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Abstract: Drought is a noteworthy cause of low agricultural profitability and of crop production
vulnerability, yet in numerous countries of Africa little to no consideration has been paid to readiness
for drought calamity, particularly to spatial evaluation and indicators of drought occurrence. In this
study, biophysical and socio-economic data, farmers’ community surveys and secondary data from
remote sensing on soil characteristics and water demand were used to evaluate the predictors of
drought in inland valley rice-based production systems and the factors affecting farmers’ mitigation
measures. The study intervened in three West African countries located in the Sudan-Sahel zone,
viz. Burkina Faso, Mali and Nigeria. Significant drying trends occurred at latitudes below 11◦30′

whilst significant wetting trends were discerned at latitude above 11◦30′. Droughts were more
frequent and had their longest duration in the states of Niger and Kaduna located in Nigeria and
in western Burkina Faso during the period 1995–2014. Among 21 candidate predictors, average
annual standardized precipitation evapotranspiration index and duration of groundwater availability
were the most important predictors of drought occurrence in inland valleys rice based-production
systems. Land ownership and gender affected the commitment of rice farmers to use any mitigation
measure against drought. Drought studies in inland valleys should include climatic water balance
and groundwater data. Securing property rights and focusing on women’s association would improve
farmers’ resilience and advance drought mitigation measures.
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1. Introduction

Rice has become a major staple food and an increasing source of calories in Sub-Saharan Africa
(SSA) as economic growth and increasing urbanization have changed consumption patterns and
preferences towards rice and away from traditional food [1]. In most of the sub-Saharan countries,
the rice production is far below the rice demand [2]. The self-sufficiency ratio in SSA measured by the
ratio of production over consumption is on average 47% and varies from as low as 19% in Cameroon
and Niger to as high as 93% in Mali [3]. Most countries therefore depend heavily on imports to meet
their growing rice demands.
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In Asia, the Green Revolution achieved significant increase in rice production in irrigated
environments. However, in rainfed systems, the Green Revolution had little effect on rice yield
due to recurrent drought and other biophysical constraints [4]. Ninety percent of the rice production in
SSA occurs under rainfed conditions [5]. Therefore, rainfall is a major determinant in farming activities
planning by the majority of small scale farmers [6]. Small scale farmers cultivate small parcels of land
and they often lack reliable access to water. They are consequently vulnerable to environmental risks
including drought and shortage of water for irrigation. The high exposure to environmental risks
inhibits farmers’ investment in agricultural inputs (seed, labor, agro-chemical, etc.) and mechanization
to increase rice productivity [7]. They practice low-input agriculture and average yields are low,
often not exceeding 2 tons ha−1 [8,9].

Broader areas have been affected by drought since the 1970s, especially in SSA, due to an increase
in temperature and a decrease in precipitation [10]. It is now more certain that climate change
contributes to enhanced drought severity in drought-vulnerable regions, thereby increasing small
farming households’ food insecurity risk [11]. Regardless of the climate conditions, the poor physical
properties of weathered and coarse-textured soils in many parts of SSA induce low water-holding
capacity and establish water deficit as a major constraint [12]. Besides climate change, high competition
among different users of scare water resources and inadequate water management further enhance
drought impacts [13].

Inland valleys landscapes are widespread and estimated to account for 85 million ha in SSA [14].
Given the high agricultural production potential, due to better soil fertility and water availability than
uplands, inland valleys are increasingly being considered as SSA’s future food basket [15]. Although
inland valleys offer favorable conditions, drought is the most important abitioc stress negating rice
production in this ecosystem and is estimated to have affected 38% of the total inland valley area
in SSA in 2008, causing 29% of rice yield loss [1]. The measures to reduce drought impact in inland
valley rice-based production systems include changes in the growing period to escape dry spells,
supplemental irrigation and reduction of unproductive water losses to save more water for productive
transpiration [16]. However, gains from the above-mentioned measures have been modest [17], in part
because there has been insufficient farmer involvement in the development of the measures [18]
and little effort for defining target population of drought-prone inland valleys and support farmers
to implement appropriate measures [19]. Furthermore, few studies were conducted on drought
occurrence in inland valley rice-based production systems and were based on experts’ opinions [1],
soil water-holding capacity only [12] and crop modelling with limited ground validation [20].

This study used a large geo-located multidisciplinary database of 300 surveyed inland valleys in
14 regions in three West African countries. The objectives of the study were to assess the predictors for
occurrence of drought in inland valleys rice-based production systems and to inventory enabling factors
for small scale farmers to mitigate its effects. Farmer surveys on the biophysical and socioeconomic
characteristics of the rice production environment were implemented in 300 inland valleys. Additional
parameters, such as rainfall, minimum and maximum air temperatures, soil particle size distribution
and soil organic carbon were extracted from freely available spatial datasets using the geolocation
of the inland valleys and then added to the survey database. Random Forest analysis was used to
determine the predictors of drought and logistic regression analysis was conducted to investigate
the determinants of farmers’ commitment to use drought mitigation measures using the package
‘RandomForest’ and the function ‘glm’ of the statistical program R [21], respectively on the database.
Improved knowledge on the occurrence of drought and the enabling environment for mitigation that
is generated in this study will support governments, donors and agricultural development projects to
better target drought-prone areas and support farmers to implement appropriate measures.



Sustainability 2019, 11, 79 3 of 17

2. Materials and Methods

2.1. Study Zone

The study was conducted in 300 inland valleys in Nigeria, Burkina Faso and Mali (Figure 1).
The period 1995–2014 was used for reporting average rainfall, temperature and evapotranspiration in
the study area. In Nigeria, the study area covered the states of Kaduna and Niger which are located
between 5◦5′ E and 8◦7′ E longitude and 8◦5′ N and 11◦5′ N latitude (Figure 1). These states are
largely located in the Guinea Savanna agro-ecological zone. Average annual rainfall varies from 900 to
1300 mm and occurs mainly during the rainy season from May to October. Average annual potential
evapotranspiration ranged from 2194 to 2822 mm year−1 and mean annual air temperatures vary
between 26 and 30 ◦C. In Burkina Faso, the study area is located between 0◦9′ E and 5◦0′ W longitude
and 9◦5′ N and 13◦5′ N latitude (Figure 1). This area is characterized by a sub-humid dry to semi-arid
climate following the gradient South-North. Average annual rainfall varies between 700 and 1000 mm
occurring during May to October. Average annual potential evapotranspiration ranges from 1600 to
2080 mm year−1 and average annual air temperatures vary from 28 to 30 ◦C [22]. In Mali, the study area
covered the region of Sikasso which is located between 4◦5′ W and 8◦8′ W longitude and 10◦1′ N and
12◦8′ N latitude (Figure 1). The climate in this region is typical of the sudano-sahelian zone. Average
annual rainfall varies between 900 and 1300 mm. The rainy season extends from May to October
and the seasonal average air temperature is 29 ◦C. The average annual potential evapotranspiration
amounts to approximately 2060 mm year−1. In the study area, crop production is unfeasible during
the dry season (November–April) without irrigation [23].
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Figure 1. Location of the investigated inland valleys in Nigeria, Burkina Faso and Mali (see Figure S1).

2.2. Inland Valleys Surveys

Inland valleys surveys were conducted in February 2013 to select the study area and during the
rainy season (May–October) of 2013 to locate the inland valleys and to collect data using questionnaires
and informal interviews. Topographic maps and high resolution satellite imagery provided in Google
Earth were used to identify inland valleys following the approach described by Reference [24].
Digital elevation maps and field surveys were used to obtain data on inland valleys morphology
following the approach of Reference [25]. The surveyed inland valleys were delineated using a global
positioning system device and mapped using ArcGIS 10.2 (Environmental Systems Research Institute).

Bio-physical and socio-economic characteristics of inland valleys as well as farmers’ experience
with drought and mitigation measures were assessed based on questionnaires and informal interviews
conducted in the farmers’ native languages. The information was collected from small groups of 5 to
20 farmers for each inland valley. In total, 41 variables (nominal, ordinal and numerical) were collected
during the inland valleys surveys and were divided into six themes: farmers’ experience with drought,
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mitigation measures, management practices, physical characteristics, hydrology and socio-economic
characteristics of inland valleys (Table 1).

Table 1. Description of themes and variables included in the inland valley database (cf. Table S1).

Variables Scale Type Scale Class Source of Data

Theme 1: Farmers’ experience with drought in the last 10 years
Occurrence of drought nominal Yes, no Survey

Frequency of drought events ordinal
Every year, every 2 or 3 years,
every 4 or 5 years, more than

every 5 years
Survey

Frequency of entire rice harvest loss ordinal All years, in 1 to 2 years, in 3 to
6 years, in 7 to 9 years, never Survey

Frequency of rice yield reduction ordinal All years, in 1 to 2 years, in 3 to
6 years, in 7 to 9 years, never Survey

Theme 2: Mitigation measures of rice farmers against drought
Use of drought resistant varieties nominal Yes, no Survey

Change in cultivation areas nominal Yes, no Survey
Investment in irrigation facilities nominal Yes, no Survey

Change in cropping seasons nominal Yes, no Survey
Others nominal Yes, no Survey

Theme 3: Physical characteristics
Inland valley size (ha) numeric - SRTM a

Average width (m) numeric - SRTM
Cross-sectional shape nominal Convex, concave, flat Survey

Particle size distribution (%) numeric - AfSIS b

Soil organic carbon (%) numeric - AfSIS
Daily minimum temperature from

1995 to 2014 numeric - POWER database

Daily maximum temperature from
1995 to 2014 numeric - POWER database

Daily rainfall from 1995 to 2014 numeric - POWER database
Average annual standardized

precipitation evapotranspiration
index

numeric - Authors computation

Duration of drought numeric - Authors computation
Frequency of drought numeric - Authors computation

Theme 4: Hydrology
Water source nominal Spring, river, other Survey

Flooding regime ordinal Sporadic, seasonal, permanent Survey
Duration of flooding (week) numeric - Survey

Duration of emerging water table
(week) numeric - Survey

Number of weeks when groundwater
table is within 50 cm from the soil

surface (week)
numeric - Survey

Drainage/irrigation infrastructure nominal No drainage, canals for drainage
and/or irrigation Survey

Flow accumulation numeric - SRTM
Theme 5: Management practices

Rice varieties nominal Local, improved, or both Survey

Soil fertility management nominal No fertilizer, mineral, or both
(mineral +organic fertilizers) Survey

Bunds nominal No bunding, simple bunding,
contour bunds Survey
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Table 1. Cont.

Variables Scale Type Scale Class Source of Data

Theme 6: Socio-economic characteristics
Distance to road and distance to

market (km) numeric - Survey

Quality of road to market nominal No road, path, dirt road, paved
road Survey

Land ownership nominal Individual, family, village, state Survey
Origin of inland valley users nominal Native, migrant Survey

Percentage of women in the inland
valleys (%) numeric - Survey

Mode of exploitation nominal Individual, collective, both Survey
Source of seeds and other agricultural

inputs ordinal In the village, at <25 km, 25–50
km, 51–100 km, >100 km Survey

Support from institution nominal Yes, no Survey
Affiliation with farmers’ organization nominal Yes, no Survey

Role of rice farming in production
system nominal Main activity, secondary major

activity, marginal activity Survey

a Shuttle Radar Topography Mission (SRTM), URL: http://srtm.csi.org. b Africa Soil Information Service (AfSIS).

2.3. Spatial Datasets

The spatial variables concerned soil’s physical properties (clay, silt, sand and organic carbon
contents), flow accumulation, daily rainfall and minimum and maximum air temperature data.
Soil properties in the first 30 cm of soil depth were obtained from the Africa Soil Information Service
(AfSIS) project website [26]. High resolution (30 m) Shuttle Radar Topography Mission (SRTM)
was used to derive flow accumulation. Flow accumulation represents the number of cells that flow
into the downslope cell of the outlet of inland valley. Here, an inland valley was subdivided into
grid-cells. Flow accumulation was calculated using the Flow Accumulation function in ArcGIS. Flow
accumulation was used as a proxy for the volume of water that can be accumulated in inland valleys.
Gridded daily rainfall and temperature data covering the period 1995–2014 obtained from the POWER
database [27] were used to calculate the standardized precipitation evapotranspiration index (SPEI),
a drought index which includes a comprehensive climatic water balance [28]. Detailed information
on the calculation of the SPEI can be found in Reference [29]. Table 2 describes the categorization of
dryness/wetness grade by the SPEI.

Table 2. Categorization of dryness/wetness grade by the SPEI.

Categories SPEI Values

Extreme dryness Less than −2
Severe dryness −1.99 to −1.5

Moderate dryness −1.49 to −1.0
Near normal −1.0 to 1.0

Moderate wetness 1.0 to 1.49
Severe wetness 1.50 to 1.99

Extremely wetness More than 2

Source: [30].

2.4. Data Analysis

Data analysis consisted of three steps. Firstly, drought trends, duration and frequency were
analyzed using the standardized precipitation evapotranspiration index to assess the spatial variation
of drought severity in the study area. Secondly, a binary tree-based machine-learning method,
Random Forest (RF), was used to determine the predictors of drought occurrence in inland valleys
rice-based production systems. Thirdly, the logistic regression model was applied to investigate

http://srtm.csi.org
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the determinants of farmers’ commitment to mitigate the drought affecting rice production in their
inland valleys.

2.4.1. Drought Trends, Duration and Frequency

Drought trends, duration and frequency in the study area were assessed following the procedures
described by Reference [30]. The SPEI was calculated for a 12-month timescale for the analysis of
drought trends and a 3-month time scale for the analysis of drought duration and frequency by using
monthly precipitation and air temperature data from 1995 to 2014 in 300 inland valleys. The SPEI
at 3-month and 12-month timescales were used to explore drought variation at inter-seasonal and
inter-annual timescales, respectively. The non-parametric Mann-Kendall (MK) test was applied for
the existence of a possible trend of annual dry conditions based on the calculated SPEI. Trends in
annual precipitation, temperature and their relationships with trends in annual SPEI were examined
afterwards. Since no serial correlation was identified in the temporal data series, the results of the
Mann-Kendall test were judged to be sufficiently robust to depict possible trends in the annual dry
conditions. Besides, the spatial variation of drought duration (longest period of consecutive months
with SPEI <−1) and drought frequency (frequency of 3-month SPEI < −1) over the period 1995–2014
were examined.

2.4.2. Random Forest Analysis for Identification of Drought Predictors

Farmers’ experience of drought affecting rice production in the inland valley was the dependent
variable. A binary tree-based machine-learning method, Random Forest [31], was used to select among
21 variables of the themes: physical characteristics, hydrological characteristics and management
practices (Table 1), those of which can predict the occurrence of drought in an inland valley rice
based-production system. Random Forest is known as a variable selection method based on the
algorithmic approach which can be applied when many potential predictors exist with excellent
predictive performance compared to other methods [32]. The principle of random forest (RF) is to
randomly choose a subset of explanatory variables at each node after combining many binary decision
trees built using several bootstrap samples. The first step of the method is the building of the tree
with the random selection, and with replacement of a bootstrap sample of observations (called the
“in-bag”). The set of observations which are not used for building the tree is referred to as ‘Out-Of-Bag’
data (OOB) which is used to estimate the prediction error. The second step involves the identification
of important variables (m) highly related to the response variable. During the third step, a tree is built
based on the in-bag data and m variables selected. This third step is repeated n times, to generate n
tree bootstrap samples and trees.

Two important variables are needed for generating the RF model: the number of trees desired,
(k), and the number of prediction variables (m) [33]. Breiman [31] suggested that the generalization
error converges when increasing the number of trees desired. On the other hand, the model’s accuracy
increases when reducing the number of prediction variables due to reduced correlation between
trees. Therefore, optimizing the parameters k and m is required to minimize the error. In this study,
the statistical program R [21] along with the package ‘randomForest’ with the following settings
(k = 600, m = 5) was used. The number of trees was set at 600, identified as the threshold above which
an increase in the number of trees brought no significant performance gain (Figure 2). The number of
prediction variables was set at five, being the lowest value of m that achieved the highest performance
gain (Figure 2). The importance of the contribution of each variable to the RF model was evaluated
with the Mean Decreased Accuracy (MDA) and Gini index. The MDA of a variable indicates the
number of observations that will be misclassified if the variable is removed from the model. The Gini
index measures the average gain of purity by splits of a given variable. For both statistics (MDA and
Gini index), a variable with a larger importance score relative to other variables indicates that the
variable is important to the dependent variable. Rather than evaluate a relationship between potential
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predictors and the dependent variable, MDA and Gini index are robust statistics related to a variable
importance in the RF’s simulation of the natural mechanism behind the data [33].
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2.4.3. Logistic Regression for Assessing Determinants of Rice Farmers Commitment to Use Drought
Mitigation Measures

The logistic model was applied to investigate the determinants of inland valley rice farmers’
commitment to use drought mitigation measures. Logistic regression is used when the dependent
variable is dichotomous and the independent variables are of any type. Logistic regression applies the
Maximum Likelihood Estimation (MLE) after transforming the dependent dichotomy variable (use of
measures to mitigate drought) into a logit variable, that is [34]:

ln
(

P
1− P

)
= a + bX (1)

where P is the probability of the event occurrence, X are independent variables, ln is the natural
logarithm, and a and b are the parameters to be estimated by the model.

The logistic prediction equation is:

Y = b0 + b1X1 + b2X2 + . . . + bnXn (2)

where b0 is a constant term, X1, X2, . . . , Xn are independent variables likely to explain farmers’
commitment to mitigate drought, and b1, b2, . . . , bn are the coefficients to be estimated. The dependent
variable (Y) was defined as a set of strategies with multiple modalities (Yi). Each modality represented a
farmer’s adaptation decision and was considered as binary variable. Hence, for k adaptation decisions,
the Equation (2) became: 

Y1 = b1 + bi1X1 + bi2X2 + . . . + binXn

Y2 = b2 + bj1X1 + bj2X2 + . . . + bjnXn

.

.

.
Yk = bk + bk1X1 + bk2X2 + . . . + bknXn

(3)

For each adaptation decision, Yi = {1 if that adaptation decision is used by farmers and
0 otherwise}.
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The generalized linear model (glm) function was used in R software to compute logistic regression.

3. Results

3.1. Spatial Variation of Drought Severity

Figure 3 presents the spatial distribution of the significant Mann-Kendall trend statistic at 90%
confidence level for annual SPEI, precipitation and temperature. The annual SPEI and precipitation
presented notable spatial variations patterns with a significant drying trend at latitude below 11◦30′,
whilst a significant upward wetting was discerned at latitude above 11◦30′ (Figure 3). Conversely,
the annual temperature presented a significant upward trend at all the investigated inland valleys.
The annual SPEI and the annual precipitation both exhibited the most significant drying areas,
which demonstrated that the drying trend discerned at a latitude below 11◦30′ can be explained
by the significant reduction in rainfall.

Sustainability 2018, 10, x FOR PEER REVIEW  8 of 18 

{
 
 

 
 
𝑌1 = 𝑏1 + 𝑏𝑖1𝑋1  + 𝑏𝑖2𝑋2  + ⋯+ 𝑏𝑖𝑛𝑋𝑛
𝑌2 = 𝑏2 + 𝑏𝑗1𝑋1  + 𝑏𝑗2𝑋2  + ⋯+ 𝑏𝑗𝑛𝑋𝑛

.

.

.
𝑌𝑘 = 𝑏𝑘 + 𝑏𝑘1𝑋1  + 𝑏𝑘2𝑋2  + ⋯+ 𝑏𝑘𝑛𝑋𝑛

 (3) 

For each adaptation decision, Yi = {1 if that adaptation decision is used by farmers and 0 

otherwise}. 

The generalized linear model (glm) function was used in R software to compute logistic 

regression. 

3. Results 

3.1. Spatial Variation of Drought Severity 

Figure 3 presents the spatial distribution of the significant Mann-Kendall trend statistic at 90% 

confidence level for annual SPEI, precipitation and temperature. The annual SPEI and precipitation 

presented notable spatial variations patterns with a significant drying trend at latitude below 11°30′, 

whilst a significant upward wetting was discerned at latitude above 11°30′ (Figure 3). Conversely, 

the annual temperature presented a significant upward trend at all the investigated inland valleys. 

The annual SPEI and the annual precipitation both exhibited the most significant drying areas, which 

demonstrated that the drying trend discerned at a latitude below 11°30′ can be explained by the 

significant reduction in rainfall. 

 

Figure 3. Trend variations of (a) annual SPEI, (b) annual rainfall and (c) annual temperature in the 

study area (see Figure S3). 

The longest duration and the highest frequency of drought were detected in Niger and Kaduna 

states and in western Burkina Faso with more than 4 months and 40%, respectively (Figure 4). This 

Figure 3. Trend variations of (a) annual SPEI, (b) annual rainfall and (c) annual temperature in the
study area (see Figure S3).

The longest duration and the highest frequency of drought were detected in Niger and Kaduna
states and in western Burkina Faso with more than 4 months and 40%, respectively (Figure 4).
This reveals that droughts were more severe in Niger and Kaduna states and western Burkina Faso
during the period 1995–2014.
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Figure 4. Spatial distribution of (a) drought duration and (b) drought frequency in the study area
during the period 1995–2014 (see Figure S4).

3.2. Predictors of Drought Occurrence in Inland Valley Rice-Based Production System

The variables with higher contribution to the RF model were average annual SPEI, duration
of water flow, duration of dry period, duration of groundwater and average annual temperature
(Figure 5).
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Figure 5. Variable importance contribution in terms of Mean Decrease in Accuracy and Gini Index
(see Figure S5). Spei_Av: average annual SPEI, Dur_wat: duration of water flow, Dur_d: duration of
dry period, Dur_sh: duration of groundwater, Temp_Av: average annual temperature, Bund: bund
around rice field, Freq: frequency of dry period, Sand: percentage of sand in the first 30 cm of soil,
Rainy_Av: average annual rainfall, Dur_emerg: duration of emerging water table, Clay: percentage of
clay in the first 30 cm of soil, Fac: flow accumulation, Carbon: Carbon content in the first 30 cm of soil.
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Figure 6 displays the importance of the contribution of each variable to the RF model accuracy of
the specific country. The same behavior regarding the overall contribution was detected except for the
variable ‘bund’ in Burkina Faso.
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Figure 6. Variable importance contribution as measured by the Mean Decrease in Accuracy in
(a) Burkina-Faso, (b) Mali and (c) Nigeria (see Figure S6). Spei_Av: average annual SPEI, Dur_wat:
duration of water flow, Dur_d: duration of dry period, Dur_sh: duration of groundwater, Temp_Av:
average annual temperature, Bund: bund around rice field, Freq: frequency of dry period, Sand:
percentage of sand in the first 30 cm of soil, Rainy_Av: average annual rainfall, Dur_emerg: duration
of emerging water table, Clay: percentage of clay in the first 30 cm of soil, Fac: flow accumulation,
Carbon: Carbon content in the first 30 cm of soil.

The classification tree of the RF model partitioned the sample of inland valleys into seven clusters
groups (Table 3). Drought-prone inland valleys were predominant in clusters 3, 6 and 7 while inland
valleys not affected by drought were predominant in clusters 1, 2, 4 and 5. The key variables that
significantly differentiated the clusters groups 3, 6 and 7 on one hand and the clusters groups 1,
2, 4 and 5 on the other hand were average annual SPEI and duration of groundwater (Table 3).
Drought-prone inland valleys were characterized by average annual SPEI lower than −0.02 and
duration of groundwater shorter than 15 weeks.

3.3. Drought Mitigation Measures in Inland Valleys Rice-Based Production System

Three groups of measures were used by farmers to mitigate drought affecting inland valleys rice
fields. These embraced crop diversification, farming practices and land use measures. Mitigation
through crop diversification comprises the use of different crops, drought resistant and short duration
varieties. Mitigation through farming practices included micro-level irrigation, change in sowing
method, double sowing, change in planting dates, change in the doses of fertilizers and construction
of bunds around rice fields. Mitigation through land use included crops transfer from one production
site to another site and agroforestry.

The results of the multi logistic models indicated that land ownership and percentage of women
determined farmers’ commitment to use any mitigation measure against drought (Table 4). Role of rice
farming in the production system and affiliation with farmers’ organization determined the farmers’
commitment to use crop diversification to mitigate drought. Mitigation through farming practices
was dependent on the source of seeds, origin of inland valley users and affiliation with farmers
organization. Distance to the main road, role of rice in the production system and source of seeds were
the main factors affecting farmers commitment to use land use measures to mitigate drought (Table 4).
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Table 3. Characteristics of inland valleys (IV) clusters identified in the study area (cf. Table S3).

Cluster Average
Annual SPEI

Duration of Water
Flow (Week)

Average Annual
Temperature (◦C) Bunding Duration of Shallow

Aquifer (Week)
Duration of Dry
Period (Month)

Percentage of IV
Affected by
Drought (%)

Cluster 1 0.06 ± 0.00 38 ± 2 28.5 ± 0.1 Bund (74%) 19 ± 1 6 ± 0.1 0
Cluster 2 0.03 ± 0.01 52 ± 0 26.6 ± 0.1 Bund (11%) 19 ± 3 6 ± 0.3 11
Cluster 3 −0.02 ± 0.01 52 ± 0 28.3 ± 0.1 Bund (100%) 12 ± 3 6 ± 0.6 78
Cluster 4 0.06 ± 0.01 15 ± 1 28.8 ± 0.1 Bund (100%) 18 ± 3 6 ± 0.4 19
Cluster 5 0.03 ± 0.00 9 ± 1 29.2 ± 0.1 Bund (29%) 17 ± 6 6 ± 0.6 14
Cluster 6 −0.03 ± 0.00 19 ± 2 28.5 ± 0.1 Bund (100%) 12 ± 2 7 ± 0.5 90
Cluster 7 −0.04 ± 0.01 21 ± 1 28.3 ± 0.1 Bund (0%) 11 ± 1 7 ± 0.3 92

SED 0.02 3.5 0.18 - 8 1.1 -
p value <0.001 <0.001 <0.001 - 0.003 0.02 -

IV: Inland valley; SED: Standard error of the difference.
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Table 4. Logistic regression estimates of mitigation measures to drought model (cf. Table S4).

Variables
Crop Diversification Farming Practices Land Use Measures

Coefficient P > z Coefficient P > z Coefficient P > z

Distance to road 0.024 (0.08) 0.770 0.114 (0.09) 0.236 0.193 (0.09) ** 0.042
Percentage of women 0.005 (0.008) * 0.051 0.006 (0.01) * 0.067 0.017 (0.01) ** 0.044
Mode of exploitation 0.534 (0.56) 0.344 0.778 (0.58) 0.179 0.780 (0.57) 0.168

Role of rice farming in production system 1.694 (0.60) *** 0.005 0.394 (0.55) 0.477 0.990 (0.56) * 0.076
Distance from IV to market −0.033 (0.09) 0.699 −0.081 (0.09) 0.382 −0.029 (0.08) 0.729

Support from institution −0.290 (0.62) 0.640 0.177 (0.61) 0.771 0.993 (0.64) 0.121
Source of seed −0.695 (2.09) 0.740 −14.191 (0.67) *** 0.000 14.034 (0.77) *** 0.000

Source of other input 0.364 (1.28) 0.776 −0.308 (1.10) 0.779 1.420 (1.36) 0.297
Origin of IV users 0.571 (0.62) 0.358 1.390 (0.66) ** 0.034 −0.117 (0.66) 0.860
Land ownership 0.026 (0.61) * 0.070 0.813 (0.62) * 0.093 0.768 (0.63) ** 0.020

Affiliation with farmers’ organization 1.327 (0.59) ** 0.020 1.243 (0.57) ** 0.028 0.030 (0.54) 0.960
Log likelihood = −112.02

LR chi2 = 134.60
Prob > chi2 = 0.04 **

Log likelihood = −88.12
LR chi2 = 13.01

Prob > chi2 = 0.05 **

Log likelihood = −63.59
LR chi2 = −20.84

Prob > chi2 = 0.08 *

NB: the values in bracket are the standard-errors. * Significant at 10% (p ≤ 0.10). ** Significant at 5% (p ≤ 0.05). *** Significant at 1% (p ≤ 0.01). IV: Inland valley.
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4. Discussion

We used both biophysical and socio-economic data, farmers’ community surveys and secondary
data from remote sensing on soil characteristics, and water demand to identify the determinants of
drought and the factors affecting farmers’ mitigation measures in inland valley rice-based production
systems in the Sudan-Sahel Zone. Overall, average annual SPEI was one of the most important
predictors, suggesting that increase in evapotranspiration coupled with precipitation deficit determined
drought occurrence in inland valleys rice fields. These results concur well with References [35,36] who
applied regression tree and correlation approaches to link drought occurrence in agricultural fields
with SPEI.

The annual SPEI and rainfall presented remarkable similar patterns with an increase into wetter
conditions above the latitude 11◦30′ while a decrease into drier conditions was observed below the
latitude 11◦30′ (Figure 1), suggesting a rewetting of the northern (Sahelian) part of the study area.
Rewetting of the Sahel was also detected by Reference [37] who argued that the increase in sea
surface temperature enhances local evaporation and the moisture content of the lower troposphere.
This additional moisture is advected southward across the eastern Sahara by the mean flow, leading to
enhanced low-level moisture convergence over the Sahel, which feeds enhanced rainfall. According
to Reference [38], the variation in sea surface temperature is mostly determined by the phase of the
Atlantic Multidecadal Oscillation (AMO) which is a large-scale pattern of variability connected to
the oceanic meridional overturning circulation [39]. The current increase in the Sahel rainfall was
explained by the change to a positive phase of the AMO due to a northward displacement of the Inter
Tropical Convergence Zone while the Sahel drought in the 1980s was attributed to the change to a
negative phase of the AMO [38].

In addition to the average annual SPEI, drought occurrence in inland valleys rice-based production
systems was determined by the duration of groundwater availability. Soils had limited effects on
differences in drought occurrence between the inland valley rice fields. Such a result was unexpected
since previous studies defined drought prone environments based on soil water holding capacity [16].
However, a low soil water holding capacity cannot be considered as a limiting factor in humid climates
or in areas with high groundwater levels. This was particularly the case for the sample of inland valleys
used in this study which was characterized by sandy clay loamy texture, low organic carbon content
and low water holding capacity, but exhibiting different susceptibilities to drought as a function of
climatic water balance and duration of groundwater availability. Therefore, drought studies in inland
valleys without climatic water balance and groundwater data may have very limited value.

The three most important predictors for the occurrence of drought in inland valleys rice-based
production systems were: average annual SPEI, duration of emerging water table and duration of dry
period in Burkina Faso; average annual SPEI, duration of dry period and frequency of dry period in
Mali; and duration of dry period, duration of surface water flow and average annual SPEI in Nigeria.
Across the three countries, average annual SPEI and the duration of the dry period were among
the three most relevant predictors for drought occurrence in inland valleys rice-based production
systems. Duration of emerging water table was highly important for inland valleys specifically located
in Burkina Faso. This could be attributed to spatial variability in inland valleys hydrogeology which
translated into variation in water table dynamics. Future studies should investigate the influence of
inland valleys hydrogeology on agricultural drought. In the states of Niger and Kaduna in Nigeria,
duration of surface water flow was a relevant predictor for drought occurrence in inland valleys
rice-based production systems. A longer duration of surface water flow is often associated with
a better opportunity for farmers to irrigate rice plants, thereby mitigating drought effects on rice
production similar to the findings of Reference [40] in northern Benin.

Numerous mitigation measures were used by farmers against drought in inland valley rice–based
production systems. They encompassed crops diversification, farming practices and land use measures.
Land ownership and the gender of farmers influenced farmers’ commitment to use any mitigation
measure against drought (Table 4). Farmers were not willing to implement any measure when
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their land was not secure or when they did not have full rights on the aforesaid land. Likewise,
following Reference [41], when property rights are not secure, there is a probability of expropriation
which acts as a disincentive to invest. Indeed, a farmer is more motivated to invest when he inherits
or purchases the land. However, he is less willing to invest in the land when he knows that the land
can be sold. Therefore, policies to secure property rights could promote farmers’ investment in labour,
input and other resources to mitigate drought and sustain productivity. Women were more likely to
use mitigation measures against drought than men. This could be explained by the fact that in the
study area, men were more interested in investing in cash crops such as cocoa, cotton and sesame
than in rice [42]. Women lacked land and capital to invest in cash crops [43] and focused on rice
production to improve the livelihood of their households. Recognizing the greater ability of women to
mitigate drought in inland valleys rice-based production systems than their male counterparts could be
particularly important in focusing on women’s association for advancing drought mitigation measures.

5. Conclusions

This study combined biophysical and socio-economic data, farmers’ community surveys and
secondary data from remote sensing on soil characteristics and water demand to examine the predictors
for the occurrence of droughts in inland valley rice-based production systems and enabling factors for
small scale farmers to mitigate its effects in three West African countries located in the Sudan-Sahel zone,
viz. Nigeria, Burkina-Faso and Mali. Average annual standardized precipitation evapotranspiration
index and duration of groundwater availability were the most important predictors for drought
occurrence in inland valleys rice-based production systems. Land ownership and gender influenced
the commitment of rice farmers to use any mitigation measure against drought. Drought studies
in inland valleys should include climatic water balance and groundwater data. Policies that secure
property rights and focus on women’s association would strengthen farmers’ resilience and advance
drought mitigation measures. Since high-resolution soil datasets were not available, differences in soil
properties between inland valleys might have not been properly captured in this study. Future research
may investigate the influence of different soil databases on modelling of drought occurrence in inland
valleys rice-based production systems.
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Figure S3 Man Kendall trend statistics, Figure S4 Drought duration and frequency, Figure S5 Mean Decrease in
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and variables, Table S3: Inland valleys characteristics, Table S4: Mitigation measures to drought. All data used in
this study have been made publicly available by [44].
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