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Abstract: This paper investigates the relationship between energy consumption and technological
innovation using a dynamic panel data model and regional-level data from China for the period
1995–2012. In contrast to previous studies, it examines the short and long-run bilateral relationship
between technological innovation and energy consumption. The results show that in the short run,
technological innovation leads to an increase in energy consumption, while energy consumption has
no significant effect on technological innovation. In the long run, however, energy consumption is
positively and bilaterally related to technological innovation. These findings suggest that although
technological innovation does not directly lead to a reduction in energy consumption as mentioned
in the extant literature, it could help achieve sustainability through improving energy efficiency and
developing energy structure for developing countries.
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1. Introduction

In recent years, energy consumption has come under intense scrutiny. China’s total primary
energy consumption was 3053 million tons of oil equivalent in 2016, which was seven times that of
Africa’s and accounted for 23% of the world’s total primary energy consumption, the highest in the
world assuredly. Meanwhile, China’s coal and oil production continued to decline but its oil imports
continued to increase. The overall standard environmental air quality among all cities was 78.8%.
China’s rapid economic growth has been accompanied by serious energy and environmental problems.
Therefore, the Chinese government has been formulating policies to reduce energy consumption while
expecting to achieve sustainable development.

Many scholars believe that technological innovation can improve energy efficiency and thereby
lead to a reduction in energy consumption whether it is for total energy consumption or fossil
fuels [1–6]. Over the past decade, Chinese companies have challenged the global technology leaders in
the areas of solar, wind, electric, high-speed rail, nuclear, e-commerce, smartphones, private aircraft,
and machine tools. Technology and innovation are seen as the primary drivers of the next stage of
economic growth in China, but both the total and per capita energy consumption have been rising
during the long run development of China. This cannot stop us from questioning whether technological
innovation can actually reduce energy consumption. In 1992, Khazzoom and Brookes [7,8] presented a
hypothesis: technological progress improves energy efficiency and saves energy, but it also contributes
to economic growth, which in turn increases the demand for energy and finally promotes energy
consumption in the long term. This phenomenon is defined as a rebound effect [9]. The development
of technology may improve energy efficiency and reduce energy consumption in the short run, but the
emergence of new technology is likely to promote energy consumption in the long run. Which effect is
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then stronger? Therefore, the role of technological innovation for sustainable development has also
been questioned.

Based on the above analysis, we propose the first hypothesis (Hypothesis 1):

Hypothesis 1a (H1a). In the short term, technological innovation can reduce energy consumption.

Hypothesis 1b (H1b). In the long run, technological innovation can make energy consumption increase.

Meanwhile, some scholars believe that energy consumption will not be limited when the resources
stock is rich, and people will not consider the issue of technological innovation [10,11]. Or when the
energy supply is sufficient and its application is more and more mature, people will not consider
using technological innovation to increase the supply of energy. When energy consumption grows,
environment pollution, resource depletion, and other problems follow and ecological sustainability is
difficult to achieve. People then begin to turn their attention to technological innovation and expect it
to help them solve the above difficulties [12]. Therefore, energy consumption has, to some extent, also
had a certain impact on technological innovation.

Therefore, we make the following hypothesis (Hypothesis 2):

Hypothesis 2a (H2a). In the short term, energy consumption growth has no effect on technological innovation.

Hypothesis 2b (H2b). In the long run, energy consumption can also promote technological innovation.

Most of the current research is focused on the general relationship between technological
innovation and energy consumption and has not examined the differences between the long and
short run in this relationship. Moreover, most research has had a unidirectional focus—the impact of
technological innovation on energy consumption rather than the bilateral relationship between them.
This in-depth study can help us understand how technological innovation and energy consumption
affect each other. Accordingly, this paper will examine the abovementioned issues by investigating the
short- and long-run bilateral relationships between technological innovation and energy consumption.

In addition, some previous researchers believe that technological innovation reduces energy
consumption that then leads to sustainable development [13,14]. Technological innovation is an
important driving factor in reducing energy consumption. However, can technological innovation
achieve sustainability in energy? Lund [15] holds that there are three ways to achieve sustainable
development through technological innovation in energy: energy savings on the demand side,
efficiency improvements in energy production, and replacement of fossil fuels by various sources of
renewable energy. This paper is based on the above analysis. If technological innovation is beneficial
for sustainable development, how does technological innovation affect sustainable development and
what is the mechanism of its action?

The remainder of this paper is organized as follows: Section 2 presents the literature review,
Section 3 describes the methods used in the paper, Section 4 describes the data, and Section 5 reports
the empirical results and discussion. Finally, Section 6 concludes the paper.

2. Literature Review

2.1. Previous Research

Previous research in the past few decades has devoted considerable attention to the relationship
between technological innovation and energy consumption. This research has studied whether
technological innovation can achieve ecologically sustainable development from the perspective of
different types of energy. As the proportion of fossil fuel consumption declines and the proportion of
new energy consumption increases, research has focused on the change from the relationship between
fossil fuel consumption and technological innovation to the relationship between renewable energy
consumption and technological innovation. Since then, there has been a proliferation of such studies
using various methods, time periods, and samples from different countries, as seen in Table 1.
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Jin and Zhang [4] confirmed that technological innovation reduces fossil fuel consumption. Fei and
Rasiah [16], focusing on the relationship between electricity consumption and technological innovation,
suggested that technological innovation does not significantly influence the long-term variation in
fossil fuel-powered electricity. Tang and Tan [3] found that technological innovation Granger-causes
electricity consumption and has negatively affected electricity consumption in Malaysia. Compared
with the direct combustion of fossil fuels, electricity use is able to support environmental improvement
as renewable energy is more environmentally friendly. Irandoust [17] suggested that technological
innovation Granger-causes renewable energy, and Aflaki et al. [18] argued that technological innovation
positively affects renewable energy diffusion.

Each of the above studies is based on a specific type of energy. Sohag et al. [19], Yin and Yang [5],
and Du and Yan [6] examined the relationship between total energy consumption and progress in
a country, and all suggested that technological innovation reduces energy consumption which then
realizes sustainability, although there was broad variation in the countries studied.

Table 1. Overview of the selected studies.

Study Estimation Method Period Countries Results

Du and Yan
(2009) [6]

Regression analysis
method 2007 China Technological innovation reduces

energy consumption.

Tang and Tan
(2013) [3] Granger causality test 1970–2009 Malaysia

Technological innovation Granger-causes
electricity consumption, and technology

innovation negatively affects
electricity consumption.

Aflaki et al.
(2014) [18] CCE 1 1990–2012 15 European

Union countries 2
Technological innovation has a positive
impact on renewable energy diffusion.

Fei and Rasiah
(2014) [16] ARDL and VECM 3 1974–2011

Canada, Ecuador,
Norway,

South Africa

Technological innovation does not
significantly influence the long-term

variation in fossil fuel-powered electricity.

Wei and Zhang
(2014) [4]

Balanced Growth Path
equilibrium China Technological innovation reduces fossil

fuel consumption.

Yin and Yang
(2014) [5]

Decoupling elasticity
and Laspeyres index 1999–2010 China Technological innovation reduces

energy consumption.

Sohag et al.
(2015) [19] ARDL 1985–2012 Malaysia Technological innovation reduces

energy consumption.

Irandoust
(2016) [17]

VAR 4 and Granger
non-causality test

1975–2012 Nordic Technological innovation Granger-causes
renewable energy.

1 Common Correlated Effects estimator; 2 The 15 countries include Austria, Belgium, Denmark, Finland, France,
Germany, Greece, Ireland, Italy, Luxembourg, The Netherlands, Portugal, Spain, Sweden, and the UK; 3 The
autoregressive distributed lag and the vector error correction model; 4 The vector autoregression.

2.2. How Is Technological Innovation Measured?

To measure the relationship between technological innovation and energy consumption, it is
necessary to address the question of how one should quantify technological innovation.

Griliches [20] described some of the main characteristics of patents and patent data and proposed
the use of patents as an indicator of technological change. Acs [21] and Goto [22] used patents to
measure innovations from regions and firms.

Some scholars [17–21,23] have argued that foreign direct investment (FDI), which accumulates
human capital, plays a vital role in a country’s level of technological innovation.

Research and development (R&D) funding is one of the most frequently used inputs to study
innovation occurrence [24–26]: Cohen and Klepper [27,28], Unger [29], Keller [30], and Qiang [31] have
all argued that a greater investment in R&D reflects a greater promotion of technological innovation.

However, most scholars [32–37] have used total factor productivity (TFP) as a measure of
technological innovation. TFP refers to the combined effect of institutional innovation, technological
innovation, industrial structure adjustment, and resource allocation optimization, including labor and
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capital as resources. Thus, TFP is a more comprehensive measure of technological innovation than
FDI or R&D. Of course, there are some deficiencies when we use TFP to measure the technological
innovation. On the one hand, the growth of TFP contains other factors except innovation; on the
other, the computational process of TFP is more complex and the parameter is not unique, which will
influence results.

Duan and Yu [34] calculated the TFP growth of 35 sectors in China using stochastic frontier
analysis and measured its impact on energy efficiency; they concluded that energy efficiency will be
higher with a higher proportion of state-owned enterprises, a larger scale of enterprises, and a higher
level of market openness. Zhang [35], Ladu and Meleddu [36], Shao et al. [37], Shu et al. [38], Liu and
Liu [39], Li [40], and Zhang [33] used data from different regions for their studies; further, the first
six of these authors considered both time and regional factors and used panel data for their analyses.
Most of these authors argued that technological innovation is becoming a means of ensuring efficient
energy use and energy savings. Zhang [33] suggested that environmental regulation intensity and
industrial structure negatively affect TFP growth but that the energy consumption structure positively
affects TFP growth.

In contrast to Ladu and Meleddu [36], we treat TFP, instead of GDP, as an indicator of technological
innovation. We further use different methods to calculate TFP growth. Once the relationship between
TFP growth and energy consumption in various regions of China is understood, it can be compared
with the situation in other countries. Moreover, differences between developing and developed
countries can be observed.

In this paper, a typical three-stage approach to panel data analysis is used to analyze the
relationship between the TFP growth rate and energy consumption in China with respect to their
long-run and short-run interrelationships. In contrast, previous scholars have used similar methods to
examine the relationship between GDP and energy consumption [36].

3. Methodology

In line with prior research, the relationship between the TFP growth rate and energy
consumption is tested in three stages in this research. First, panel unit root tests are used to avoid
non-stationary problems [41]. If the data are not smooth when regressing, pseudo-regression will arise.
If pseudo-regression occurs, the true trend and relationship between the variables cannot show and
the subsequent calculation becomes meaningless; therefore, it is essential to ensure the stability of the
data before the next cointegration test is conducted. Next, we use a panel cointegration test to measure
the long-run relationship between the variables in question. We measure the existence of a long-term
correlation relationship between energy consumption and the TFP growth rate; if it exists, we need
to determine whether it is a positive or negative relationship. Finally, we employ static and dynamic
panel causality tests to estimate the short-run cointegration and the direction of causality between the
TFP growth rate and energy consumption. Following these steps, we obtain the relationship between
energy consumption and TFP growth rate.

3.1. Panel Unit Root Tests

To guarantee robustness or the stability of the data, we reference the research of Ladu and
Meleddu [36] and then apply five unit root tests. They are Phillips and Perron (PP) (1998), Breitung
(2000), Levin et al. (LLC) (2002), Im et al. (IPS) (2003) and Fisher-ADF [42,43] (LLC, IPS and ADF
are the abbreviations for the name of authors who invented the method). These methods have many
similarities, so we just chose three key methods to introduce.

The ADF test is the basis of the above methods. The autoregressive model is as follows:

∆yit = ρyit−1 + ∑ki
j=1 γij∆yit−j + Z′it∅+ εit (1)
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where i = 1, 2, · · · , N regions observed over t = 1, 2, · · · , T; Zit denotes an exogenous variable
column vector; and ∅ is a regression coefficient column vector. In our test, the null hypothesis is ρ = 0,
which means that the unit root exists; the alternative hypothesis is ρ < 0, which means that the unit
root does not exist.

Breitung eliminated the dynamic term ∆yit−j from ∆yit and yit first, then implemented
standardization and de-trending techniques, and finally used the ADF test to regress ε̂it = ρε̂it−1 + vit
to test the unit root. A characteristic of the panel unit root test of Breitung is that the AR(1) coefficient is
identical for all individuals in the panel. This approach is similar to LLC. LLC used the proxy variables
∆yit and yit, which eliminate autocorrelation based on Equation (1).

IPS overcomes the potential drawback of LLC by allowing different sequences to have different ρi
in the panel. The test formula is as follows:

∆yit = ρiyit−1 + ∑ki
j=1 γij∆yit−j + X′ita + εit (2)

where i = 1, 2, · · · , N regions observed over t = 1, 2, · · · , T, εit ~IID(0,σ2). The null hypothesis is ρ = 0,
which means that the unit root exists, as in the LLC approach.

The Fisher-ADF test was devised under more general assumptions than the other four tests.
It starts from the principle of Fisher. The main idea underlying the Fisher-ADF test is that it combines
p-values from a unit root test applied to each group in the panel data [44]. In addition, the ADF test is
used to calculate pi. If the variables are uniformly integrated, we can proceed to the next step.

3.2. Panel Cointegration

The observed time series length is directly related to the effectiveness of the cointegration test.
The longer the data series, the more effective the cointegration test will be. Econometricians generally
try to integrate different economic entities to develop cointegration theories. According to the basic
concept of the test method, panel cointegration testing is divided into two categories. The first
category is based on a panel data cointegration regression to test the residual unit root, such as a
generalization of the Engle and Granger [45] two-step method. The prominent features of this type
of panel cointegration test are as follows: (1) it ignores the possible unobservable common factors,
tries to utilize a de-trending method, or overcomes unobservable common effects through observable
common effects; (2) it can be applied when one cointegration relationship exists between individual
time series at most; and (3) it allows concurrent spatial correlation for panel data that do not have a
general spatial correlation structure.

The other category is the Johansen and Juselius [46] trace test method. In contrast to the former
method, this method cannot test only multiple cointegration relations but also allows the existence of a
stationary or non-stationary common component of the panel data. Thus, we use a representative of
this method—the Fisher-Johansen cointegration test—to perform our cointegration test [47].

Next, we need to consider the type of cointegration relationship that exists between the variables.
Dynamic ordinary least squares (DOLS) is used in this paper. It is a single equation method proposed
by Saikkonen (1991) and Stock and Watson (1993) that tests hypotheses regarding a co-integrating
vector in panel data [48]. New technologies do not immediately save or waste energy, so it will be
more scientific if there are lags in the equations and this also applies to the next short-term relationship
test [16,17].

3.3. Testing for Causality

The cointegration test will determine the long-run relationship between the variables in question.
Next, we use the VAR model to measure the short-run causal relationship between TFP and energy
consumption. First, we use a dynamic panel data (DPD) analysis. The regression equation is as follows:
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yit = ∑K
k=1 βkxkit−1 + ∑p

i=1 a1yi,t−l + ξyi + µit (3)

xit = ∑K
k=1 δkxi,t−k + ∑p

i=1 γ1ylit−k + ξxi + υit (4)

where i = 1, 2, · · · , N regions observed over t = 1, 2, · · · , T; yi,t−l and xi,t−k are the lags of the
dependent variable in Equations (3) and (4); µit and υit are error terms; and ξi represents the individual
fixed effects for region i. There may be effects from determinants of energy consumption that change
over time, such as income level and energy price [49], but in order to highlight the role of the
heterogeneity among provinces and cities, we finally chose the fixed effect. Different generalized
method of moments (GMM) [50] must be used for this purpose. A crucial assumption for the validity
of GMM estimates is that the instruments are exogenous. If the estimation is exactly identified, invalid
instruments cannot be detected. The Sargan-Hansen J test is used for the diagnostics of the GMM
estimation for an over-identified model.

4. Data

Annual data covering the period 1995–2012 is used for this study. Energy consumption data
can be obtained from the China Energy Statistical Yearbook, and per capita values can be calculated
based on the resident population from the statistical yearbook. Based on reality, economic research
does not focus on the concept of level but focuses on the incremental, so this paper uses the growth
rate of TFP and not TFP on behalf of technological innovation. At present, the accounting methods
to determine the TFP growth rate include the Solow residual method, the invisible variable method,
the stochastic frontier production function method, and the Malmquist index method. The first two
methods have more limitations, such as perfect competition in the market, constant returns to scale,
and Hicks neutral technological innovation; however, these conditions are difficult to satisfy in the real
economy and the results consider only technological innovation and ignore the impact of technical
efficiency. For the stochastic frontier production function method, small changes in the model or
data will have a substantial impact on the results. The Malmquist index method is widely used in
specific econometric analysis because the production function structure does not need to be assumed in
advance to estimate the parameters; moreover, it allows for the existence of inefficient behavior and can
decompose changes in TFP [51]. The Malmquist index method was proposed in 1953 by the Swedish
statistician Sten Malmquist. Fare et al. (1997) combined data envelopment analysis (DEA) with the
Malmquist index to establish a new method to analyze the TFP growth rate. The TFP growth rate can
be decomposed into technical innovation and technical efficiency, and the source of the TFP growth
rate can be further analyzed [52]. In this paper, the Malmquist index method is used to calculate the
TFP growth rate in 28 Chinese provinces. According to the Malmquist index calculation method of
TFP growth rate, the output data of this paper is based on the constant price GDP of 1995 to 2012 based
on 1995. Labor and capital investment are input variables. Labor data is the number of employed
individuals of a population for each region at the end of each year; capital investment is represented
by fixed capital stock which is calculated using the whole society fixed asset investment, capital stock,
and the depreciation rate of each region in every year by the perpetual deposit method [53]. The above
data are derived from the China Statistical Yearbook and the regional statistical yearbook. Table 2
reports the descriptive statistics of the computed TFP for each region and they are shown in the form
of the average of the entire time span under investigation.
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Table 2. TFP growth descriptive statistics.

Region Average SD Min Max

Anhui 0.9803333 0.0224866 0.927 1.011
Beijing 1.0780556 0.0473802 0.939 1.155
Fujian 0.9628333 0.0263779 0.895 1.004
Gansu 0.9798333 0.0278235 0.921 1.041

Guangdong 1.0841111 0.0250526 1.024 1.137
Guangxi 0.9461111 0.0385256 0.866 0.997
Guizhou 0.9748333 0.0222268 0.942 1.019
Heibei 1.0475556 0.052416 0.952 1.114
Henan 0.9605 0.0404188 0.895 1.043

Heilongjiang 0.9891667 0.0290522 0.921 1.023
Hubei 0.9638889 0.0329418 0.868 1
Hunan 0.9716667 0.0234721 0.949 1.025

Jilin 1.059 0.0479141 0.987 1.137
Jiangsu 1.1190556 0.0156524 1.097 1.149
Jiangxi 0.9933333 0.0493773 0.913 1.13

Liaoning 1.0948889 0.0238325 1.059 1.134
Neimenggu 1.1176667 0.0608363 0.986 1.261

Ningxia 1.0257778 0.0224147 0.971 1.074
Qinghai 1.0757778 0.0359388 0.998 1.123

Shandong 1.034 0.0436065 0.975 1.087
Shanxi 0.9675556 0.0484164 0.872 1.045

Shanxian 1 0.9747778 0.0244962 0.945 1.025
Shanghai 1.0908889 0.0389145 0.998 1.156
Sichuan 0.9626111 0.0361519 0.885 1.029
Tianjin 1.1118889 0.0237335 1.056 1.156

Xinjiang 1.0618333 0.0381734 0.969 1.128
Yunnan 0.9626667 0.0342379 0.906 1.022
Zhejiang 1.0531667 0.0816277 0.829 1.123

1 Its provincial capital is Xi’an and its name is Shanxi. However, in order to distinguish it from another Shanxi, here
it is named Shanxian.

5. Empirical Results

5.1. Unit Root Test and Cointegration Test

The unit root tests were conducted for the variables under investigation. Tests were performed
both with a constant and with a constant and trend. In this paper, TFP growth rate represents
technological innovation; the corresponding energy consumption is expressed in differences, which is
an incremental representation. The results are shown in Table 3. If the p-value is less than 0.05, the null
hypothesis is rejected, indicating that the data are stable. Fisher-PP, Breitung, IPS, and Fisher-ADF
certificate4EC (energy consumption) are stable at the 1% significance level. Fisher-PP, LLS, IPS, and
Fisher-ADF certificate TFPG (TFP growth rate) are stable at the 1% significance level. We can see that
the test results are very satisfactory.

Table 3. Panel unit root test.

Variables

Fisher-PP Breitung LLC 1 IPS 1 Fisher-ADF

Constant Constant
+ Trend

Constant
+ Trend Constant Constant

+ Trend Constant Constant
+ Trend Constant Constant

+ Trend

∆EC 148.29 ***,2 171.60 *** −2.98 *** −1.97 ** −1.79 * −6.04 *** −7.01 *** 143.64 *** 144.10 ***
TFPG 198.49 *** 180.61 *** −1.34 −9.16 *** −8.13 *** −7.97 *** −6.83 *** 171.23 *** 144.80 ***

1 LLC and IPS tests are distributed as N(0, 1) under the null hypothesis of non-stationarity. The Fisher test is the
Chi-square distributed with 2N degrees of freedom; 2 *, **, and *** are the significance levels at the 10%, 5%, and 1%
levels, respectively.
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Next, we tested whether a long-run relationship exists between the variables. Here, we report
only the results of the Johansen test. From Table 4, the probability (Prob.) value in the third row tells
us the cointegration test rejected the statement that there is no cointegration relationship between
the TFP growth rate and4EC. Hence, there is a long-run relationship between these two variables.
We then used DOLS to achieve consistency in the covariance vector estimation; the results are shown
in Table 5. We see that4EC and the TFP growth rate are positively correlated in the long run from the
two coefficient values, at the same time, from the results of two T tests; independent variables have
significant explanatory effects on dependent variables so an increase in4EC will lead to an increase in
TFP growth rate and vice versa. This conclusion proves the existence of the rebound effect. The H1b
(hypothesis one b) and H2b (hypothesis two b) that we made are also confirmed.

Table 4. Unrestricted cointegration rank test 1 (Trace and maximum eigenvalue).

Hypothesized Fisher Stat. * Fisher Stat. *

No. of CE 1 (s) (from Trace Test) Prob. 3 (from Max Eigen Test) Prob.

None 195.2 0.0000 155.6 0.0000
At most 2 155.3 0.0000 155.3 0.0000

1 CE is the abbreviation of cointegration. 2 Lag intervals (in differences):1 1; 3,* Probabilities (Prob.) are computed
using an asymptotic Chi-square distribution.

Table 5. Dynamic ordinary least squares (DOLS) result 1.

Dependent Variable TFPG R-Squared 0.863520

Variable Coefficient t-Statistic Prob.
∆EC 0.097790 0.018937 0.0000

Dependent Variable ∆EC R-squared 0.601049

Variable Coefficient t-Statistic Prob.
TFPG 1.480264 0.435531 0.0008

1 lead = 1, lag = 1.

The rapid growth in energy consumption may be caused by lower energy efficiency, but previous
research [54,55] has improved energy efficiency and has increased in recent years in China. Therefore,
technological innovation improves energy efficiency, increases consumer demand for energy, and then
increases energy consumption in the long run.

In turn, energy consumption growth also promotes technological innovation. The rapid growth
of energy consumption brings serious environmental pollution so carrying out R&D on alternative
energies, developing energy-saving and emission reduction technologies become inevitable options;
this is an important driving force of technological innovation.

5.2. Causality Results

Having established that a cointegration relationship does exist between the variables under
investigation, this subsection presents the results with respect to the causality hypothesis. The results
for the short-run relationship, which are estimated by GMM, are reported in Table 6. The first column
includes the estimated coefficients, the numbers in parentheses behind ∆EC and TFP growth rate
are lag orders. N is the number of total panel observations. From the J-statistic and Prob (J) of the
Sargan–Hansen J test, we know that whether the estimation is exactly identified and the instrument
variables are appropriate, the larger the Prob (J) is, the greater the effect will be. The second column
shows the estimated results for the relationship from TFP growth rate to ∆EC and the third column
shows the converse result.



Sustainability 2018, 10, 145 9 of 13

Table 6. Generalized method of moments (GMM) result.

Estimated Coefficients Dependent Variable

∆EC TFPG

4EC (−1) 0.141471 ***,1 0.004314 *
4EC (−2) 0.064288 *** 0.000650
TFPG (−1) 0.539022 *** 0.337396 ***
TFPG (−2) 0.264603 *** 0.079271 ***

N 392 392
J-statistic 26.91545 27.20033

Prob (J-statistic) 0.308410 0.295202
1 * and *** are significant at the 10% and 1% levels, respectively.

It is evident that in the short run, there is unidirectional causality from the TFP growth rate to ∆EC.
However, the coefficient for the relationship from ∆EC to TFP growth rate is not significant. That is, an
increase in ∆EC has no significant effect on the TFP growth rate, but an increase in the TFP growth
rate has a catalytic effect on ∆EC. The former result proves that our H2a is reasonable. It stems from
obvious path-dependent characteristics of energy consumption. When some energy is widely used,
along with the maturity of the technology application and a reduction in the energy costs of mining,
energy extraction increases unless energy is exhausted. The path dependence of energy use will lead to
technology lock-in in the field of energy development and use; in other words, related enterprises and
institutions are more concerned about energy efficiency improvement than about the development of
new energy sources and the introduction of new technologies. The latter result is contrary to our H1a.
This may be related to the application of new technology, which requires a transitional period. The use
of new technology does not mean the complete elimination of an old technology. At the same time, the
immaturity of new technology applications makes energy consumption rise. Consequently, feedback
cannot be acquired from the market in the short run.

5.3. Discussion

It should be noted that technological innovation leads to an increase in energy consumption
whether in the long or short run. In the long run, energy efficiency, which is improved with
technological innovation, is expected to reduce the amount of energy consumption; however, increased
energy efficiency will increase the demand for energy consumption. When an increased amount of
energy consumption offsets the partly or completely reduced energy consumption, which is caused
by energy efficiency promotion, the final energy consumption will increase and the rebound effect
of energy efficiency will occur. For example, due to the use of energy-saving technology, the fuel
consumption of cars is reduced and the owners are more willing to drive frequently. The impact of
the rebound effect makes the resulting effort, which was intended to reduce energy consumption, less
than ideal, especially in developing countries such as China. Previous research [56] has proven that
the energy rebound effect amounted averagely to 53.2% over the period 1981–2009 in China. Therefore,
when taking measures to improve energy efficiency, we cannot ignore the problem brought about by
the rebound effect.

However, from the current causality results, the time interval between the improvement in energy
efficiency and the increase in final energy consumption is not so long, meaning that energy policy
promulgation or the use of new technology will also lead to the rebound effect in the short term; this
time span is not as long as expected. Therefore, the negative effects brought about by the rebound
effect should be considered in policy formulations and energy prices and other related factors should
be considered in order to minimize the rebound effect of energy.

The traditional theory of sustainable development suggests that technological innovation
will contribute to savings in the total amount of resources—such as the reduction in energy
consumption—while promoting regional economic growth. However, our research shows that
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technological innovation brings about rapid economic growth while the energy consumption is
also increased for developing countries such as China. Does this signify that Chinese development is
not sustainable? Further analysis shows that although Chinese total energy consumption is increasing,
the energy efficiency and energy consumption structure are significantly improved. Chinese unit
GDP energy consumption decreased by 28.6% in 2015 compared to 2010. Chinese coal consumption
decreased to its lowest level in 2016 while the renewable energy consumption growth rate increased
to 33.4% [57]. It is undeniable that this is a kind of sustainable development performance. Due
to the rebound effect, the improvement in energy efficiency failed to achieve a reduction in energy
consumption. Therefore, we should formulate relevant policies to achieve a more reasonable system
to improve energy efficiency. We believe that China has a large population and a weak economic
base as a developing country; in order to achieve sustainable development, its energy consumption
will inevitably undergo a rapid growth process. In the early stages of economic development
in developing countries, energy and other resource inputs cannot be as efficient as in developed
countries. As the total energy consumption grows, the energy structure and efficiency improvements
are accumulating strength for reducing the future energy consumption, a process that developed
countries have also experienced.

As a developing country, China can achieve sustainable development through technological
innovation in energy via two ways: efficiency improvements in energy production, and the replacement
of fossil fuels by various sources of renewable energy. This situation is consistent with the early-stage
development in developed countries. In the United States, for example, its energy consumption
increased at a high rate before 1972. The growth rate of energy consumption then gradually slowed
after 1972 after which the total energy consumption tended to be stable. Its decline trend arose in 2016.
This is largely due to the improvement in energy efficiency and changes in energy structures that were
brought about by technological innovation [58]. Therefore, in the process of achieving sustainable
development, an improvement in efficiency and structure leads to a reduction in energy consumption,
but the current level of Chinese energy efficiency is still low compared with developed countries.
The energy structure needs to be improved. Therefore, the power of both has not yet reached the level
where energy consumption can be significantly reduced. To improve energy efficiency and energy
structure, in addition to technological innovation, energy price regulation, energy tax, and other energy
policies are also needed.

6. Conclusions

In this paper, we systematically analyzed the relationship between technological innovation and
energy consumption at the regional level rather than the national level. In our view, data at the national
level tend to obscure the intrinsic heterogeneity among regions; for example, the level of economic
development, climate and resource conditions in different regions will affect the relationship between
technological innovation and energy consumption. To avoid the impact of this intrinsic heterogeneity,
this study analyzed regional-level data that came from 28 provinces in China for the period 1995–2012.

Our empirical study provides several new insights on the relationship. In the short run,
technological innovation positively affects energy consumption growth, while energy consumption
growth has no significant effect on technological innovation. In the long run, energy consumption
growth is positively and bilaterally related to technological innovation. The results show that
technological innovation is unlikely to reduce energy consumption growth, as some academics and
government agencies have recognized. In contrast, it has a catalytic effect on energy consumption
growth, which means that technological innovation will further increase energy consumption.
Therefore, increased energy efficiency does not mean a reduction in energy consumption. Governments
should be soberly aware that energy consumption growth is an inevitable trend along with
technological innovation and social development at the present development stage of China. At the
same time, under the constraint of finite resources and environmental pollution, energy consumption
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growth will also promote technological innovation rather than lead to path dependence and technology
lock-in in the long run.

Based on the above analysis, it is obvious that saving resources are important but it does not
mean that our vision should be confined to it. If we want to achieve sustainable development, when
developing energy-saving technologies for efficient use of existing resources, we should actively focus
on detection and exploitation of new energy and energy price reforms at the same time, so that we
could address the resource depletion and environmental pollution caused by energy consumption
growth. We cannot simply rely on a reduction in energy consumption; rather, we should rely on
technological innovation to improve energy efficiency and prevent the occurrence of a rebound effect.
In addition, we should formulate policies about energy price reform and carbon tax. At the same
time, we should develop new energy sources in order to change the energy consumption structure and
reduce pollutant emissions. The Chinese government is already working on this; at the G20 Summit in
2016, China pledged to the world that its coal production capacity would be reduced by 500 million
tons in three to five years for green development.

This paper studied only 28 provinces in China; hence, whether the conclusions are applicable to
other developing countries requires further investigation. In addition, the TFP growth rate selected in
this study can be further broken down into technical innovation indicators and technical efficiency
indicators. A follow-up study could examine the impact of each of the two variables on energy
consumption growth.

Acknowledgments: This work was supported by the National Natural Science Foundation of China
(71673297, 71303258).

Author Contributions: Lei Jin and Xu Tang analyzed the data; Keran Duan wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sinton, J.E.; Levine, M.D. Changing energy intensity in Chinese industry. The relatively importance of
structural shift and intensity change. Energy Policy 1994, 22, 239–255. [CrossRef]

2. Fisher Vanden, K.; Jefferson, G.H.; Ma, J.; Xu, J. Technology development and energy productivity in China.
Energy Econ. 2006, 28, 690–705. [CrossRef]

3. Tang, C.F.; Tan, E.C. Exploring the nexus of electricity consumption, economic growth, energy prices and
technology innovation in Malaysia. Appl. Energy 2013, 104, 297–305. [CrossRef]

4. Jin, W.; Zhang, Z. Quo Vadis? Energy Consumption and Technological Innovation. Available online:
https://ageconsearch.umn.edu/bitstream/249494/2/ccep1412.pdf (accessed on 4 January 2018).

5. Yin, Y.; Yang, X. Research on the Coupling Relationship between Technology Innovation and Energy
Consumption of Manufacturing Industry. Sci. Technol. Manag. Res. 2014, 20, 231–241. (In Chinese)

6. Du, X.; Yan, X. Empirical study on the relationship between regional technological innovation capacity and
regional energy consumption intensity. In Proceedings of the International Conference on the Information
Management, Innovation Management and Industrial Engineering, Xi’an, China, 26–27 December 2009;
pp. 42–45.

7. Khazzoom, J.D. Energy Saving Resulting from the Adoption of More Efficient Appliances. Energy J. 1987, 8,
85–89.

8. Brookes, L.G. Energy efficiency and economic fallacies: A reply. Energy Policy 1992, 20, 390–392. [CrossRef]
9. Freire González, J. Methods to empirically estimate direct and indirect rebound effect of energy-saving

technological changes in households. Ecol. Model. 2011, 223, 32–40. [CrossRef]
10. Auty, R.M. Natural resources, capital accumulation and the resource curse. Ecol. Econ. 2007, 61, 627–634.

[CrossRef]
11. Brunnschweiler, C.N. Cursing the Blessings? Natural Resource Abundance, Institutions, and Economic

Growth. World Dev. 2008, 36, 399–419. [CrossRef]
12. Jin, L.; Shen, Y. Research on Industrial Cluster Reengineering in Resource—Exhausted Cities. Tech. Econ.

2005, 1, 20–21. (In Chinese)

http://dx.doi.org/10.1016/0301-4215(94)90162-7
http://dx.doi.org/10.1016/j.eneco.2006.05.006
http://dx.doi.org/10.1016/j.apenergy.2012.10.061
https://ageconsearch.umn.edu/bitstream/249494/2/ccep1412.pdf
http://dx.doi.org/10.1016/0301-4215(92)90059-B
http://dx.doi.org/10.1016/j.ecolmodel.2011.09.001
http://dx.doi.org/10.1016/j.ecolecon.2006.09.006
http://dx.doi.org/10.1016/j.worlddev.2007.03.004


Sustainability 2018, 10, 145 12 of 13

13. Zhou, D.; Liu, X.; Zhou, P.; Wang, Q. Decomposition Analysis of Aggregate Energy Consumption in China:
An Exploration Using a New Generalized PDA Method. Sustainability 2017, 9, 685. [CrossRef]

14. Zou, J.; Liu, W.; Tang, Z. Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan
City between 2007 and 2012. Sustainability 2017, 9, 452. [CrossRef]

15. Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919. [CrossRef]
16. Fei, Q.; Rasiah, R. Electricity Consumption, Technological Innovation, Economic Growth and Energy Prices:

Does Energy Export Dependency and Development Levels Matter? Energy Proced. 2014, 61, 1142–1145.
[CrossRef]

17. Irandoust, M. The renewable energy-growth nexus with carbon emissions and technological innovation:
Evidence from the Nordic countries. Ecol. Indic. 2016, 69, 118–125. [CrossRef]

18. Aflaki, S.; Basher, S.A.; Andrea, M. Does Economic Growth Matter? Technology-Push, Demand-Pull
and Endogenous Drivers of Innovation in the Renewable Energy Industry; HEC Paris Research Paper No.
MOSI-2015-1070; HEC: Paris, France, 2014.

19. Sohag, K.; Begum, R.A.; Syed Abdullah, S.M.; Jaafar, M. Dynamics of energy use, technological innovation,
economic growth and trade openness in Malaysia. Energy 2015, 90, 1497–1507. [CrossRef]

20. Griliches, Z. Patent Statistics as Economic Indicators: A Survey; NBER Working Papers; National Bureau of
Economic Research, Inc.: Cambridge, MA, USA, 1990.

21. Acs, Z.J.; Anselin, L.; Varga, A. Patents and innovation counts as measures of regional production of new
knowledge. Res. Policy 2002, 31, 1069–1085. [CrossRef]

22. Nagaoka, S.; Motohashi, K.; Goto, A. Patent statistics as an innovation indicator. Handb. Econ. Innov. 2010, 2,
1083–1127. [CrossRef]

23. Dai, Q.; Bie, Z. FDI, Accumulation of Human Capital and Economic Growth. Econ. Res. J. 2006, 4, 15–27.
(In Chinese)

24. Cohen, W.M.; Levinthal, D.A. Innovation and learning: The two faces of R&D. Econ. J. 1989, 99, 569–596.
25. Zhang, H. Two faces of R&D, activity of FDI and the growth of productivity of domestic manufacturing in

China. Econ. Res. J. 2005, 5, 107–117. (In Chinese)
26. Chen, J.; Xu, S. The impact of technical progress over China’s energy efficiency: 1972–2006. Sci. Manag. Res.

2008, 1, 9–13. (In Chinese)
27. Cohen, W.M.; Klepper, S. Firm size versus diversity in the achievement of technological advance.

Small Bus. Econ. 1992. [CrossRef]
28. Almeida, P.; Kogut, B. The trade off between firm size and diversity in the pursuit of technological innovation.

Small Bus. Econ. 1997, 9, 21–31. [CrossRef]
29. Casper, S.; van Waarden, F. Institutions and Innovation. A Multidisciplinary Review of the Study of Innovation

Systems; Edward Elgar Publishing: Cheltenham, UK, 2005; pp. 19–25.
30. Keller, W. Geographic localization of international technology diffusion. Am. Econ. Rev. 2002, 92, 120–142.

[CrossRef]
31. Li, Q.; Wei, W.; Xu, K. Estimation of technological innovation and structural readjustment on the energy

consumption rebound effect. China Popul. Res. Environ. 2014, 24, 64–67. (In Chinese)
32. Robert, M. Solow A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94.
33. Zhang, J. An analysis on the growth and effect factors of TFP under the energy and environment regulation:

Data from China. Comput. Model. New Technol. 2014, 18, 191–196. (In Chinese)
34. Duan, W.; Yu, Y. Could the growth of TFP improve energy efficiency. Ind. Econ. Res. 2011, 4, 78–88.

(In Chinese)
35. Zhang, J.; Zhang, X. Technological innovation, energy efficiency and rebound effect—Empirical estimation

based on China’s provincial panel data. J. Shanxi Univ. Financ. Econ. 2014, 11, 50–59. (In Chinese)
36. Ladu, M.G.; Meleddu, M. Is there any relationship between energy and TFP (total factor productivity)?

A panel cointegration approach for Italian regions. Energy 2014, 75, 560–567. [CrossRef]
37. Shao, S.; Fan, M.; Yang, L. How the dependence of resource industry depends on the efficiency of economic

development—Test and explanation of the curse hypothesis of conditional resources. Manag. World 2013, 2,
32–63. (In Chinese)

38. Shu, T.; Zhong, X.; Zhang, S. TFP Electricity Consumption Efficiency and Influencing Factor Analysis Based
on DEA Method. Energy Proced. 2011, 12, 91–97. [CrossRef]

http://dx.doi.org/10.3390/su9050685
http://dx.doi.org/10.3390/su9030452
http://dx.doi.org/10.1016/j.energy.2006.10.017
http://dx.doi.org/10.1016/j.egypro.2014.11.1041
http://dx.doi.org/10.1016/j.ecolind.2016.03.051
http://dx.doi.org/10.1016/j.energy.2015.06.101
http://dx.doi.org/10.1016/S0048-7333(01)00184-6
http://dx.doi.org/10.1016/S0169-7218(10)02009-5
http://dx.doi.org/10.1093/erae/jbi005
http://dx.doi.org/10.1023/A:1007995512597
http://dx.doi.org/10.1257/000282802760015630
http://dx.doi.org/10.1016/j.energy.2014.08.018
http://dx.doi.org/10.1016/j.egypro.2011.10.013


Sustainability 2018, 10, 145 13 of 13

39. Liu, Y.; Liu, F. Rebound effect of energy consumption due to technological innovation: Empirical analysis
based on provincial panel data in China. Res. Sci. 2008, 30, 1300–1306. (In Chinese)

40. Li, L.; Zhou, Y. Can technological innovation improve energy efficiency—An empirical test based on China’s
industrial sector. Manag. World 2006, 10, 82–89. (In Chinese)

41. Phillips, P.C.B.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346.
[CrossRef]

42. Fisher, R.A. Statistical Methods for Research Workers; Oliver and Boyd: London, UK, 1932; ISBN 0-05-002170-2.
43. Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root.

J. Am. Stat. Assoc. 1979, 74, 427. [CrossRef]
44. Choi, I. Unit root tests for panel data. J. Int. Money Financ. 2001, 20, 249–272. [CrossRef]
45. Engle, R.F.; Granger, C.W.J. Co-Integration and error correction: Representation, estimation, and testing.

Econometrica 1987, 55, 251–276. [CrossRef]
46. Johansen, S.; Juselius, K. Testing structural hypotheses in a multivariate cointegration analysis of the PPP

and the UIP for UK. J. Econ. 1992, 53, 211–244. [CrossRef]
47. Bai, Z. Econometric Analysis of Panel Data; Nankai University Press: Tianjin, China, 2008; ISBN 9787310029150.

(In Chinese)
48. Mark, N.C.; Sul, D. Cointegration Vector Estimation by Panel DOLS and Long-run Money Demand. Oxf. Bull.

Econ. Stat. 2003, 65, 655–680. [CrossRef]
49. Roodman, D. An Introduction to “Difference” and “System” GMM in Stata. System 2006, 1–44. [CrossRef]
50. Chen, K.H.; Yang, H.Y.; Lee, J.M.; Chi, C.F. The impact of energy prices on energy consumption and energy

efficiency: Evidence from Taiwan. Energy Effic. 2016, 9, 1329–1349. [CrossRef]
51. Zhang, X.; Gui, B. The analysis of total factor productivity in China: A review and application of malmquist

index approach. J. Quant. Tech. Econ. 2008, 25, 111–122. (In Chinese)
52. Färe, R.; Grosskopf, S.; Norris, M. Productivity Growth, Technical Progress, and Efficiency Change in

Industrialized Countries: Reply. Am. Econ. Rev. 1997, 87, 1040–1044.
53. Zhang, Z. Influence of TFP on the Growth and Fluctuations of China’s Urban Economies-Evidence from the

264 Cities at Municipal and above Levels. Financ. Comment 2014, 1, 24–37. (In Chinese)
54. Bian, Y.; Hu, M.; Wang, Y.; Xu, H. Energy efficiency analysis of the economic system in China during

1986-2012: A parallel slacks-based measure approach. Renew. Sustain. Energy Rev. 2016, 55, 990–998.
[CrossRef]

55. Li, M.J.; He, Y.L.; Tao, W.Q. Modeling a hybrid methodology for evaluating and forecasting regional energy
efficiency in China. Appl. Energy 2017, 185, 1769–1777. [CrossRef]

56. Lin, B.; Liu, X. Dilemma between economic development and energy conservation: Energy rebound effect in
China. Energy 2012, 45, 867–873. [CrossRef]

57. British Petroleum (BP). BP World Energy Statistical Yearbook; British Petroleum Publishing: London, UK, 2016.
Available online: https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/
bp-statistical-review-of-world-energy-2016-full-report.pdf (accessed on 3 January 2018).

58. Gillingham, K.; Sweeney, J. Barriers to Implementing Low-Carbon Technologies. Clim. Chang. Econ. 2012, 3,
1250019. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/biomet/75.2.335
http://dx.doi.org/10.2307/2286348
http://dx.doi.org/10.1016/S0261-5606(00)00048-6
http://dx.doi.org/10.2307/1913236
http://dx.doi.org/10.1016/0304-4076(92)90086-7
http://dx.doi.org/10.1111/j.1468-0084.2003.00066.x
http://dx.doi.org/10.2139/ssrn.982943
http://dx.doi.org/10.1007/s12053-016-9426-y
http://dx.doi.org/10.1016/j.rser.2015.11.008
http://dx.doi.org/10.1016/j.apenergy.2015.11.082
http://dx.doi.org/10.1016/j.energy.2012.06.077
https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf
https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf
http://dx.doi.org/10.1142/S2010007812500194
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Previous Research 
	How Is Technological Innovation Measured? 

	Methodology 
	Panel Unit Root Tests 
	Panel Cointegration 
	Testing for Causality 

	Data 
	Empirical Results 
	Unit Root Test and Cointegration Test 
	Causality Results 
	Discussion 

	Conclusions 
	References

