institutional, other built-in, open space, and others. The entropy-based land
use mix is within the range of 0 to 1, with 0 meaning a single land use type (e.g., all residential) and 1
denoting the even distribution of all seven land use types in the 300-m buffer.

Presence of colleges and universities, presence of schools, presence of grocery stores, presence of retail shops,
presence of gyms, and presence of parks represent whether there are colleges and universities, schools,
grocery stores, retail shops, gyms, or parks within the 300-m buffer. As a large portion of docking
stations’ 300-m buffers presented zero POI, we used a binary categorical data type instead of the
original numeric data type to measure the availability of POIs. Specifically, ‘Y’ means there are colleges
and universities, schools, grocery stores, retail shops, gyms, gyms, or parks within the 300-m buffer,
while ‘N’ means there are none.

Metro frequency is the total number of metro routes passing all metro stations within the 300-m
buffer. As the hourly frequency of each metro route is almost identical and the service times of each
metro station is close to 24 h, we only calculated the number of routes to measure metro accessibility at
each metro station.

Hourly bus frequency is the hourly number of bus trips passing all bus stops within the 300-m
buffer on workdays (Monday to Friday). This was used to measure bus accessibility. Supposing that i
is a docking station, its hourly bus frequency is calculated as:

Hourly_bus_ f requency Workday(i, t) = ∑
j∈S(i)

ave_num_bus_tripStop
Workday (j, t) (4)

where ave_num_bus_ trip Stop
Hour (j, t) is the average number of bus trips passing through the bus stop

j during a one-hour time slot t on workdays; S(i) is the set of bus stops that are situated within the
300-m buffer of i.

Number of traffic accidents and number of traffic congestions are the hourly number of traffic accidents
and congestions within the 300-m buffer on workdays (Monday to Friday), respectively.

Number of on-street violent crimes and number of off-street violent crimes are the hourly number of
on-street violent crimes and off-street violent crimes within the 300-m buffer on workdays, respectively.

3. Results and Discussion

In this study, 11,376 records (24 h × 474 stations) of independent variables (see Table 2) were
input into a linear mixed model for annual members’ usage of BSS. Table 3 lists the estimation results
for the linear mixed-effects model of annual members’ usage of BSS. The number of observations is
11,376, which is equal to the number of records, and the number of groups is 474, which is equal to the
number of dock stations. In Table 3, the coefficient is the coefficient estimated for each independent
variable in the fixed effects; the SE is the standard error for each independent variable; and the
p-value indicates the statistical significance for each independent variable. In this study, a p-value
below 0.05 means the corresponding independent variable is statistically significantly associated with
the dependent variable at a 0.05 level. Moreover, a positive coefficient means the corresponding
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independent variable is positively associated with the dependent variable, while a negative coefficient
means the corresponding independent variable is negatively associated with the dependent variable.
We demonstrated and discussed the environmental effects on annual members’ usage of BSS.

Table 3. Estimation results for the linear mixed-effects model of annual members’ usage of BSS.

Dependent Variables Number of Departures Number of Arrivals

Coefficient SE p-Value Coefficient SE p-Value

Intercept −175.8405 53.0865 0.0009 −166.7397 54.61012 0.0023
Station capacity 12.0613 1.5291 0.0000 10.6922 1.57263 0.0000
Time of the day

Very Early AM Hours −143.7644 11.5381 0.0000 −71.3877 12.15045 0.0000
Early AM Hours −173.9006 12.8865 0.0000 −137.9380 14.2535 0.0000
Mid-Day Hours −124.5655 8.9725 0.0000 −80.4140 9.67545 0.0000
PM Peak Hours 42.5995 10.3971 0.0000 64.0528 11.19967 0.0000

Early Evening Hours 11.6596 11.4634 0.3091 * 83.1189 12.34153 0.0000
Late Evening Hours −119.6928 10.2082 0.0000 −53.0330 10.97764 0.0000

Residential density (/km2) 0.0186 0.0032 0.0000 0.0182 0.00332 0.0000
Employment density (/km2) 0.0009 0.0003 0.0007 0.0007 0.00026 0.0103

Length of roads (m) 0.0073 0.0067 0.2768 * 0.0049 0.00689 0.4777 *
Length of bicycle lanes (m) 0.0601 0.0138 0.0000 0.0575 0.01423 0.0001

Land use mix −21.8775 22.5117 0.3316 * −28.0693 23.15241 0.2260 *
Presence of colleges and universities −10.0147 48.2621 0.8357 * −37.0241 49.62023 0.4560 *

Presence of schools −18.9770 23.4374 0.4185 * −8.5928 24.10353 0.7216 *
Presence of grocery stores 7.1587 20.0450 0.7212 * 13.9893 20.60905 0.4976 *

Presence of retail shops 0.2341 24.4684 0.9924 * −6.7945 25.16695 0.7873 *
Presence of gyms 17.4116 23.8579 0.4659 * 15.2305 24.53158 0.5350 *
Presence of parks 21.3966 22.8465 0.3495 * 18.7704 23.52777 0.4254 *
Metro frequency −100.9208 9.8811 0.0000 −101.3879 10.19235 0.0000

Hourly bus frequency 1.5963 0.0481 0.0000 1.9287 0.05128 0.0000
Number of traffic accidents −0.1345 0.0959 0.1608 * −0.0147 0.10291 0.8865 *

Number of traffic congestions 0.1578 0.2536 0.5338 * 0.1224 0.27341 0.6543 *
Number of on-street violent crimes 1.4532 1.5760 0.3565 * −11.0763 1.68906 0.0000
Number of off-street violent crimes −1.3761 1.0424 0.1868 * −4.4316 1.11484 0.0001

AIC 148,544.2 150,541.3
BIC 148,740.4 150,737.5

Restricted log-likelihood −74,245.12 −75,243.65

Note: * means it is not statistically significant at a 0.05 level.

3.1. Environmental Effect on Annual Members’ Usage of BSS

We first examined the effects of independent variables on annual members’ usage of BSS.
Unsurprisingly, station capacity is positively and significantly associated with both number of departures
and number of arrivals. Regarding time of the day, annual members are more likely to use BSS during
PM Peak Hours (3:00 p.m.–5:59 p.m.) and Early Evening Hours (6:00 p.m.–7:59 p.m.), while annual
members are less likely to use BSS during the other times of the day. This coincides with a finding in an
earlier study: the BSS in Montreal is more predominantly used during the PM period (3:00 p.m.–7 p.m.)
relative to other times of the day [37]. Of the socioeconomic factors, both residential density and
employment density are positively and significantly associated with both number of departures and number
of arrivals. Of the infrastructure factors, length of roads is not significantly associated with number of
departures or number of arrivals, while length of bicycle lanes is positively and significantly associated
with both number of departures and number of arrivals. None of the land use and POI factors (land use
mix, presence of colleges and universities, presence of schools, presence of grocery stores, presence of retail shops,
presence of gyms, and presence of parks) are significantly associated with number of departures or number of
arrivals. Interestingly, hourly bus frequency is positively and significantly associated with both number of
departures and number of arrivals, while metro frequency is negatively and significantly associated with
both number of departures and number of arrivals. More interestingly, two road safety and convenience
factors (number of traffic accidents and number of traffic congestions) are not significantly associated with
number of departures or number of arrivals, while two public safety factors (number of on-street violent
crimes and number of off-street violent crimes) are negatively and significantly associated with number of
arrivals but are not significantly associated with number of departures.
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3.2. Discussion and Implications for Policies

We further discussed the environmental effects on the usage of BSS, and then tried to offer
implications for policies. First of all, the socioeconomic factors, both residential density and employment
density tend to increase the usage of BSS as they tend to be positively associated with the demand for
BSS. Second, of the infrastructure factors, length of roads does not influence the usage of BSS, while
length of bicycle lanes tends to increase the usage of BSS. This suggests that an increase in bicycle
lanes separated from motor traffic is likely to increase the usage of BSS. Third, the usage of BSS is
influenced by none of the land use or POI factors, i.e., land use mix and presence of colleges and
universities, schools, grocery stores, retail shops, gyms, and parks. Fourth, of the public transit service
factors, hourly bus frequency influences the usage of BSS differently than metro frequency. As mentioned
above, the average duration of BSS riders’ trips is much shorter than that of regular riders’ trips.
Most of the BSS riders’ trips tend to be only part of the BSS riders’ complete origin-destination trips,
considering the short average duration of BSS riders’ trips and the lack of docking stations near some
workplaces or homes. Therefore, BSS riders might need to use public transport or car to complete their
origin-destination trips. It is inferable that public transit accessibility tends to be positively associated
with the usage of BSS, as some earlier studies uncovered. Surprisingly, this study revealed that metro
accessibility influences the usage of BSS in a different way. Specifically, hourly bus frequency is positively
associated with the usage of BSS, while metro frequency is negatively associated with the usage of
BSS. This indicates that BSS riders are likely to transfer between BSS and bus but are unlikely to
transfer between BSS and metro. Fifth, neither number of traffic accidents nor number of traffic congestions
influences the usage of BSS. This contradicts our expectation that a large number of traffic accidents
or traffic congestions would reduce the usage of BSS. Sixth, both number of on-street violent crimes and
number of off-street violent crimes tend to decrease the usage of BSS. This coincides with our expectation
that a large number of on-street violent crimes tend to reduce the usage of BSS, and a large number of
off-street violent crimes might increase the usage of BSS as well.

Finally, we linked the environmental effects with policies to offer some implications for increasing
the usage of BSS and for the site selection of new docking stations. Specifically, this study suggests
that: (1) investment in cycling facilities tends to increase the usage of BSS; (2) reducing violent crimes
is likely to encourage people to use BSS; and (3) residential density, employment density, public transit
service, levels of cycling facilities, and the rate of violent crimes should be considered in the site
selection of new docking stations.

4. Conclusions

This study has investigated the impacts of environmental characteristics on the usage of BSS,
and tried to offer suggestions for policies aiming to increase the usage of BSS or to choose the
sites of new docking stations. Empirical results demonstrated that the density of bicycle lanes,
public transit accessibility, and public safety influence the usage of BSS. We obtained answers to the
following research questions: (1) neither traffic accidents nor traffic congestion influences the usage
of BSS; (2) both on-street violent crimes and off-street violent crimes tend to decrease the usage of
BSS; (3) bus accessibility is positively associated with the usage of BSS, while metro accessibility is
negatively associated with the usage of BSS. Empirical results also suggested the policy implications
that improving bicycle facilities and reducing the rate of violent crimes tend to increase the usage of BSS.
Moreover, some environmental factors could be considered in selecting a site for a new docking station.

4.1. Limitations

There are some limitations to this study. First, as how often each member uses BSS is unknown,
we were not able to access the annual or monthly average frequency of BSS usage at the individual
level. Ideally, individual-level frequency of BSS usage would be known, and we thus would be able
to investigate the environmental effects on the cycling behavior of BSS riders at an individual level.
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Second, the cycling purpose of BSS usage is unknown. Ideally, the cycling purpose of members’ BSS
usage would be known, and we thus could examine how BSSs increase commuting and recreational
cycling, respectively.

4.2. Future Works

In future research, some aspects should be considered for further study. First, route choice
modelling could be used to infer the explicit cycling paths based on road networks and cyclists’
preferences [22]. Second, to understand how BSS usage may increase with the number of docking
stations and operating years, we could explore the monthly variations of BSS usage from 2013 to 2017,
as Divvy offers data for several different years. Third, comparing the cycling behavior of BSS riders
and private bicycle riders is also interesting. Traffic count data [50] or crowdsourced data from online
social networking websites for sports, such as Strava [51,52], could be used as cycling data for private
bicycle riders.
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