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Abstract: This study was undertaken to forecast the waste generation rates of the accommodation
sector in North Cyprus. Three predictor models, multiple linear regression (MLR), artificial neural
networks (ANNs) and central composite design (CCD), were applied to predict the waste generation
rate during the lean and peak seasons. ANN showed highest prediction performance, specifically,
lowest values of the standard error of prediction (SEP = 2.153), mean absolute error (MAE = 1.378) and
highest R2 value (0.998) confirmed the accuracy of the model. The analysed waste was categorised
into recyclable, general waste and food residue. The authors estimated the total waste generated
during the lean season at 2010.5 kg/day, in which large hotels accounted for the largest fraction
(66.7%), followed by medium-sized hotels (19.4%) and guesthouses (2.6%). During the peak season,
about 49.6% increases in waste generation rates were obtained. Interestingly, 45% of the waste
was generated by British tourists, while the least waste was generated by African tourists (7.5%).
The ANN predicted that small and large hotels would produce 5.45 and 22.24 tons of waste by the
year 2020, respectively. The findings herein are promising and useful in establishing a sustainable
waste management system.

Keywords: urban waste; hospitality sector; waste generation rates; artificial neural network
prediction; sustainable waste management

1. Introduction

In recent decades, tourism has become one of the most important and significant sectors in the
economies of many countries. In fact, the sector accounts for 10–12% of the world’s Gross Domestic
Product (GDP) and approximately 14% of total employment [1]. Even though tourism can sustain
high levels of employment, the sector is a source of environmental impacts with consequent public
health concerns [2]. One of the most significant impacts of tourism is the generation of municipal
waste, which increases as the seasonal population of tourists rises [3,4]. The heterogeneous nature
of hospitality waste poses a significant risk to water and air quality, and is generally liable to cause
various health hazards if not properly managed.

From a sustainability perspective, one approach to the reduction of the threatening environmental
and health impacts from hospitality generated wastes is the conversion to useful value-added or
alternative products. In this regard, several governments have launched policies to promote the
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conversion of municipal waste to green precursors or products, many with a specific focus on green
fertilizers, bioelectricity, biofuels or bioadsorbents [5–9].

However, to manage and reutilize hospitality sector waste (HSW) in a sustainable way, accurate
prediction of HSW generation rate and composition is important [10–12]. A failure to make accurate
HSW predictions and assessments could lead to several widespread problems in waste management
systems and the environment, including irrelevant policies, increased environmental impacts as
well as inadequate or overestimated capacity of disposal infrastructures. Inefficient disposal or
waste management infrastructure can cause serious impacts on health [1,4]. Specifically, improperly
managed, designed and operated recycling/incineration plants cause air pollution or spread of disease.
For instance, hotel kitchen waste ferments after a short time, creating conditions favourable to the
growth and survival of microbial pathogens and resulting in the spread of infectious diseases. Also,
spent cooking oil is a common hospitality waste; note that unattended spent cooking oil attracts flies,
vermin and rats, which could create a health hazard and pest control problem.

Cyprus, politically partitioned into two main parts (south and north), is a major tourist destination
in the Mediterranean region. Comparatively speaking, recent years have seen tourism growing at a
faster rate in North Cyprus (formally the Turkish Republic of North Cyprus (TRNC)). Meanwhile,
in TRNC, the available statistical information regarding waste generation from hospitality industry
demonstrates a lack of sufficient reliable data per hospitality facility; hence, it is difficult to develop
accurate forecasting systems.

According to the TRNC Hoteliers Association, there was nearly an 83% and 68% bed occupancy
rate in the peak and lean seasons, respectively, in 2014–2016. The increasing inflow of tourists in the
first quarter of 2017 indicated that the occupancy rate is expected to increase by 6–8% in the peak
season of 2017, subsequently leading to more HSW. Of concern is the lack of studies that quantify the
magnitude of waste generated in the accommodation sector of TRNC and the subsequent effect of this
problem on the environment.

To mitigate the impact of HSW on the ecosystem, we need reliable data concerning HSW
generation. Meanwhile, the process of predicting HSW generation is challenging and often intensified
by uncontrollable parameters [10,13]. In recent years, various conventional, regression, non-algorithm
and descriptive statistical methods of forecasting municipal solid waste (MSW) generation have been
reported [13–16].

However, there are limited data concerning the forecasting of HSW generation in the peak and lean
seasons as well as an optimal prediction model for this purpose. Hence, this paper tries to contribute
to filling the mentioned gaps in the HSW generation rates, specifically in TRNC. The outcome of this
research is expected to help policymakers and accommodation sector owners to initiate sustainable
waste management practices.

In this study, multiple linear regression (MLR), central composite design (CCD) and artificial
neural network (ANN) models were applied in predicting the rate of hospitality sector waste generation.
Among these methods, MLR is widely applied to forecasting waste generation due to its simple
algorithm and well-developed statistical theory [15]. However, MLR can neither adapt to new
situations nor learn from new data; its precision is poor when imprecise data are utilised and it
rarely considers all factors affecting waste generation [12,17,18].

CCD under response surface methodology is a combination of a statistical and mathematical
technique for empirical modelling of complex problems in which the response of interest is influenced
by several independent variables. CCD considers the interaction effects between the operational
parameters to produce high prediction accuracy on complex nonlinear systems [19]. To the best of
the authors’ knowledge, there are no reported data on the application of CCD to forecasting waste
generation. ANN is a brain neuron-inspired data-driven technique that can directly learn linear and
nonlinear relationships between variables from a set of data compared to the conventional forecasting
techniques [20–22].
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The strengths and weaknesses of the proposed models were elucidated and an optimal prediction
model was established based on conformity with the actual dataset and sensitivity analyses. To date,
most studies in this field have focused specifically on the prediction of the total municipal solid waste
(MSW) generation rate without considering the interactive effects of the influencing factors (viz., waste
management practices, nationality of tourists, nature of waste generated and actual sources of waste in
the hospitality facility) to manage HSW sustainably. This paper is written under the belief that the
prediction of the amount of HSW produced will be helpful in the stages of transportation, storage,
disposal and reutilization and, thus contribute to a sustainable tourism management.

2. Research Methodology

2.1. Research Area and Dataset

Given that the purpose of this research is to predict waste generation rates in the accommodation
sector and explore the effects of variables contributing to the waste generation rates, a quantitative
approach was employed. Three districts, Nicosia, Famagusta and Girne, were selected to assess
the waste generation in the accommodation sectors of TRNC according to the concentrated tourism
activities in these districts.

A total of 22 accommodation options, including non-starred guesthouses and large, medium and
small hotels, were investigated in this study. Seventy-five percent of these facilities are situated in
Girne (a tourism hub), 18% in Nicosia (the capital city) and 7% in Famagusta (a port and student city).
The investigated facilities were composed of 36%, 30%, 27% and 7% small, large and medium hotels
and guesthouses, respectively. The tourism activities in TRNC remain active seasonally, with the fewest
activities taking place in winter (the lean season) and most taking place in summer (the peak season).

A pilot study was conducted to minimise ambiguity in the sampling questions. Also, prior to data
collection, the management of the accommodations were assured of confidentiality to minimise the
social desirability bias and ensure the accuracy and credibility of the sample data. The data from daily
waste generated were collected randomly over a specified period of each month of the lean and peak
tourism seasons. We calculated the average daily and yearly generation rate per room and sub-units of
the accommodation.

2.2. Model Development and Description of the Input Parameters

The MLR, CCD and ANN as linear, quadratic and non-algorithmic models, respectively, were
used to predict the waste generation rates in the hospitality sector of TRNC. To train and test the
models, a 3-fold cross-validation procedure was employed to avoid any possible desirability bias.
Hence, the average results of three different simulations were compared with the actual data and
reported herein.

Among the different parameters that affect the generation rate of hospitality waste,
five independent parameters were selected as the most effective ones, including the nationality
of tourists visiting the investigated facilities, the nature of waste management practices in each facility,
the type of waste generated, the seasonal flow and the type of the accommodation. These parameters
were encoded as presented in Table 1.
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Table 1. Coding of sub-class of the independent parameters.

Nationality Season Accomm. Type Waste Type Waste Manage. Practice

British (1) Lean (0.5) Guesthouse (0.5) Food waste (1) None (2.5)
Russian (2) Mid (1.5) Small hotel (2.5) Glass (2) Recycle (5.5)
Asian (3) Peak (2.5) Medium hotel (4.5) Cooking oil (3) Reuse (9.0)

Scandinavian (4) Large hotel (8.5) Garden waste (4) Landfill (12.5)
German (5) Aluminium (5) Incineration (16.5)
French (6) Organic waste (6)
Turkish (7) Wood (7)
Arabs (8) Paper (8)

African (9) Plastic (9)

The numbers in the parentheses represent the coded value.

2.3. Multiple Linear Regression Analysis

The multiple linear regression (MLR) as a predictive analysis, attempts to explain the relationship
between a dependent variable and two or more explanatory variables. The MLR model for predicting
the HSW generation can be described as follows:

y = β0 + β1x1 + β2x2 + β3x3+, . . . ,+βnxn (1)

The predicted value of HSW generated is represented by the dependent variable y, x1, . . . , xn

represent the five independent variables in this study, and β0, . . . , βn denote the impact of each
independent variable on the response variable.

2.4. Principle of Central Composite Design

Central composite design (CCD) is an efficient approach for modelling complex problems in
which the responses are influenced by various independent variables. Hence, we can minimise time
consumption and reduce experimental complexities [14]. Herein, the SigmaXL software (Ver 7.0,
Ontario, Canada) was employed to generate 5-level-5-factors CCD) matrix. Five independent variables,
viz., nationality (A), accommodation type (B), season (C), type of waste (D), and waste management
practice (E), were selected based on pilot studies and literature reports to assess their effects on the
waste generation rates (WGR).

The independent variables were coded into two levels, low (−1) and high (+1), and the axial
points are coded as (+α) and (−α). The total number of experimental data runs generated from the
CCD is 44, obtained according to Equation (2):

N = 2x + 2x + xr = 25 + (2× 5) + 2 = 44 (2)

where N is the total number of runs required, x is the number of variables and xr is the repeated runs.
The range of the chosen independent variables, with actual and coded levels, is presented in

Table 2, where only the most influential runs were selected out of 44 experimental runs. The factorial
design comprises 32 full factorials, 10 axial points and two repeated runs, which resulted in an
orthogonal distribution of 44 experiments. The experiments were run randomly to minimise errors
due to the systematic trends in the factors. A quadratic polynomial regression model was recognised
to evaluate and quantify the influence of the variables on the responses obtained from the experiments:
The data obtained from the experimental design were utilised to generate a polynomial equation that
was analysed to quantify the influence of the variables on the waste generation rates (%).

The results thereafter were subjected to analysis of variance (ANOVA). The ANOVA was applied
to evaluate and model the relationship between the response variable (waste generation rates (WGR
(%)) and the independent variables, also to test the significance and the adequacy of the model.
The efficiency of the quadratic polynomial model was articulated based on coefficients of determination
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(R2), predicted R2 and adjusted R2. The statistical significance of the model was verified with
Fisher variation ratio (F-value), the probability value (Prob > F) with 95% confidence level and
adequate precision.

Table 2. : Design matrix containing coded values, actual and predicted WGR (%).

Independent Variables Symbol Level of Factors

−α (−2) −1 0 1 α (2)
Nationality A 1.0 4.0 7.0 11.0 14.0

Accommodation type B 0.5 2.5 4.5 6.5 8.5
Season C 0.5 1 1.5 2 2.5

Type of waste D 1.0 4.0 7.0 11.0 14.0
Waste manag. practice E 1.5 5.5 9.0 12.5 16.5

Run order A B C D E Waste generation rate (%)

CCD ANN MLR Actual
1 0 0 0 0 0 73.41 68.32 89.23 61.34
2 0 0 −1 0 0 69.23 89.32 78.01 92.56
3 0 2 0 0 0 67.67 52.11 50.98 56.41

4 * 1 0 0 0 0 49.89 47.55 46.89 48.55
5 −2 0 0 0 0 75.01 94.99 89.23 96.19
6 2 0 0 0 0 83.41 90.11 90.89 89.33
7 0 2 −2 0 0 71.13 82.88 72.88 92.01

8 * 0 −2 2 0 0 96.63 95.66 93.66 94.23
9 0 0 2 −2 0 76.29 75.99 75.23 75.11
10 −2 0 0 2 0 78.46 89.23 64.99 88.21

11 * 0 2 0 0 −2 78.22 77.01 75.55 77.46
12 2 2 2 0 2 74.21 87.98 79.98 87.21
13 1 −1 1 1 1 96.99 76.89 86.89 97.99

14 * −1 1 1 1 1 90.04 88.11 91.11 90.67
15 1 1 −1 1 1 75.66 88.66 80.23 87.12
16 −1 1 −1 1 1 75.23 83.41 96.19 81.23
17 1 0 1 −1 1 86.44 89.23 59.99 90.11
18 −1 2 1 −1 1 78.01 87.67 92.01 88.11
19 −1 −1 −1 −1 1 95.66 79.89 94.23 80.05

20 * −1 1 −1 −1 1 54.99 55.81 54.11 56.99

* Bold indicates the run orders with desirability function greater than 0.9 and standard deviation less than 0.3.

2.5. Principle of Artificial Neural Network Model

In the late 1990s, the ANN methodology was introduced to tourism forecasting [21]. ANN is a
bio-inspired computational processing system akin to the vast network of brain neurons [7]. Lately,
research activities in forecasting with ANN have indicated that it can be a promising substitute
for conventional linear methods. ANN is highly attractive due to its remarkable characteristics,
pertinent particularly to noise and fault tolerance, high parallelism, learning and generalisation
capabilities, and nonlinearity [19–23].

The typical ANN architecture is organised in three distinct layers (input, one or more hidden,
and an output) containing nodes that are interconnected by weighted synapses. The network structure
changes based on the input and output information that flows through it. The independent problem
variables are represented in the input layer nodes; the nodes in the hidden layer add an internal
representation of non-linear data to the network and the output layer of the ANN is the solution to the
problem [21,24].
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The relationship between the output (O) and the inputs (I1, I2, I3 . . . ., Ip) is represented
mathematically as follows [25]:

Ox = bx,i +
n

∑
j=1

wj f

(
m

∑
i=1

Wji Ii + Boj

)
(3)

where Ox (x = 1, 2, 3, 4, . . . ) is the output variable; wj and Wji (j = 1, 2, 3, . . . , n; i = 0, 1, 2, 3, . . . , m)
are connection weights; m and n represent the number of input and hidden nodes, respectively. The f
corresponds to the sigmoidal activation function; bx,i and B0j represent the bias terms associated with
each input, output and hidden layer nodes, respectively.

In this study, MATLAB R2017a software (MathWorks, Inc., Natick, MA, USA) was utilised to predict
the waste generate rates (WGR) of various classes of accommodation sectors in TRNC. A multilayer
ANN architecture was utilized and bias neurons were added to each layer to avoid network collapse.
The connecting weights were randomly chosen and changed through the training procedure to obtain
the minimised mean squared error (MSE). The developed ANN architecture was utilised to investigate
the association between inputs and output (waste generation rates), as depicted in Figure 1.
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Figure 1. Optimised ANN structure of 5-11-6-1 selected for forecasting WGR in accommodation sectors.

2.6. Model Performance Evaluation

To evaluate the prediction performance of the models, four statistical indices were applied;
the hybrid fractional error function (HYBRID), standard error of prediction (SEP), mean absolute error
(MAE) and correlation coefficient (R2) values were derived using the following equations:

HYBRID =
100

n− p

n

∑
i=1

∣∣∣∣∣
(
wo(t)− wp(t)

)2

wo(t)

∣∣∣∣∣ (4)

SEP =

√√√√√ n
∑

i=1

(
wo(t)− wp(t)

)2

n− 1
(5)

MAE =
1
n

n

∑
i=1

∣∣wo(t)− wp(t)
∣∣ (6)
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R2 = 1− ∑n
i=1
(
wo(t)− wp(t)

)2

∑n
i=1(wo(t)− w′o(t))

2 (7)

where n is the number of observations, wo is the observed values of rate of waste generation for type
t, p is the number of independent parameters, wo’ is the average of HSW generation and wp is the
predicted value of HSW generation for type t. R2 measures the closeness of the observed data to the
predicted data, MAE is a statistical quantity that measures how close predictions are to the eventual
outcomes, and SEP is a measure of the accuracy of the predictions. The smaller the value of the error
indices for a specified model, the higher the prediction performance of the model [20,21].

3. Results and Discussion

3.1. Results of MLR

The MLR analysis herein was performed using stepwise regression (SPSS 17.0, Chicago, IL, USA).
Its p-value was calculated for each input variable and the significant variable was identified following
the criteria of having a p-value ≤ 0.05. The MLR was subjected to 3-fold cross-validation procedures,
and the averages of the variable estimates were utilised to obtain the regression equation for predicting
generation rate of HSW. Multicollinearity was avoided in the final regression equation using a tolerance
filter of 0.5:

Total WGR = −89.561 + 3.5781(A) + 13.112(B)− 4.9871(C)− 11.916(D) + 7.7812(E) (8)

where A, . . . , E symbolise the input parameters described in Table 2. The statistical characteristics
of the regression equation are represented in Table 3. As obtained, the MLR model indicates that
both waste management practice (E) and accommodation type (B) are highly significant parameters,
followed by season (C), which is slightly significant and influenced the generated waste quantity with
an α-level less than 0.1.

Table 3. Statistical characteristics of the developed MLR model.

Predicted WGR Parameter Parameter Coefficient T-Value α-Level Standard Error

Total Intercept −89.56 −1.41 0.32 63.7
A 3.578 1.89 0.56 1.89
B 13.11 0.95 0.04 13.8
C −4.987 −1.25 0.08 −3.98
D −11.92 3.41 0.16 3.5
E 7.781 −0.88 0.02 −8.89

Peak season Intercept −29.56 −0.84 0.18 34.8

A 2.254 1.63 0.96 1.38
B 6.89 1.16 0.00 5.96
C 1.855 0.77 0.07 2.39
D −6.365 −0.31 0.28 20.3
E 4.332 −0.38 0.05 −11.3

Lean season Intercept −59.89 5.04 0.68 −11.89

A 1.324 1.14 0.16 1.16
B 6.21 1.71 0.03 3.63
C −3.134 −0.34 0.07 9.32
D −5.555 1.14 0.32 −4.89
E 3.449 0.055 0.00 62.8

T indicates the statistical significance of the model parameter; Acceptable α-level = 0.1.
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3.2. Analysis of AAN Model Results

In the current study, 138 experimental datasets were fed into the ANN network and randomly
classified. Of these, 68% of the datasets were trained, 18% were tested and the remaining 14% were
validated. The three-layered feedforward neural network herein consists of the logsig transfer function
at hidden layer and a linear transfer function (purelin) at the output layer. To minimise network error,
numerical overflows and achieve higher homogeneous results, the model inputs and output were
normalised and scaled in the rank of 0.1 to 0.9 using Equation (9):

X∗ = 0.1 +
X− Xmin

Xmax − Xmin
0.8 (9)

where the normalised value of the output variable is X*, and X, Xmax and Xmin represent their actual,
maximum and minimum values, respectively.

The connection weights of the trained ANN with the corresponding bias terms were employed to
estimate the relative significance of each independent variable (Ii) on waste generation rate (kg/day)
as given in Equation (10):

Ii =
∑m=Nh

m=1

((∣∣∣Wih
jm

∣∣∣/∑Ni
k=1

∣∣∣Wih
km

∣∣∣)× ∣∣∣Who
mn

∣∣∣)
∑k=Ni

k=1

{
∑m=Nh

m=1

(∣∣Wih
km

∣∣/∑Ni
k=1

∣∣Wih
km

∣∣)× ∣∣Who
mn
∣∣} (10)

where Ii is the relative importance of the ith input variable on the response; W, Ni and Nh represent the
connection weights, numbers of input and hidden neurons, respectively. The subscripts ‘k’, ‘m’ and
‘n’ is the input, hidden and output neuron, while the superscripts ‘i’, ‘h’ and ‘o’ represent the input,
hidden and output layers, respectively.

3.2.1. Selection of Backpropagation (BP) Training Algorithm

Ten BP algorithms were investigated to select the best BP training algorithm, as depicted in Table 4.
The highest value of the degree of correlation (R2) and the least mean square error (MSE) were used
as the yardstick to select the best BP. Of all the BP algorithms examined, the Levenberg–Marquardt
(LMA) BP algorithm specifically resulted in the least mean square error (0.0014) and its R2 value (0.989)
is closest to unity. Hence, LMA was selected as the training algorithm in this research.

Table 4. Comparison of backpropagation algorithms.

Backpropagation (BP) Algorithm MSE Epoch R2 Best Linear Equation

Fletcher–Reeves conjugate gradient BP 0.0323 0.867 y = 0.0671x + 0.0678
Batch gradient descent 0.0098 1000 0.918 y = 0.6612x + 0.0893

Scaled conjugate gradient BP 0.0167 78 0.456 y = 0.7905x + 0.0698
One step secant backpropagation 0.0088 32 0.789 y = 0.0622x + 0.0256

Powell–Beale conjugate gradient BP 0.0433 56 0.908 y = 0.5623x + 0.0998
* Levenberg-Marquardt backpropagation 0.0014 11 0.989 y = 0.9017x + 0.0219

BFGS quasi-Newton backpropagation 0.0093 30 0.965 y = 0.7221x + 0.0083
Variable learning rate backpropagation 0.007 178 0.671 y = 0.9323x + 0.0044
Polak–Ribi’ere conjugate gradient BP 0.0091 32 0.379 y = 0.9011x + 0.0391

Batch gradient descent with momentum 0.0205 1000 0.881 y = 0.8312x + 0.6733

Bold indicates the best and selected BP.

3.2.2. Optimisation of Neuron Number

To obtain an optimised ANN structure, robust networks were constructed by varying the iteration,
hidden neurons and learning rates. Our networks were trained perfectly with over 1000 iterations and
the optimal learning rate was 0.2, as listed in Table 5.
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Table 5. The parameters of the optimised ANN model used in this study.

Parameter Value

Input layer neurons 5
Output layer neurons 1

Hidden layers 2
Hidden layer neurons 17

Training method Levenberg–Marquardt backpropagation
Error goal 0.015%

Epochs 1000
Data division Random

Momentum (mu) 0.001
Transfer function of hidden layer Logsig

Learning rate 0.2

The assessment of MSE during training and testing for an optimum number of neurons in the
hidden layers is presented in Table 6. As seen in the training set, the MSE was 0.0923 when 13 neurons
were used and decreased to 0.0131 when 17 neurons were utilised. The MSE reached a minimum
level and increasing the number of neurons beyond 17 does not decrease the MSE further. Hence,
17 neurons were chosen as optimum for the developed ANN topology shown in Figure 1.

The optimised neural network model was used to predict the amount of waste generated in two
different seasons (peak and lean) by considering a different type of waste. The comparison between
the ANN predictive values, CCD, MLR and the actual values is shown in Figure 2.

Table 6. Optimisation of neuron number at hidden layer, using testing and training data set.

Number of Neurons
Training Set Testing Set

MAE MSE R2 MAE MSE R2

1 0.1278 0.3219 0.7865 0.0899 0.7012 0.6821
2 0.1806 0.3131 0.6679 0.0986 0.6131 0.6178
3 0.1311 0.3094 0.9012 0.0911 0.5694 0.8611
4 0.1155 0.2308 0.8694 0.0888 0.5308 0.7389
5 0.0969 0.1396 0.6311 0.0814 0.4388 0.6398
6 0.0889 0.1131 0.8332 0.0768 0.4098 0.8798
7 0.0835 0.1094 0.5694 0.0732 0.3994 0.6873
8 0.0811 0.1088 0.6377 0.0711 0.3768 0.7997
9 0.0678 0.1046 0.8296 0.0689 0.3288 0.7654

10 0.0561 0.0991 0.7156 0.0605 0.3109 0.5679
11 0.0458 0.0934 0.8967 0.0598 0.2987 0.6899
12 0.0449 0.0808 0.7855 0.0534 0.2855 0.6656
13 0.0328 0.0623 0.8987 0.0511 0.2616 0.8202
14 0.0389 0.0431 0.0934 0.0109 0.0934 0.8144
15 0.0356 0.0334 0.0557 0.0098 0.0557 0.6098
16 0.0298 0.0308 0.9131 0.0082 0.0198 0.7813
17 0.0211 0.0131 0.9933 0.0067 0.0125 0.8989
18 0.0469 0.0134 0.8131 0.0096 0.0139 0.5199
19 0.0209 0.0308 0.8694 0.0734 0.0394 0.7656
20 0.0668 0.0396 0.7366 0.0611 0.0108 0.8088

Bold show optimum number of hidden layer neuron.
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Figure 2. Type and amount of waste generated per day in each season (a–c), and actual and predicted
average daily waste generated per (d) small hotel, (e) medium hotel, and (f) large hotel.

As shown in Figure 2a–c, food waste is the most generated waste in all the investigated facilities.
In the lean season, a total of 970 kg of food waste was generated per day, while this figure increased
by almost 1.9% in the peak season. Organic waste (vegetables, milk, bread, etc.) is also commonly
generated in all facilities. A total of 415 kg/day of organic waste is generated during the peak season,
when the large hotels account for 57%, small hotels 23.4% and medium hotels 19.6%. During the
lean season, the organic waste generated decreased to 178.5 kg/day; small hotels generated the least
(19.7%). The least generated waste in all the facilities appears to be wood. Only 61 kg/day of wood
was generated during the peak season and 28 kg/day was generated during the lean season.
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Figure 2d–f, represents the average waste generated per day. During the peak season, the average
waste generated was 106.5, 239.5 and 340.9 kg/day by small, medium and large hotels, respectively.
Meanwhile, the average waste generated decreased to about 63% during the lean season. As mentioned,
the type of waste management practices in each facility has a significant influence on the waste
generation rate, as does the nationality of the tourists visiting the facilities.

The nationality influences the environmental performance in each facility [26]. For instance, based
on our research, hotels that have tourists from Arab countries have high food wastage, while those
with guests from Britain presented high water consumption and more organic waste, which could be
attributed to lifestyle. Regarding the nationality of most tourists visiting the investigated facilities,
about 33% British visited the facilities followed by Russian (18%), Turkish (16%), Scandinavian (10%),
German (8%), Arab (7%), French (5%) and African (3%).

Figure 3a–c shows the observed waste generation rate (%) per day based on the tourist nationality
considering peak season. In a small hotel, 19.21% waste is generated by British tourists per day
(85.6 kg), Turkish tourists generated 65.8 kg waste, which is 16.29 WGR (%)/day, and the least waste
was generated by French tourists (5.67%) per day. A similar pattern is observed in medium-sized
hotels; however, Arabs generated the least waste, accounting for 2.2% WGR per day. In contrast,
Turkish tourists generated the most waste in large hotels (19.16%), followed by the British (15.1%),
and the least waste was generated by Asians (6.9%) in large hotels. This research has helped us to
understand the pattern of visitors in each facility and their range of waste generating practices.

The waste generation rate per type of facility based on the type of waste management practices
is shown in Figure 3d–f. Many hotel facilities take very little action to reduce their environmental
impact; specifically, small hotels regard their environmental responsibility as a secondary objective [27].
In most cases, small hotels commonly generate low quantities of waste that are unattractive to waste
recycling firms since they often require specific quantities of waste to be collected [27,28]. In this
research, the WGR/day of small hotel firms without any waste management practices is 30%, while the
WGR of those that engaged in landfill practice is 40% per day. In medium-sized and large hotels
without waste management practices, 50% and 70% of WGR, respectively, was observed per day.
This is largely due to their increased room occupancy and higher range of waste generating services
compared with small hotels.

The ANN prediction appears to be in reasonable agreement with the observed data.
More deviation between the actual (residuals) and predicted values was observed in the CCD and MLR
models than in the ANN model. Hence, the higher predictive capacity of the ANN can be attributed to
its universal capability to approximate complex nonlinear systems, whereas CCD is effective if the
system is restricted to second-order polynomial regression [22,29].

3.3. Analysis of CCD

The correlation between the response (WGR) and independent factors (Table 2) was developed
using the CCD of the SigmaXL software (ver. 7.0, Ontario, Canada). The standard deviation and
correlation coefficient were utilised to evaluate the fitness of the models developed. The smaller the
standard deviation and the closer the R2 value to unity, the better the model is at forecasting the
response [19]. Table 7 indicates that the quadratic model was not aliased and has a comparatively low
standard deviation of 3.361 and relatively high R2 value of 0.9985, which is in reasonable agreement
with the predicted R2 (0.9966). Also, the PRESS of the quadratic equation is low (169.23), which revealed
the reliability and better precision of the experimental results. Hence, the results indicate that the
quadratic model can be used to describe the relationship between the response (WGR) and the
interacting variables. Hence, the codified quadratic equation after eliminating the insignificant terms
is shown in Equation (11):

Total WGR = 129.5− 8.78(A) + 45.3(B)− 0.92(C)− 1.92(D) + 58.1(E) + 0.78AB
+3.86BE− 0.89A2 + 2.98B2 − 2.56C2 + 5.87E2 (11)
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The obtained quadratic equation was further evaluated using ANOVA. As tabulated, the quadratic
model for HSW generation rate has an F-value of 329.55 and a p-value of 0.0012, implying that the
model is significant. For the model terms, the largest F-value signifies the most significant effect on
the response variable and the model term with a p-value less than 0.05 is significant [30]. In this case,
the significant model terms are A, B, C, E, AB, BE, A2, B2 and E2, while C2, BC and AE are insignificant.
The model term having the most significant effect on the response is B with an F-value of 679.87.
The “Lack of Fit” F-value of 1.76 signifies that it is not significant relative to the pure error and there is
a 65.88% chance that its F-value being this large could be due to noise [22]. The non-significant “Lack
of fit” for WGR indicated the good predictability of the model.

The variability of the independent variables was evaluated based on the results of Equation
(11); the negative value of the coefficient A (−8.78) indicates that as the nationality of the tourists
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changes from 1 to 9, as coded in Table 1, the HSW generation rate decreased. We inferred that British
tourists generate more waste than Arab tourists. The positive values of the coefficients indicate
that these parameters had a positive effect on the HSW generation rate. For instance, the smaller
hotels generate less waste compared to the large hotels with a range of services and greater room
occupancy. The interactive influence of the independent variables was investigated and depicted via
three-dimensional (3D) response surface plots. The 3D surface plots are very effective at observing
complex systems in which two or more variables are significant [31–33].

As shown in Figure 4a, the interaction between the season (C) and the type of waste management
practice (E) in each facility indicates increased HSW generation rates as C tended towards the peak
season (2.5) with accommodation sectors without waste management practices. Figure 4b indicates that
the HSW generation rate increased from 65% to 85% in a facility without proper waste management
practices, specifically with tourists in the range 1−4 (Table 1). Figure 4c shows that about 44% WGR
was observed in the lean season for tourists of nationality 7−9; however, the WGR increased beyond
80% in the lean season when tourists of nationality 1−5 occupied these facilities. Figure 4d depicts the
interactive influence of accommodation type (B) and tourists’ nationality (A). According to Equation
(10), AB is statistically significant (p = 0.0002 < 0.05) and the WGR increased as the accommodation
type changed from small to large hotels as the tourist nationality increased from 1 to 9. This indicates
that the WGR is higher at large hotels irrespective of the nationality of the tourists.

Table 7. Model Summary statistics and ANOVA for the regression model for WGR.

Source Std Dev. R2 Adj. R2 Pred. R2 PRESS Remark

Linear 20.93 0.5617 0.6541 0.6045 6489.65
2FI 9.956 0.9014 0.7681 0.8988 5109.99

Quadratic 3.361 0.9985 0.9864 0.9966 169.23 Suggested
Cubic 2.951 0.8941 0.8679 0.7899 3705.82 Aliased

Source Sum of squares df Mean square F-value Prob > F

Model 16283.54 9 1809.282 329.55 0.0012 Significant
A 738.38 1 738.38 6.5161 <0.0001
B 10544.33 1 10,544.33 679.87 <0.0001
C 6318.32 1 6318.32 14.788 <0.0001
D 307.43 1 307.43 2.0871 0.0494
E 189.66 1 189.66 298.34 <0.0001

AB 987.11 1 987.11 679.87 <0.0001
AC 133.68 1 133.68 14.788 0.0496
AD 1569.56 1 1569.56 24.661 0.0586
AE 1875.55 1 1875.55 98.343 0.3556
BC 334.38 1 334.38 19.878 0.0001
BD 564.99 1 564.99 3.7881 0.0589
BE 68.55 1 68.55 4.6619 <0.0001
CD 348.99 1 348.99 8.3466 0.1558
CE 167.57 1 167.57 6.8745 0.2596
DE 1038.44 1 1038.44 1.7889 0.3856
A2 568.66 1 568.66 4.0911 <0.0001
B2 568.77 1 568.77 8.3421 <0.0001
C2 38.38 1 38.38 9.8731 0.6018
D2 138.55 1 138.55 14.788 0.2429
E2 1705.38 1 1705.38 150.88 <0.0001

Residual 1239.345 11 112.667
Lack of fit 678.4321 8 84.804 1.758 0.6588 Not significant
Pure error 560.9128 5 112.183

Total 17522.89 20

PRESS: predicted residual error sum of squares; df: degree of freedom.
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3.4. Estimation of Waste Generated and Comparison of Predictive Performance of Models

Forecasting of HSW generation can be classified into short-term (ranging from days to few
months), mid-term (few months to 2–4 years) and long-term forecasting (> 5 years). Table 8
summarises the estimated total waste generated by each facility investigated and comparative
predictive performance of each model. Herein, statistical analysis was performed to compare the
constructed ANN, CCD and MLR models, in terms of their predictive performance, using HYBRID,
R2, MAE and SEP (Equations (4)–(7); Table 8).

The ANN model shows the lowest error values and highest R2 compared to the CCD and MLR
models. Based on the obtained results, the ANN architecture is more reliable and accurate in terms
of predictive capability and fitting to the non-linear relationship between the variables and HSW
generation rate. On the other hand, one of the most significant advantages of the CCD-based model is
its ability to clarify the interactive effect of the variables on the response (WGR), which highlights its
usefulness in predicting the rate of HSW generation. Hence, combining the abilities of CCD and ANN
models in a hybrid fashion could result in powerful modelling and predictive models.
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Table 8. Estimated total waste generated and comparison of predictive performance of models

Accommodation Type Season
Per Day Predicted for Next 3 Years (kg)

Observed (kg) ANN CCD MLR

Small hotel Peak 864.1 3092.3 2292.3 2679.8
Lean 399.5 1848.5 1679.6 1799.5

Medium hotel Peak 479.5 1870.1 1822.1 1987.9
Lean 233.7 934.8 978.9 698.7

Large hotel Peak 2727.8 12275.1 11891.7 12098.5
Lean 1377.3 7898.9 9873.9 88761.8

Guesthouse Peak 88.5 389.8 334.9 278.6
Lean 52.9 198.6 160.7 256.8

Statistical parameters ANN CCD MLR

R2 0.9982 0.8982 0.9054
MAE 1.378 1.469 3.981
SEP 2.153 4.71 9.891

HYBRID 98.781 103.4 145.9

3.5. Sensitivity Analysis and Relative Importance of Input Variables

Figure 5 shows the relative significance of the independent variables on the response (WGR)
obtained from Equation (10). It is important to stress that all the input variables had an impact on
the waste generation rates. However, the accommodation type (B) seemed to be the most influential
variable on WGR, while the second most influential variable was the season (C), followed by waste
management practice (E), nationality (A) and type of waste (D), according to ANN. Meanwhile,
the CCD and MLR tend to deviate slightly from the ANN predicted data, as shown in Figure 5.
The desirability function (D) was applied to select the acceptable ranking and the minimum, middle
and maximum values of desirability were configured as D = 0.0, 0.5 and 1.0, respectively. A desirability
value closer to 1.0 means that the corresponding sensitivity analysis is able to represent the actual
scenario. Hence, the ranking based on the models is as follows; ANN (D = 0.99) > CCD (D = 0.78) > MLR
(0.65). It is inferred that the ANN can be employed to simulate and predict the complex independent
variable behaviour in any form of non-linearity and can effectively overcome the limitation of quadratic
correlation assumed in CCD and MLR.
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4. Conclusions

The accommodation sector is an essential component of the tourism and travel business. It is
worth mentioning that increases in hospitality sector operations result in increased quantities of
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municipal waste, constituting ecosystem damage and a significant increase in the environmental
footprint. To curtail the ugly face of tourism activities, precise prediction of the quantity of hospitality
waste generated is required to enable the development of an integrated waste management and
reutilization system. Note that inaccurate prediction of hospitality waste generated may result in a
negative impact on the environment.

For the first time, this study has shown that municipal waste from hospitality facilities can be
forecasted by considering measurable and effective parameters via an artificial neural network-inspired
forecasting model. The hospitality waste generation rates were analysed based on three categories:
recyclable, general waste and food residue. ANN, CCD and MLR were employed to predict the
average HSW generation rate using nationality, type of waste, season, accommodation type, and type
of waste management practices as predictors. These predictors were selected based on the correlation
test and Cronbach’s alpha of 0.93. The results showed that 4159.9 kg (recyclable: 58.5%, general waste:
23.6% and food residue: 17.9%) and 2063.4 kg (recyclable: 33.6%, general waste: 18.5% and food
residue: 47.9%) of waste were generated during the peak and lean season from the 22 hospitality
facilities investigated, respectively.

Importantly, the use of the ANN model to predict the average HSW generation rate led to
reliable results and the difference between the observed and predicted values was not statistically
significant. However, the MLR model demonstrated lower prediction accuracy compared to CCD.
It was found that Turkish tourists generated more waste (19.16% WGR/day) in large hotels compared
with the British (15.1% WGR/day), and Asians generated the least average waste (20.96%) in all the
facilities investigated. The findings of this study imply the need for further research to investigate
the possible sources of the waste and factors limiting hotels from managing the waste effectively.
In conclusion, the results herein are promising and would be useful in establishing a sustainable waste
management plans.
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