
sustainability

Article

Priolog: Mining Important Logs via Temporal
Analysis and Prioritization

Byungchul Tak 1,* , Seorin Park 1 and Prabhakar Kudva 2

1 Department of Computer Science and Engineering, Kyungpook National University, 80 Daehakro, Bukgu,
Daegu 41566, Korea; befly098@knu.ac.kr

2 IBM TJ Watson Research Center, 1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA; kudva@us.ibm.com
* Correspondence: bctak@knu.ac.kr; Tel.: +82-53-950-7565

Received: 27 September 2019; Accepted: 6 November 2019; Published: 9 November 2019 ����������
�������

Abstract: Log analytics are a critical part of the operational management in today’s IT services.
However, the growing software complexity and volume of logs make it increasingly challenging to
mine useful insights from logs for problem diagnosis. In this paper, we propose a novel technique,
Priolog, that can narrow down the volume of logs into a small set of important and most relevant
logs. Priolog uses a combination of log template temporal analysis, log template frequency analysis,
and word frequency analysis, which complement each other to generate an accurately ranked list
of important logs. We have implemented this technique and applied to the problem diagnosis task
of the popular OpenStack platform. Our evaluation indicates that Priolog can effectively find the
important logs that hold direct hints to the failure cause in several scenarios. We demonstrate the
concepts, design, and evaluation results using actual logs.

Keywords: log analysis; problem diagnosis; temporal correlation; log template; hierarchical clustering

1. Introduction

As the scale of modern IT services grows with increasing diversity of component architectures
and behavioral patterns, the mission of seamless operation and efficient management becomes more
challenging. A primary technique of achieving such goals is through log analytics [1–6]. The logs,
generated from the system software, middleware, as well as applications, are the continuous stream of
textual information that encode internal states of running applications. They are typically found in
/var/log directory as text files in Linux, although locations are configurable. The capability to analyze
logs is indispensable for enterprise-grade IT service management today. The log messages can be used
as direct hints to the status or problems of services, or they can be viewed as a generic time-series
data to which to apply time-series analysis to learn interesting temporal patterns. Although the ability
to analyze the logs is critical to modern IT services, it is becoming significantly more challenging to
perform log analysis at scale such that it provides actionable insight. The foremost reason is the sheer
volume of log data. Software architecture paradigms such as containerization [7], micro-services [8,9],
and serverless computing [10] push towards larger number of smaller components each generating
their own log streams. Even with powerful search functions, text pattern matching, and aggregation
tools, system operators are quickly overwhelmed with the volume and complexity. In addition, with
the variety and diversity of cloud software, logs generated from the software and systems tend to have
very different formats, levels of detail, and content.

Various approaches have been proposed in this field for diagnosing service failures using logs.
A big proportion of research focuses on detecting anomalies or outliers from the logs [11–17] after a
failure occurs. Log analysis has been a good target for applying data mining and AI techniques [18].
Although a large number of techniques are available, they detect anomalies via post-mortem analysis

Sustainability 2019, 11, 6306; doi:10.3390/su11226306 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-8204-6816
http://dx.doi.org/10.3390/su11226306
http://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/11/22/6306?type=check_update&version=2

Sustainability 2019, 11, 6306 2 of 17

or provide only statistical analysis of the monitored data, rather than revealing the actual importance
and relevance in a cloud operational context. Therefore, it still remains a challenge for operators to be
able to quickly narrow down to the small set of relevant logs for closer inspection.

Furthermore, cloud environments involve changes to applications, system software, patches,
cluster provisioning, tenancy, and configuration. In a practical setting, even detected anomalies and
outliers, while statistically relevant as rare occurrences, may be normal in a complex cloud setting
based on the operational context (for example, uncommon but normal load changes, software updates
and patches, routine configuration modifications, system utilization changes). With increased use of
monitoring tools and analysis technologies to tame complexity, false alarms, and particularly excess
alarm fatigue for system administrators is increasing. This leads to system administrators being
overwhelmed by the number of anomalies reported and begin to ignore many of them. Further, the
diversity of log types adds another layer of challenge for developers. Therefore, it is key that such
analytics or AI identified statistical outliers be filtered or at least sorted in order of importance in
the cloud operational domain context. An ideal log based alerting system would not only look at
correlations between logs to predict outliers, but also temporal correlations between active system
operations (such as planned configuration changes, planned or unplanned maintenance schedules,
load patterns, daily health check runs, white lists, etc.). Incorporating and correlating this operational
domain knowledge with AI and analysis is the ideal goal.

To this end, we have designed and implemented a novel method, called Priolog, to narrow down
from volumes of raw logs to the small number of most relevant logs that are highly likely to carry the
key information to the root cause of the problem. At the high-level, Priolog applies three independent
analyses—log template temporal correlation analysis, log template frequency analysis and term
frequency analysis. In the first template temporal correlation analysis, we look at the correlations
among the time-series of log message types in order to find outlying log message types. A log message
type, or a log template, is a static string part of a log message within which contextual values or strings
are embedded to reflect the current execution state. We transform the raw log streams into n time-series,
one from each log template, and cluster them by strength of temporal correlations. Intuitively, log
message types that do not cluster well with others are a product of abnormal behaviors likely to
contain important information. Such log templates are given high scores in this analysis. In the second
template frequency analysis, we look at the frequency of the log messages per their corresponding
log message types and identify the ones that significantly departs from the normal level of frequencies.
If certain log templates show sudden change of frequencies, this may be indicative of unusual activities.
Investigation of them may be helpful to finding the root cause. Similarly a newly appearing log
template types (i.e., increase of frequency from 0 to some value) could carry a high-value information.
The third term frequency (TF) analysis tries to compute the scores of individual messages by taking
into account the rareness of individual words within the log messages. The score of a log message is
computed as a function of the rareness scores of individual component words. The reasoning behind
this is that certain words that are not seen in other messages could be a direct description of abnormal
conditions. This 3rd analysis step is intended to further narrow down the log templates having similar
score from previous two analyses into the ones of higher value. As a final output, Priolog generates a
ranked list of log message types sorted by the product of all three ranks from the analyses.

In order to verify the effectiveness of our methodology in real-world problems, we
have applied Priolog into the problem determination task for OpenStack [19], the open-source
IaaS (Infrastructure-as-a-Service) platform. We first created several failure scenarios of selected
operations—launch of oversized VM (Virtual Machine), VM launch failure due to core component
failure, and exceeding the VM volume attach limit. For each failure cases, Priolog was able to
successfully list highly relevant logs containing direct hints to the within top-ten of the ranked
list of log message types.

The objective of Priolog is to support the problem diagnosis and root cause analysis by bringing
upfront the most important logs to the user. In this regards, our contributions are: (i) Proposing novel

Sustainability 2019, 11, 6306 3 of 17

log selection algorithm made of three independent analyses, and (ii) demonstration of the feasibility
through evaluation of popular software. From (i) we learn that simple single criteria does not work
well in searching the most important logs, but the combination of multiple techniques must be applied
to obtain reasonable accuracy. From (ii) we find that application logs do contain a wealth of useful
information hidden in the logs. One requirement for Priolog to be effective was that the logs should
contain high-value information in the first place. Through evaluation, we verify that it is the case. This
motivates us to develop more advanced techniques to further identify relevant information from logs.

The rest of the paper is organized as follows. Section 2 provides details of architecture designs
and justifications. Section 3 presents our evaluation of the effectiveness of Priolog using OpenStack.
Related work is described in Section 4. Finally, we provide a concluding remark in Section 5.

2. Design of Priolog

The overall architecture of Priolog is shown in Figure 1. The input data to the Priolog are:

• Log template list: List of log templates prepared by the log template discovery algorithm.
The technique of log template discovery is out-of-scope. We assume this list is made available by
using existing techniques. Log template list is used in the (a) Log Template Time Series Analysis
and (b) Log Template Frequency Analysis stages.

• Normal logs: logs collected from normal and error-free execution of the application of interest.
This is used only for the (b) Log Template Frequency Analysis stage to build the log template
frequency vector.

• Target logs: logs collected from the application instance that experiences some problem. This is the
main input data from which we are trying to determine the root cause of the reported problem.

Log template list

Normal logs

L O G

Target logs

L O G
L O G

. . .

(1)

(2)

(3)

(n)

Time series of log templates Correlation Matrix

Hierarchical
Clustering

Cluster Dendrogram

L O G

(a) Template Temporal Correlation Analysis (TTCA)

(b) Template Frequency Analysis (TFA1)

(c) TF (Term Frequency) Analysis (TFA2)

Outlier
Ranked

List

Log template frequency vector of normal logs

Log template frequency vector of target logs

Ranked
List

Word
Tokenizer

Term Frequency
Builder

Term frequency
vector

Log Message
Scorer

Ranked
List

Final ranked
list of log
templates

Comparison of
frequency difference

WARN org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: Exit
code from container .* is : 143
WARN org.apache.hadoop.hdfs.server.common.Util: Path /home/bctak/hadoop\-
2.7.4/hdfs/name should be specified as a URI in configuration files. Please update
hdfs configuration.
ERROR org.apache.hadoop.hdfs.server.datanode.DirectoryScanner:
dfs.datanode.directoryscan.throttle.limit.ms.per.sec set to value below 1 ms/sec.
Assuming default value of 1000
WARN org.apache.hadoop.yarn.server.nodemanager.containermanager.AuxServices:
The Auxilurary Service named 'mapreduce_shuffle' in the configuration is for class
org.apache.hadoop.mapred.ShuffleHandler which has a name of 'httpshuffle'.
Because these are not the same tools trying to send ServiceData and read Service
Meta Data may have issues unless the refer to the name in the config.
WARN
org.apache.hadoop.yarn.server.nodemanager.containermanager.monitor.Containers
MonitorImpl: NodeManager configured with 8 G physical memory allocated to
containers, which is more than 80% of the total physical memory available \(7.8 G\).
Thrashing might happen.
WARN org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode: Checkpoint
done. New Image Size: .*
WARN org.apache.hadoop.hdfs.server.datanode.DataNode: Slow BlockReceiver write
data to disk .* \(threshold=300ms\)
WARN org.apache.hadoop.hdfs.server.namenode.FSNamesystem: Only one image
storage directory \(dfs.namenode.name.dir\) configured. Beware of data loss due to
lack of redundant storage directories!
WARN org.apache.hadoop.hdfs.server.namenode.FSNamesystem: Only one
namespace edits storage directory \(dfs.namenode.edits.dir\) configured. Beware of
data loss due to lack of redundant storage directories!
WARN
org.apache.hadoop.yarn.server.nodemanager.containermanager.ContainerManagerI
mpl: Event EventType: KILL_CONTAINER sent to absent container .*
WARN org.apache.hadoop.hdfs.server.datanode.DataNode:
DatanodeRegistration\(155.230.91.228:50010, datanodeUuid=f5b2f78b\-0b01\-
4ac6\-b97e\-231e7b222f86, infoPort=50075, infoSecurePort=0, ipcPort=50020,
storageInfo=lv=\-56;cid=CID\-67a9e234\-1cae\-4dcb\-8e24\-
0e8474f4b685;nsid=1045414110;c=0\):Failed to transfer BP\-185116165\-
155.230.91.226\-1512025890710:blk_1073742943_2121 to 155.230.91.229:50010 got

Figure 1. Priolog Architecture.

The log processing flow in the Priolog consists of three separate stages—(a) template temporal
correlation analysis (TTCA), (b) template frequency analysis (TFA1), and (c) term frequency analysis
(TFA2). Each analysis produces its own ranked list of log templates. Assume that there is a list of log
templates of size n for an application. Let us denote pi as the ith log template in this list. Also, the
function r() returns the rank of a log template in the ranked list. That is, rTTCA(pi) would be equals
to some integer which represents the rank in the list generated by the template temporal correlation
analysis (TTCA). New final score for a log template pi is currently generated by calculating the product
of all these three ranks.

Ri =
TTCA,TFA1,TFA2

∏
j

rj(pi) (1)

Sustainability 2019, 11, 6306 4 of 17

where TTCA, TFA1, TFA2 are the acronyms of three analyses. The final list of log templates is sorted
by this metric Ri. We have chosen the product instead of summation or average of ranks because we
wanted to penalize more if rank of any one of the three analyses results low. Summation or average of
ranks are unable to differentiate the log templates that ranks consistently from the ones that has high
variations across the analysis.

2.1. Template Temporal Correlation Analysis

The goal of this analysis is to identify a set of log templates that are unrelated to the major activities
in the application. We refer to such log templates as outliers. The reasoning behind this analysis is
as follows. All activities of applications can be categories as two kinds: (i) periodic and automatic
background jobs and (ii) predefined set of operations triggered by requests from other components or
users. Therefore, applications tend to generate log messages in some fixed and repeated sequences
depending on the combination of such activities. Viewing the logs along the time progression, logs will
be in a burst of several log messages as a consequence of executing certain tasks. If we aggregate
the logs and count the log templates, these co-occurring log templates will maintain certain ratios.
In addition, these logs from the log templates will be located within the time range. The overall logs
we see in the log files are the interleaving of many such activities.

For the problem diagnosis, we are interested in locating the logs of high importance that are not
part of any common activities within the applications. Thus, we want to filter out the group of logs
whose log templates have high temporal correlations within themselves. Such temporally correlated
logs are probably the output from normal and uninteresting activities. If the application encounters
error conditions or problems, it will start to execute error-handling logic. This will be reflected in the
logs as the a stream of log sequences that are previously unseen. This, in turn, implies that there will
be logs from new (or rare) log templates and they would not be temporally correlated to the existing
log templates or background jobs which were already going on within the application.

In order to take advantage of this principle in narrowing down the logs to the most important
ones, we first convert the logs as multiple time series data per each log template. Then, we try to
identify the log templates that have high temporal correlations and cluster them together. At the end
of this task, if there are some log templates that do not belong to any clusters, these would be treated
as outliers.

2.1.1. Log Templates

Log templates are a finite set of static string patterns that are used as a template from which
actual logs are produced by embedding values of state variables or numbers that represent the current
execution state of the application. They are usually the hard-coded part of the string within the log
print statements of the application code. Table 1 are some of the example log templates found in the
OpenStack platform. The variable parts within the log templates are expressed as wildcard following
the regular expression notation.

Although Table 1 lists only 10 log templates, the length of full list can be at the order of hundreds
or thousands. The frequency distribution of log templates exhibit power law pattern which implies
that majority of the log message are from small subset of the entire log templates. Also, there are large
number of log templates that are used in small numbers or infrequently. Some of the log templates are
not seen until unusual conditions arise during the application run.

Sustainability 2019, 11, 6306 5 of 17

Table 1. Example log templates of OpenStack. Variable parts are denoted by the wildcard character(*).

ID Log Template

1 DEBUG * [None * None None] Agent rpc_loop - iteration: * started {{(pid=*) rpc_loop *}}

2 DEBUG * [None * None None] Agent rpc_loop - iteration: * completed. Processed ports statistics:
{’regular’: {’updated’: * ’added’: * ’removed’: * Elapsed:* {{(pid=*) loop_count_and_wait *}}

3 DEBUG oslo_service.periodic_task [None * None None] Running periodic task * {{(pid=*)
run_periodic_tasks *}}

4 DEBUG neutron_lib.callbacks.manager [None * None None] Notify callbacks * for agent, after_update
{{(pid=*) _notify_loop *}}

5 DEBUG oslo_service.service [None * None None] * = * {{(pid=*) log_opt_values *}}

6 DEBUG nova.api.openstack.wsgi_app [-] * = * {{(pid=*) log_opt_values .*}}

7 ERROR cinder.service [-] Manager for service cinder-volume * is reporting problems, not sending heartbeat.
Service will appear "down".

8 DEBUG oslo_concurrency.lockutils [-] Lock "_check_child_processes" released by
"neutron.agent.linux.external_process._check_child_processes" :: held * {{(pid=*) inner *}}

9 AUDIT nova.compute.claims [* admin demo] instance: * Total Disk: * GB, used: * GB

10 DEBUG nova.openstack.common.rpc.amqp [* admin demo] MSG_ID is * multicall *

In this work we assume that we have already prepared such set of log templates for a given
application using existing techniques. Accurately discovering the log templates from the given set of
log data is an active field of research and there are several techniques available for us to use [20–23].
It is not the goal of this work to design new log template discovery techniques.

2.1.2. Log Template Time-Series Generation

As a first step of the temporal correlation analysis, Priolog takes in the target logs and convert
them into n time series assuming the length of log template list is n. For the time series generation,
we define a time window ρ and count the number of logs appearing within each window for each log
template. The window size is determined by dividing the duration of log start and end time by 50
for convenience. This factor can be adjusted as necessary to some other value. In our cases, it ranges
roughly from 10 to 100 ms.

The visualization of sample time series obtained from the actual logs is shown in Figure 2. Since
there are three axes (log template IDs, time, and log counts), we used a heat-map style for the log
count quantity. Each small square indicates the presence of logs and the color intensity is the relative
density. If the color is stronger toward red, it implies there are large number of logs within that time
window. The log template ID is roughly sorted in a way that smaller ID is assigned to more frequently
used log templates. The log template ID 0 is a special template where unclassified logs are assigned.
Visualization reveals that there are several group of log templates that has temporal locality. As the log
template ID increases (i.e., to the right side of the figure), the log counts become scarce and most of the
time window is blank.

Sustainability 2019, 11, 6306 6 of 17

0 1 2 …18 … 36 … 47 … 56 … 950

Ti
m

e
d

ir
ec

ti
o

n
Log Template ID numbers

Figure 2. Heatmap of example time series of log templates.

2.1.3. Correlation Matrix Construction

For all pairs of time series derived from the log template counts, we calculate the correlation
coefficients and construct n× n correlation matrix. In computing the correlation we apply the Pearson
correlation coefficient metric which is defined as the covariance of two time series data divided by the
product of two standard deviations. The value closer to 1 indicates stronger correlation.

We perform this step in order to initialize the distances between log template time series for the
following hierarchical clustering step. As the hierarchical clustering progresses, this correlation matrix
will have new time series added and the correlation coefficients calculated as needed. More details are
explained in the following subsection where hierarchical clustering step is explained.

Intuitively, strong correlation of log template time series is interpreted as coming from the
same system activities. Certain tasks of applications tend to generate logs only from certain subset
of log templates since the application logic will execute identical log print statements for a given
task although there may be minor non-deterministic variations. This behavior will, in turn, generate
temporally correlated series of log template counts which we aim to discover by clustering log
templates time series.

2.1.4. Hierarchical Clustering

Using the initial correlation coefficient matrix from the previous step, Priolog now performs a
hierarchical clustering. Using the bottom-up fashion, we repeatedly cluster two log template time
series τi and τj that have highest correlation coefficient among the current set of clusters. These two log
template time series are, then, merged into one denser time series τk and put back into the clustering.
New entries are added to the correlation coefficient matrix. At the same time, τi and τj are removed
from the matrix making the overall size of the matrix shrink by 1 in both dimensions. The Pearson
correlation is calculated to populate this new entry in the matrix. Then, next highest correlation values
are sought among the remaining log templates and the merged groups. This process of merging repeats
until we end up with one final cluster. These processes are described in Algorithm 1. Figure 3a shows
the result of hierarchical clustering as a dendrogram.

Sustainability 2019, 11, 6306 7 of 17

Algorithm 1: Hierarchical clustering in Priolog.

1 Input:Correlation coefficient matrix C;
2 Output:Dendrogram D;
3 D = {}; /* empty dendrogram */
4 num_time_series=dimension_of(C);
5 while num_time_series>2 do
6 τ1,τ2=PickTwoHighestCorrelation(C);
7 τ3 = MergeTimeSeries(τ1,τ2);
8 C = RemoveTimeSeries(C,τ1);
9 C = RemoveTimeSeries(C,τ2);

10 C = AddTimeSeries(C,τ3);
11 UpdateMatrix(C);
12 AddNewEdge(D,τ1,τ2)
13 UpdateCluster(D,τ3)
14 num_time_series–;
15 end

7
8

1
2

5
5

2
2

8
1

7
6

1
0

2
1

0
3

. . . 1 4
0

3
8

4
2 Time series ID

(a) Hierarchical clustering dendrogram.

7
8

1
4

9
2

1
5 3

3
6

9
6

7
4 . . . Time series ID

(b) Sorted by vertical line length: duration of time the cluster remained unclustered.

Figure 3. Hierarchical clustering performed by Priolog.

2.1.5. Outlier Identification

The construction of the hierarchical clustering structure does not yet provide us with the
quantification of a logs’ importance. In order to obtain this, we use the time duration of the time
series that remained un-merged for the longest time. If a log template time series has a low correlation
with any other log templates, it will remain un-selected by the clustering algorithm for a long time
and be merged towards the end of the clustering process. This implies that such log templates are the
product of some unusually outlying activity in the system. If some logs are generated from natural
normal behaviors, they would show higher correlation with several other co-occurring log templates.
Note that the outlier can be a single log template or a group of small log templates that are merged early
on during the clustering and remained unmerged for a long time. Our goal is to find such outlying log
template (groups) and highlight them as important or ‘requiring attention’.

Sustainability 2019, 11, 6306 8 of 17

Figure 3b is the sorted list of vertical edges from (a). The left-most vertical line comes from the
time series 781 in the figure and this is the most uncorrelated time series (and the log templates that
comprises this time series). Note that the time series could be the one created by merging several
log templates together during the clustering process. In such case, it means that those group of log
templates are together part of the same activity, but they, as a group, is distinctly unique compared to
other activities. The final rank of log templates as the result of the analysis is assigned using this sorted
list of vertical lines.

2.2. Template Frequency Analysis

The approach of this analysis is to score the log templates based on the observed frequencies.
The assumption behind this analysis is that, if the number of logs of certain log templates shows
higher frequency than normal, this log is probably important. This idea is first proposed in the work
by Sabato et al. [24]. The key to the successful application of this idea is how to define the ‘normal’
level of frequency for each log templates. We adopt this method in Priolog as one of the analysis.

2.2.1. Frequency Vector Construction

When it was first proposed, Sabato et al. [24] assumed an environment where there were large
number of computers working on heterogeneous tasks. Thus, one of the focus of this work was to
apply the clustering to build accurate cluster of computers performing similar tasks. The ‘normality’
is, then, defined per these clusters. However, in our settings, we do not assume the existence of large
number of servers. Instead, we assume to maintain a staging environment identical (or similar) to
the production settings and we perform planned experiments to collect the logs that represent the
‘normal’ runs. Nevertheless the output of this is the same—probability vector P = {p1, p2, ..., pn}.
The probability vector P is of length n, the number of log templates, and it holds the probability of
corresponding log templates to appear in the logs.

Given the target logs, Priolog builds the frequency vector F similar to the probability vector.
This frequency vector is normalized so that the sum of all the elements would be 1 and then compared
with P. Then, we compute the ratio between Fi and Pi as |Fi/Pi| for each log template i. These ratios
of log templates are used to rank them. If a log template is previously unknown, it will not be in Pi.
In such case, the ratio will be infinity and that log template will have the rank 1 since newly appearing
logs are likely to be important.

2.3. Term Frequency (TF) Analysis

The first two analyses are effective for ruling out unimportant logs to reduce the log volumes.
Unfortunately, they are not fit for pinpointing the logs that contain high-value information because
of these reasons. For the template temporal correlation analysis (TTCA), in order for this analysis to
work well, the time series data must be ‘rich’ with data. However, for large number of unpopular
log templates, their time series is mostly filled with zeros and very occasionally (or never) non-zeros.
Such times series does not generate meaningful correlation coefficients. This implies that the clustering
by the temporal information will only be able to identify clusters that are uninteresting to us that
should be eliminated. Most of the times, high-value logs are usually from the rarely occurring log
templates. For the template frequency analysis (TFA1), the problem with this is that the increase of log
template frequency does not strongly indicate that such logs are more important. Rather, increased log
instances can be considered as less valuable because it is more common. Another problem is that there
can be excessively large number of log templates that suddenly appear which were non-existing in the
normal case. We have experienced this problem frequently and were unable to further narrow down
the logs to the most relevant ones.

The third term frequency analysis (TFA2) is introduced to address these shortcomings of other
analyses. The hypothesis is that, among the candidate logs, if any one of them contains the words that
do not appear often in other log templates, then probably such words are important. It may be the

Sustainability 2019, 11, 6306 9 of 17

words that directly describe the abnormal condition because the programmer may have added log
print statements in the code in such a way that current conditions are revealed. Based on this idea, we
perform a word-level frequency analysis as the third analysis.

A log template contains many tokens that include numbers, special characters, and punctuation
characters. In this analysis, we mean by words only those tokens that contain alphabets and underscore.
The score for the rank, ri, is calculated as Equation (2). Let us use Si to denote the total word set in
the ith log template. The total number of effective words in the ith log template is |Si|. Let fw be the
frequency of word w in the entire log template set. Then, fw/∑w′ fw′ becomes the overall proportion at
the global level of w in the log template set. In words, we calculate the average of proportions of all the
words within a given log template and use them as the score.

ri =
1
|Si| ∑

j∈Si

(
fwj

∑w′ fw′
) (2)

Final ranked list of this analysis is generated by sorting the log templates by this ri scores.

3. Evaluation

In order to verify the effectiveness, we have applied Priolog to the OpenStack platform [19].
OpenStack is a popular open-source Infrastructure-as-a-Service (IaaS) platform that was launched in
2010. Since then it has grown to contain more than 30 component groups each comprising several
sub-components. We have created following four failure scenarios in the OpenStack Stein release,
installed with DevStack.

(1) Component (nova-compute) failure: In this scenario, we simulate the component failure by
killing one of the core components, nova-compute. Then, we try to launch a VM.

(2) Component (neutron-dhcp-agent) failure: Similar to the first case, we kill the
neutron-dhcp-agent component and observe the logs.

(3) Oversized VM launch failure due to insufficient resource: In this scenario, we try to create a VM
instance that requires too much memory so that current system cannot handle it.

(4) Volume max limit exceeded: OpenStack VM has default volume count limit set to 10. We try to
add the 11th volume and observe the failure.

Each case has been repeated at least twice (with case (3) done three times) giving us total of
nine test results. Out of these nine cases, we present detailed results of three cases in the following
subsections. We also provide summary of all nine experiments in Section 3.4.

3.1. Component Failure

In this scenario, we intentionally terminated the nova-compute component of the OpenStack. The
nova-compute is responsible for performing the actual tasks of launching a requested VM. It simulates
the case where one of the core OpenStack component silently fails and the admin has no clue as to
why VM suddenly fails to launch. When we press the Launch button on the Horizon UI, it runs for a
while and produces a message that does not related to the failure of the nova-compute component.

Figure 4 presents the analyses results of Priolog. Figure 4a–c are the ranking results of the TTCA,
TFA1, and TFA2, respectively. As a final rank, we see that the log template number 951 is ranked at
No. 1. This log template 951 contains decisive information: “Seems service nova-compute on host * is
down.” This log template is consistently ranked high in the TTCA and TFA1. The rank is somewhat
low in the TFA2, but the overall rank obtained by product of all three ranks came out as No. 1. This
shows that Priolog was able to find the key information from the huge volume of logs successfully.

Sustainability 2019, 11, 6306 10 of 17

Template Temporal Correlation Analysis (Hierarchical Clustering)

Rank Tmpl #
Cluster
Time

Log Template Message

#1 21 188
DEBUG neutron.db.agents_db \[None .* None None\] Agent healthcheck: found .* active age
nts {{\(pid=.*\) agent_health_check .*}}

#2 4 186
DEBUG oslo_service.periodic_task \[None .* None None\] Running periodic task .* {{\(pid=.*
\) run_periodic_tasks .*

#3 954 184

0

DEBUG .* \[None .* None None\] ofctl request version=.*,msg_type=.*,msg_len=.*,xi
d=.*,OFPFlowStatsRequest\(cookie=.*,cookie_mask=.*,flags=.*,match=.*\(oxm_fields
={.*}\),out_group=.*,out_port=.*,table_id=.*,type=.*\) result \[OFPFlowStatsReply\(b
ody=\[OFPFlowStats\(byte_count=.*,cookie=.*,duration_nsec=.*,duration_sec=.*,flag
s=.*,hard_timeout=.*,idle_timeout=.*,instructions=\[.*\],length=.*,match=.*\(oxm_fi
elds={.*}\),packet_count=.*,priority=.*,table_id=.*\)\],flags=.*,type=.*\)\] {{\(pid=.*\)
_send_msg .*}}

1
DEBUG neutron.agent.linux.utils \[None .* None None\] Found cmdline \['ovsdb\-clie
nt', 'monitor', 'tcp:.*', 'Interface', 'name,ofport,external_ids', '\-\-format=.*'\] for proc
ess with PID .* {{\(pid=.*\) get_cmdline_from_pid .*}}

#4 5 180
DEBUG neutron_lib.callbacks.manager \[None .* None None\] Notify callbacks .* for agent, a
fter_update {{\(pid=.*\) _notify_loop .*}}

#5 951 179
DEBUG nova.servicegroup.drivers.db \[.* .* .* .*\] Seems service nova-compute on host .* is
down. Last heartbeat was .*. Elapsed time is .*

#6 955 176

9
DEBUG oslo_concurrency.lockutils \[\-\] Lock "_check_child_processes" released by "
neutron.agent.linux.external_process._check_child_processes" :: held .* {{\(pid=.*\) i
nner .*}}

10
DEBUG oslo_concurrency.lockutils \[\-\] Lock "_check_child_processes" acquired by "
neutron.agent.linux.external_process._check_child_processes" :: waited .* {{\(pid=.*\
) inner .*}}

#7 189 175

DEBUG oslo_db.sqlalchemy.engines \[None .* None None\] MySQL server mode set to STRIC
T_TRANS_TABLES,STRICT_ALL_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DI
VISION_BY_ZERO,TRADITIONAL,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION {{\(pi
d=.*\) _check_effective_sql_mode .*}}

Ratio Differences of Log Messages

Rank Tmpl # Score Log Template Message

#6 413 ∞ DEBUG oslo_concurrency.lockutils \[None .* None None\] Lock "event\-dispatch"
acquired by .* :: waited .* {{\(pid=.*\) inner .*}}

#7 553 ∞
DEBUG oslo_concurrency.processutils \[None .* demo admin\] Running cmd \(su
bprocess\): .* \-m oslo_concurrency.prlimit \-\-as=.* \-\-cpu=.* \-\- env LC_ALL=.
* LANG=.* qemu\-img info .* \-\-force\-share {{\(pid=.*\) execute .*}}

#8 554 ∞
DEBUG oslo_concurrency.processutils \[None .* demo admin\] CMD .* \-m oslo_c
oncurrency.prlimit \-\-as=.* \-\-cpu=.* \-\- env LC_ALL=.* LANG=.* qemu\-img inf
o .* \-\-force\-share" returned: .* in .* {{\(pid=.*\) execute .*}}

#9 951 ∞ DEBUG nova.servicegroup.drivers.db \[.* .* .* .*\] Seems service nova-compute o
n host .* is down. Last heartbeat was .*. Elapsed time is .*

#10 225
8.409
1925
4658

DEBUG nova.compute.multi_cell_list \[None .* demo admin\] Listed batch of .* r
esults from cell out of .* limit. Returned .* total so far. {{\(pid=.*\) do_query .*}}

#11 162
7.262
4844
7205

DEBUG keystone.server.flask.request_processing.middleware.auth_context \[No
ne .* None admin\] Validating token access rules against request {{\(pid=.*\) valid
ate_allowed_request .*}}

#12 163
7.262
4844
7205

DEBUG keystone.server.flask.request_processing.middleware.auth_context \[No
ne .* None admin\] Authenticating user token {{\(pid=.*\) process_request .*}}

#13 231
6.625
4244
3064

DEBUG neutron.pecan_wsgi.hooks.policy_enforcement \[None .* demo admin\]
Attributes excluded by policy engine: \[u'shared'\] {{\(pid=.*\) _exclude_attribute
s_by_policy .*}}

#14 214
4.969
0683
2298

DEBUG neutron.pecan_wsgi.hooks.policy_enforcement \[None .* demo admin\]
Attributes excluded by policy engine: \[u'vlan_transparent'\] {{\(pid=.*\) _exclude
_attributes_by_policy .*}}

#15 228
4.586
8322
9814

DEBUG nova.compute.api \[None .* demo admin\] Searching by: {'deleted': False,
u'project_id': .* {{\(pid=.*\) get_all .*}}

(a) Template Temporal Correlation Analysis (b) Template Frequency Analysis

Term Frequency Analysis

Rank Tmpl # Frequency Log Template Message

#49 54 3.25
DEBUG cinder.api.openstack.wsgi \[None .* demo admin\] Empty body
provided in request {{\(pid=.*\) get_body .*}}

['empty', 'body', 'provided', 'request']

#50 951

3.2857
14285
71

DEBUG nova.servicegroup.drivers.db \[.* .* .* .*\] Seems service nova-
compute on host .* is down. Last heartbeat was .*. Elapsed time is .*

['seems', 'service', 'host', 'last', 'heartbeat', 'elapsed', 'time']

#51 68 3.33
DEBUG glance.api.middleware.version_negotiation \[None .* demo
admin\] Deter mining version of request: GET .*

['determining', 'version', 'get']

#52 480 3.33
DEBUG neutron.agent.securitygroups_rpc \[None .* None None\]
Refreshing firew all for .* devices {{\(pid=.*\) setup_port_filters .*}}

['refreshing', 'firewall', 'devices']

#53 53 3.5 INFO cinder.api.openstack.wsgi \[None .* demo admin\] .* returned with
HTTP .*

['returned', 'http']

#54 191 3.5
DEBUG neutron.wsgi \[None .* demo admin\] .* returned with HTTP .*
{{\(pid=.*\) call .*}}

['returned', 'http']

#55 613 3.5
DEBUG neutron.agent.linux.dhcp \[\-\] Building host file: .* {{\(pid=.*\)
output hosts_file .*}}

['building', 'host']

Final Ranking

Rank Tmpl # Score Log Template Message

#1 951 250
DEBUG nova.servicegroup.drivers.db \[.* .* .* .*\] Seems service nova-compute
on host .* is down. Last heartbeat was .*. Elapsed time is .*

#2 228 735
DEBUG nova.compute.api \[None .* demo admin\] Searching by: {'deleted':
False, u' project_id': .* {{\(pid=.*\) get_all .*}}

#3 193 1950

DEBUG neutron.quota.resource \[None .* demo admin\] Usage tracker for
resource:.* and tenant:.* is out of sync, need to count used quota {{\(pid=.*\)
count_used .*}}

#4 59 2867

DEBUG keystone.common.fernet_utils \[None .* Loaded .* Fernet keys from .*
but `\ [fernet_tokens\] max_active_keys = .* perhaps there have not been
enough key rotat ions to reach `max_active_keys` yet\? {{\(pid=.*\) load_keys
.*}}

#5 194 3000
DEBUG neutron.quota.resource \[None .* demo admin\] Quota usage for .*
was rec alculated. Used quota:.* {{\(pid=.*\) count_used .*}}

#6 21 3003
DEBUG neutron.db.agents_db \[None .* None None\] Agent healthcheck:
found .* a ctive agents {{\(pid=.*\) agent_health_check .*}}

#7 66 3060
DEBUG glance.api.middleware.version_negotiation \[None .* demo admin\]
Matche d version: .* {{\(pid=.*\) process_request .*}}

#8 200 3402
INFO neutron.wsgi .* demo admin\] .* "GET /v.*/security\-groups\?id=.*
status: .* l en: .* time: .*

#9 39 3486

DEBUG nova.compute.resource_tracker \[None .* None None\] Instance .*
actively managed on this compute host and has allocations in placement:
{u'resources': {u'VC PU': .* u'MEMORY_MB': .* u'DISK_GB': .* {{\(pid=.*\)
_remove_deleted_instances_alloc ations .*}}

(c) Term Frequency Analysis (d) Final Rank Score

Figure 4. Ranking scores of nova-compute component failure case.

3.2. Launch of Oversized VM

In this scenario, we try to launch a large VM that is beyond the resource capacity of the host.
The error message on the Horizon web interface is misleading as well in this case. It simply says it
failed to launch an instance and asks to try it again later. Figure 5 is the result of analyses. The log
template we are looking for in this failure case is the log template 949. This log contains the words
“insufficient resource”, which is a direct description of the problem at hand. Note that this log is in the
INFO log level. Thus, simple keyword search of ERROR through the logs files will not lead to such
information. In our experiment, Priolog ranked this as No. 3 which is within top 10 of the final rank.

Sustainability 2019, 11, 6306 11 of 17

Template Temporal Correlation Analysis (Hierarchical Clustering)

Rank Tmpl #
Cluste
r Time

Log Template Message

#64 1025 61

26
DEBUG oslo_concurrency.lockutils \[None .* None None\] Releasing lock .* {{\(pid=.
\) lock .}}

412
DEBUG oslo_concurrency.lockutils \[None .* None None\] Lock .* released by "nova
.context.get_or_set_cached_cell_and_set_connections" :: held .* {{\(pid=.*\) inner .
*}}

414
DEBUG oslo_concurrency.lockutils \[None .* None None\] Lock .* acquired by "nova
.context.get_or_set_cached_cell_and_set_connections" :: waited .* {{\(pid=.*\) inn
er .*}}

708
INFO nova.compute.rpcapi \[None .* None None\] Automatically selected compute
RPC version .* from minimum service version .*

#65 196 60
DEBUG keystone.server.flask.request_processing.middleware.auth_context \[None .* de
mo admin\] Authenticating user token {{\(pid=.*\) process_request .*}}

#66 944 60
DEBUG keystone.server.flask.request_processing.middleware.auth_context \[None .* de
mo admin\] Validating token access rules against request {{\(pid=.*\) validate_allowed_r
equest .*}}

#67 951 60

172 ERROR nova.conductor.manager .*

949
INFO nova.scheduler.manager \[.* .* .* .*\] Got no allocation candidates from the Pl
acement API. This could be due to insufficient resources or a temporary occurrence
as compute nodes start up.

#68 952 60
158 DEBUG oslo.privsep.daemon \[\-\] privsep: .* {{\(pid=.*\) _call_back .*

174
DEBUG neutron_lib.callbacks.manager \[None .* None None\] Notify callbacks .* fo
r port, provisioning_complete {{\(pid=.*\) _notify_loop .*}}

#69 953 60
168

DEBUG oslo_concurrency.lockutils \[\-\] Lock "privileged\-ip\-lib" released by "neutr
on.privileged.agent.linux.ip_lib.get_link_devices" :: held .* {{\(pid=.*\) inner .*}}

175
DEBUG neutron.db.provisioning_blocks \[None .* None None\] Provisioning comple
te for port .* triggered by entity .* {{\(pid=.*\) provisioning_complete .*}}

Ratio Differences of Log Messages

Rank Tmpl # Score Log Template Message

#12 490 ∞ DEBUG glance.db.sqlalchemy.metadef_api.namespace \[None .* demo admin\] co
ntext.is_admin=.*; context.owner=.* {{\(pid=.*\) _select_namespaces_query .*}}

#13 553
∞ DEBUG oslo_concurrency.processutils \[None .* demo admin\] Running cmd \(sub

process\): .* \-m oslo_concurrency.prlimit \-\-as=.* \-\-cpu=.* \-\- env LC_ALL=.* L
ANG=.* qemu\-img info .* \-\-force\-share {{\(pid=.*\) execute .*}}

#14 554 ∞
DEBUG oslo_concurrency.processutils \[None .* demo admin\] CMD .* \-m oslo_co
ncurrency.prlimit \-\-as=.* \-\-cpu=.* \-\- env LC_ALL=.* LANG=.* qemu\-img info .
* \-\-force\-share" returned: .* in .* {{\(pid=.*\) execute .*}}

#15 637 ∞ DEBUG cinder.volume.api \[None .* demo admin\] Could not evaluate value availa
ble, assuming string {{\(pid=.*\) check_volume_filters .*}}

#16 949 ∞
INFO nova.scheduler.manager \[.* .* .* .*\] Got no allocation candidates from the
Placement API. This could be due to insufficient resources or a temporary occurren
ce as compute nodes start up.

#17 191
6.5523

850
DEBUG neutron.wsgi \[None .* demo admin\] .* returned with HTTP .* {{\(pid=.*\)
__call__ .*}}

#18 225
5.2419

080
DEBUG nova.compute.multi_cell_list \[None .* demo admin\] Listed batch of .* res
ults from cell out of .* limit. Returned .* total so far. {{\(pid=.*\) do_query .*}}

#19 62
4.1498

438
DEBUG cinder.api.openstack.wsgi \[None .* demo admin\] Calling method 'all' {{\(p
id=.*\) _process_stack .*}}

#20 53
3.3853

989
INFO cinder.api.openstack.wsgi \[None .* demo admin\] .* returned with HTTP .*

#21 54
3.3853

989
DEBUG cinder.api.openstack.wsgi \[None .* demo admin\] Empty body provided in
request {{\(pid=.*\) get_body .*}}

#22 55
3.3853

980
INFO cinder.api.openstack.wsgi \[None .* demo admin\] GET .*

(a) Template Temporal Correlation Analysis (b) Template Frequency Analysis

Term Frequency Analysis

Rank Tmpl # Frequency Log Template Message

#10 317 1.0

DEBUG oslo_db.sqlalchemy.engines \[None .* demo admin\] MySQL server mode se
t to STRICT_TRANS_TABLES,STRICT_ALL_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DAT
E,ERROR_FOR_DIVISION_BY_ZERO,TRADITIONAL,NO_AUTO_CREATE_USER,NO_EN
GINE_SUBSTITUTION {{\(pid=.*\) _check_effective_sql_mode .*}}

['mysql', 'server', 'mode', 'set', 'traditional']

#11 432 1.0
DEBUG neutron.agent.linux.dhcp \[\-\] Setting .* gateway for dhcp netns on net .* t
o .* {{\(pid=.*\) _set_default_route_ip_version .*}}

['setting', 'gateway', 'dhcp', 'netns', 'net']

#12 78 1.25
DEBUG cinder.manager \[None .* None None\] Notifying Schedulers of capabilities ..
. {{\(pid=.*\) _publish_service_capabilities .*}}

['notifying', 'schedulers', 'capabilities', '']

#13 949 1.285714
INFO nova.scheduler.manager \[.* .* .* .*\] Got no allocation candidates from the Pl
acement API. This could be due to insufficient resources or a temporary occurrence
as compute nodes start up.

['got', 'allocation', 'candidates', 'placement', 'api', 'could', 'due', 'insufficient', 'resources', 'temporary', 'occurren
ce', 'compute', 'nodes', 'start']

#14 637 1.33333
DEBUG cinder.volume.api \[None .* demo admin\] Could not evaluate value availabl
e, assuming string {{\(pid=.*\) check_volume_filters .*}}

['could', 'evaluate', 'value', 'available', 'assuming', 'string']

#15 175 1.4
DEBUG neutron.db.provisioning_blocks \[None .* None None\] Provisioning comple
te for port .* triggered by entity .* {{\(pid=.*\) provisioning_complete .*}}

['provisioning', 'complete', 'port', 'triggered', 'entity']

#16 225 1.625
DEBUG nova.compute.multi_cell_list \[None .* demo admin\] Listed batch of .* resu
lts from cell out of .* limit. Returned .* total so far. {{\(pid=.*\) do_query .*}}

Final Ranking

Rank Tmpl # Score Log Template Message

#1 49 236
DEBUG nova.compute.manager \[None .* None None\] CONF.reclaim_instance_interval
<= .* skipping... {{\(pid=.*\) _reclaim_queued_deletes .*}}

#2 637 770
DEBUG cinder.volume.api \[None .* demo admin\] Could not evaluate value available, a
ssuming string {{\(pid=.*\) check_volume_filters .*}}

#3 949 845
INFO nova.scheduler.manager \[.* .* .* .*\] Got no allocation candidates from the Place
ment API. This could be due to insufficient resources or a temporary occurrence as com
pute nodes start up.

#4 317 1058

DEBUG oslo_db.sqlalchemy.engines \[None .* demo admin\] MySQL server mode set to
STRICT_TRANS_TABLES,STRICT_ALL_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERRO
R_FOR_DIVISION_BY_ZERO,TRADITIONAL,NO_AUTO_CREATE_USER,NO_ENGINE_SUBS
TITUTION {{\(pid=.*\) _check_effective_sql_mode .*}}

#5 235 1100
DEBUG cinder.db.sqlalchemy.api \[None .* demo admin\] Building query based on filter
{{\(pid=.*\) _process_snaps_filters .*}}

#6 65 1127
DEBUG glance.api.middleware.version_negotiation \[None .* demo admin\] new path .
* {{\(pid=.*\) process_request .*}}

#7 66 1127
DEBUG glance.api.middleware.version_negotiation \[None .* demo admin\] Matched v
ersion: .* {{\(pid=.*\) process_request .*}}

#8 64 1173
DEBUG glance.api.middleware.version_negotiation \[None .* demo admin\] Using url v
ersioning {{\(pid=.*\) process_request .*}}

#9 19 1620
DEBUG placement.requestlog .* service placement\] Starting request: .* "GET .* {{\(pid
=.*\) __call__ .*}}

#10 79 1704 DEBUG neutron.wsgi \[\-\] .* accepted .* {{\(pid=.*\) server .*}}

#11 3 1750
DEBUG .* \[None .* None None\] Agent rpc_loop \- iteration:.* completed. Processed p
orts statistics: {'regular': {'updated': .* 'added': .* 'removed': .* Elapsed:.*

(c) Term Frequency Analysis (d) Final Rank Score

Figure 5. Ranking scores of large (oversized) virtual machine (VM) instance launch failure case.

3.3. Exceeding Maximum Volume Count

This scenario shows the case where a user tries to attach additional storage volume to the VM
instance and it fails due to predefined volume count limits. OpenStack defines various default resource
limits per tenant (i.e., user account) such as the number of instances allowed, number of floating/fixed
IP address allowed, number of security groups and the number of block storage volumes allowed per
tenant. We have created 10 volumes and collected logs while trying to create the 11th volume. As can
be seen in the Figure 6, the final ranked score list gives us the key log at the 5th rank.

Sustainability 2019, 11, 6306 12 of 17

Template Temporal Correlation Analysis (Hierarchical Clustering)

Rank Tmpl #
Cluster
Time

Log Template Message

#54 1032 56

37

DEBUG nova.scheduler.client.report \[None .* None None\] Inventory has not change
d for provider .* based on inventory data: {u'VCPU': {u'allocation_ratio': .* u'total': .*
u'reserved': .* u'max_unit': .* u'MEMORY_MB': {u'allocation_ratio': .* u'max_unit': .*
u'DISK_GB': {u'allocation_ratio': .* u'total': .* u'reserved': .* u'step_size': .* u'min_uni
t': .* u'max_unit': .* {{\(pid=.*\) set_inventory_for_provider .*}}

38
DEBUG nova.compute.resource_tracker \[None .* None None\] Total usable vcpus: .*
total allocated vcpus: .* {{\(pid=.*\) _report_final_resource_view .*}}

40
DEBUG nova.compute.resource_tracker \[None .* None None\] Final resource view: n
ame=.* phys_ram=.* used_ram=.* phys_disk=.* used_disk=.* total_vcpus=.* used_vc
pus=.* {{\(pid=.*\) _report_final_resource_view .*}}

41
DEBUG nova.compute.resource_tracker \[None .* None None\] Compute_service rec
ord updated for .* {{\(pid=.*\) _update_available_resource .*}}

42
DEBUG nova.compute.resource_tracker \[None .* None None\] Auditing locally availa
ble compute resources for .* \(node: .* {{\(pid=.*\) update_available_resource .*}}

43
DEBUG nova.compute.provider_tree \[None .* None None\] Inventory has not chang
ed in ProviderTree for provider: .* {{\(pid=.*\) update_inventory .*}}

#55 956 55
DEBUG nova.compute.utils \[.* .* .* .*\] \[instance: .*\] Build of instance .* aborted: Volu
meLimitExceeded: Maximum number of volumes allowed \(.*\) exceeded for quota 'volum
es'. .*

#56 781 54
DEBUG nova.api.openstack.wsgi \[None .* demo admin\] Action: .* calling method:<="" td
="">

#57 950 54
WARNING keystonemiddleware.auth_token \[.*\] A valid token was submitted as a service
token, but it was not a valid service token. This is incorrect but backwards compatible beha
viour. This will be removed in future releases.

Ratio Differences of Log Messages

Rank Tmpl # Score Log Template Message

#1 126 ∞ DEBUG nova.compute.manager \[None .* None None\] Cleaning up deleted insta
nces with incomplete migration {{\(pid=.*\) _cleanup_incomplete_migrations .*}}

#2 946 ∞ DEBUG nova.api.openstack.compute.server_external_events \[.* service nova\] U
nable to find a host for instance .* Dropping event .* {{\(pid=.*\) create .*}}

#3 947 ∞ INFO nova.api.openstack.wsgi \[.* .* service nova\] HTTP exception thrown: .*

#4 948 ∞ DEBUG nova.api.openstack.wsgi \[.* .* service nova\] Returning .* to user: .*

#5 956 ∞
DEBUG nova.compute.utils \[.* .* .* .*\] \[instance: .*\] Build of instance .* abort
ed: VolumeLimitExceeded: Maximum number of volumes allowed \(.*\) exceeded
for quota 'volumes'. .*

#6 225
4.5029
268227

DEBUG nova.compute.multi_cell_list \[None .* demo admin\] Listed batch of .* r
esults from cell out of .* limit. Returned .* total so far. {{\(pid=.*\) do_query .*}}

#7 191
3.0019
511951

DEBUG neutron.wsgi \[None .* demo admin\] .* returned with HTTP .* {{\(pid=.*\
) __call__ .*}}

#8 62
2.7517
881789

DEBUG cinder.api.openstack.wsgi \[None .* demo admin\] Calling method 'all' {{\(
pid=.*\) _process_stack .*}}

#9 149
2.2514
634463

DEBUG keystone.server.flask.request_processing.middleware.auth_context \[No
ne .* service placement\] Validating token access rules against request {{\(pid=.*\
) validate_allowed_request .*}}

#10 150
2.2514
634463

DEBUG keystone.server.flask.request_processing.middleware.auth_context \[No
ne .* service placement\] Authenticating user token {{\(pid=.*\) process_request
.*}}

(a) Template Temporal Correlation Analysis (b) Template Frequency Analysis

Term Frequency Analysis

Rank Tmpl # Frequency Log Template Message

#19 225 1.625
DEBUG nova.compute.multi_cell_list \[None .* demo admin\] Listed batch of .* re
sults from cell out of .* limit. Returned .* total so far. {{\(pid=.*\) do_query .*}}

['listed', 'batch', 'results', 'cell', 'limit', 'returned', 'total', 'far']

#20 216
1.66666666

667
DEBUG cinder.api.contrib.volume_transfer \[None .* demo admin\] Listing volume
transfers {{\(pid=.*\) _get_transfers .*}}

['listing', 'volume', 'transfers']

#21 207 1.75
INFO cinder.volume.api \[None .* demo admin\] Get all volumes completed succe
ssfully.

['get', 'volumes', 'completed', 'successfully']

#22 610 1.75
DEBUG neutron.agent.linux.dhcp \[\-\] Done building host file .* {{\(pid=.*\) _outp
ut_hosts_file .*}}

['done', 'building', 'host', 'file']

#23 956
1.77777777

778

DEBUG nova.compute.utils \[.* .* .* .*\] \[instance: .*\] Build of instance .* aborte
d: VolumeLimitExceeded: Maximum number of volumes allowed \(.*\) exceeded f
or quota 'volumes'. .*

['build', 'instance', 'maximum', 'number', 'volumes', 'allowed', 'exceeded', 'quota', '']

#24 4 2.0
DEBUG oslo_service.periodic_task \[None .* None None\] Running periodic task .*
{{\(pid=.*\) run_periodic_tasks .*

['running', 'periodic', 'task']

#25 38 2.0
DEBUG nova.compute.resource_tracker \[None .* None None\] Total usable vcpus
: .* total allocated vcpus: .* {{\(pid=.*\) _report_final_resource_view .*}}

['total', 'usable', 'total', 'allocated']

Final Ranking

Rank Tmpl # Score Log Template Message

#1 126 24
DEBUG nova.compute.manager \[None .* None None\] Cleaning up deleted instances
with incomplete migration {{\(pid=.*\) _cleanup_incomplete_migrations .*}}

#2 948 59 DEBUG nova.api.openstack.wsgi \[.* .* service nova\] Returning .* to user: .*

#3 49 304
DEBUG nova.compute.manager \[None .* None None\] CONF.reclaim_instance_interv
al <= .* skipping... {{\(pid=.*\) _reclaim_queued_deletes .*}}

#4 228 864
DEBUG nova.compute.api \[None .* demo admin\] Searching by: {'deleted': False, u'pr
oject_id': .* {{\(pid=.*\) get_all .*}}

#5 956 1265
DEBUG nova.compute.utils \[.* .* .* .*\] \[instance: .*\] Build of instance .* aborted: V
olumeLimitExceeded: Maximum number of volumes allowed \(.*\) exceeded for quot
a 'volumes'. .*

#6 432 1501
DEBUG neutron.agent.linux.dhcp \[\-\] Setting .* gateway for dhcp netns on net .* to .
* {{\(pid=.*\) _set_default_route_ip_version .*}}

#7 21 2016
DEBUG neutron.db.agents_db \[None .* None None\] Agent healthcheck: found .* act
ive agents {{\(pid=.*\) agent_health_check .*}}

#8 946 2046
DEBUG nova.api.openstack.compute.server_external_events \[.* service nova\] Unabl
e to find a host for instance .* Dropping event .* {{\(pid=.*\) create .*}}

#9 79 2080 DEBUG neutron.wsgi \[\-\] .* accepted .* {{\(pid=.*\) server .*}}

#10 947 2124 INFO nova.api.openstack.wsgi \[.* .* service nova\] HTTP exception thrown: .*

(c) Term Frequency Analysis (d) Final Rank Score

Figure 6. Ranking scores of the resource (block storage volume) limit exceed case.

3.4. Result Summary of All Scenarios

We present in Table 2 the evaluation results of all nine cases. All of the cases we tried contained
key information in the log level of DEBUG or INFO implying that searching for ERROR logs will likely
be of little help in the problem diagnosis. It is very difficult to come up with effective search terms
without knowing the nature of the problem. On average, the log we are looking for are consistently
ranked within top 10 out of more than 1000 log templates with the average rank of 3.8. This shows that
the administrator can save significant amount of time during the problem diagnosis by looking at the
top 10 log templates of the list recommended by Priolog.

Table 2. Summary of evaluation results.

Case Log
Level

Log Message Rank Elapsed
Time (s)

Log
Lines

Component failure (nova-compute) DEBUG Seems service nova-compute on host * is down. 2 1712 s 34,903

1 739 s 5034

Component failure DEBUG No DHCP agents available, skipping rescheduling. 2 1331 s 5303

(neutron-dhcp-agent) 8 900 s 2987

Launching very large INFO

Got no allocation candidates from the Placement API. 3 435 s 1437

(oversized) VM instance
This could be due to insufficient resources or a temporary 3 550 s 3165
occurrence as compute nodes start up. 4 716 s 2977

Resource (volume count)
limit exceeded DEBUG

Build of instance * aborted: VolumeLimitExceeded:
Maximum number of volumes allowed * exceeded

5 598 s 1818

for quota ’volumes’. 7 622 s 2051

Sustainability 2019, 11, 6306 13 of 17

Table 2 also presents the time (in seconds) it took to complete the analysis to generate the final
ranked list. Elapsed times of nine cases range from 7 min to 28 min. It is roughly proportional to the size
of input log data as shown in the ‘Log Lines’ column. What is not included in the time measurement
is the time it took to generate the log template lists which is a one-time process. The time cost of log
template discovery varies greatly by the techniques. This state-of-the-art technique can produce the
first version of log templates within several minutes and additional manual editing time has to be
spent to fix any errors. We spent about 30 min to generate, correct, and prepare the log templates in
semi-manual way. Based on this, the expected time cost of problem diagnosis using Priolog is at the
level of tens of minutes at most.

4. Related Work

There has been extensive research in the detection of anomalies or outliers in logs using both
machine learning approaches and using relations across multivariate time-series data in several
application domains [14,17,18,24–31]. In this section, we review a set of representative examples of
outlier detection applied to log analysis, and highlight a key focus of the contributions of our paper in
the context of these rich body of prior art.

In the field of log-based anomaly detection, there are two types of anomalies—performance
anomaly and behavioral anomaly. Most of the previous work focus on the detection of performance
anomalies. In 2006, Mirgorodskiy et al. [29] developed a performance anomaly detection technique
that is based on the traces of function running time. Function traces of HPC applications, collected by
light-weight agent, are converted into vectors. Then, kth nearest neighbor search is used for a given
trace to decide whether it is normal or abnormal. Xu et al. [30] proposed a technique of automatically
creating features and applying PCA to detect anomalies. In order to create features, they parse the
source code to understand the log templates, state variables and any identifiers. Two feature vectors,
state ratio vector and message count vector, are constructed and they are fed into the PCA-based outlier
detection technique to find anomalous log groups. Lou et al. [14] presents a technique that mines linear
invariants from the logs. They first parse the logs into static log messages part and variable parts.
Then, they group logs by the program variable values to form log groups. Per each group, they build
message type count vector. From the invariant space of the matrix, they derive the execution flow
invariants, and any violation of these invariants are considered as anomalies. ELT [25] proposes two
stage approach for log-based troubleshooting. In the first stage, it uses hierarchical clustering on the
message appearance vector to quickly group logs into anomalous and normal ones. Then, in the second
stage, it uses message flow graph to further identify anomalous logs within the large normal cluster.
Additionally, ELT supports the functionality of key message extraction by building difflogs which
represents the set of log messages that do not appear in the normal logs. ELT can also do an invariant
check of user-provided invariant rules. In lprof [27], authors have constructed the causal sequence of
logs to build the model of correct execution sequence. Nandi et al. [17] have also tried to build the
causal relationship of logs using a few heuristics to use them as a standard in detecting the deviation
of log patterns. Logan [6] aims to help the admins to promptly perform the problem diagnosis and
root cause analysis by performing automatic comparison of normal logs and problematic logs. Also,
they narrow down the logs into the most likely meaningful regions of log.

Sabato [24] developed a method for ranking log messages by their importance to the users.
It determines that the log is important if it appears more than expected. The objective of this work
is closely in line with ours. However, we have learned that the log frequency method alone was
insufficient to find the important logs. Our evaluation results shows that using the frequency of logs
alone do not give high ranking of true positive logs. SALSA [32] parses logs using known keywords to
extract states and constructs control-flow view and data-flow view of the Hadoop execution. These
views are presented to the user for better understanding and problem diagnosis. Along with the state
information it also extracts the duration of each state. They demonstrate that state duration information
can be made into histogram by states per host and this histogram comparison allows them to identify

Sustainability 2019, 11, 6306 14 of 17

problematic hosts. GAUL [28] is for problem diagnosis using logs in storage systems. It uses logs to
detect recurring problems and solutions.

In Deeplog [18], a deep learning approach based on LSTMs is presented for log analytics that is
able to create workflows from logs, and give conditional probabilities of subsequent logs given current
log based on an implicit finite state machine. Log sequences are treated in a manner similar to sequences
of natural language sentences for deep learning purposes. Anomalies are detected, by detecting changes
in the workflow expected sequence of logs and deviation from expected conditional probabilities. In
addition, the method is able to perform online learning as combinations of logs change. This approach
provides an improve way to detect anomalies in log sequences and relate these found anomalies them
to expected workflows or sequences thereby providing additional insight to the developer. The method
does not leverage domain knowledge or filter for false positives as done in our current work. The most
recent work in the log anomaly detection field is the LogRobust [31]. Zhang et al. have developed a
Bi-LSTM classification model from the fixed dimension semantic vectors of logs and improved the
anomaly detection capability.

The goal of our work differs from most of the anomaly detection work in that we focus on
developing set of techniques that help in the root cause identification rather than the anomaly detection.
We assume that the fault has already happened and been detected by the administrator. Thus, Priolog
is complementary to the anomaly detection work.

There are several research work focusing on the problem diagnosis based on the correlation
analysis of metrics data, but not necessarily the logs. Priolog performs time series correlation analysis
after converting the log streams to time series. CloudPD [33] is a cloud problem management
framework that collects various metrics from the host server and VMs. Then, it uses a light-weight
method such as kNN to detect potential anomalies. Once potential anomalies are detected, it undergoes
correlation analysis between all metrics within a problematic host and between the same type of metrics
across other hosts. If it is beyond some threshold, it considers as a problem. Once a problem is found,
it matches the correlation signature to the known root-cause database which is built by experts.
The similarity to our work is that it also uses correlations, but on system monitoring metrics. Jiang
et al. [34] proposed an algorithm using the autoregressive models with exogeneous inputs (ARX) to
discover hidden invariants between various system measurements. The example of invariants could
be: the number of output requests of a load balancer must be equal to the number of input requests,
the ratio of input request and the number of SQL query to the database is 2. Since it is difficult to
holistically understand the distributed application, they say that it becomes easier if we monitor
many of such small invariants, which hopefully characterizes the system well enough. PeerWatch [35]
also uses correlation techniques to discover problems. It first collects various metrics such as CPU
utilization, memory utilization, context switch, etc., from VMs running the same kind of applications.
Then, it uses canonical correlation analysis (CCA) to discover highly correlated metrics between all
pairs of VMs. CCA gives the list of metrics pairs in the order of correlation strength. PeerWatch first
uses this information to identify which VM is faulty. Then, within a faulty VM, it identifies which
attributes have changed significantly in terms of distribution.

5. Conclusions

We have presented a novel method, called Priolog, that is designed to quickly mine the most
informative logs from the volume of log files for speedy problem diagnosis. The technique is based on
the combination of log templates’ temporal analysis, template frequency analysis, and word-level term
frequency analysis. These three techniques, combined together, complement each other to generate
accurate ranked list of most important logs. We have tested Priolog to the popular OpenStack platform
under various failure scenarios. The results indicated that the Priolog’s approach is promising for
log-based problem diagnosis.

As a future direction, we plan to apply state-of-the-art techniques from the NLP domain such
as the word embedding or n-gram analysis to improve the capability of Priolog in finding the most

Sustainability 2019, 11, 6306 15 of 17

important logs. For example, the word embedding allows us to search for the words having similar
meaning to critical words such as ’failure’ or ’errors’. Since word usage depends on the programmers
who generated the log messages, word embedding allows us to learn the intended meaning of
important terms. This would help us prioritize logs better. Another technique, n-gram analysis, can be
used to learn the probabilistic model of word orders so that appearances of any abnormal word can be
quantified and prioritized by the degree of statistical abnormality.

Author Contributions: Conceptualization, B.T. and P.K.; methodology, B.T.; software, S.P.; validation, B.T., S.P.,
and P.K.; resources, B.T.; data curation, S.P.; writing—original draft preparation, B.T.; writing—review and editing,
B.T. and P.K.; visualization, S.P.; supervision, B.T.; project administration, B.T.; funding acquisition, B.T.

Funding: This research was funded by the BK21 Plus project (SW Human Resource Development Program for
Supporting Smart Life) funded by the Ministry of Education, School of Computer Science and Engineering,
Kyungpook National University, Korea (21A20131600005), the Basic Science Research Program through the NRF
of Korea funded by the Ministry of Education (NRF-2017R1D1A3B03035777) and NRF funded by the Korean
government(MSIT) (NRF-2019R1C1C1006990).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yuan, C.; Lao, N.; Wen, J.R.; Li, J.; Zhang, Z.; Wang, Y.M.; Ma, W.Y. Automated Known Problem Diagnosis
with Event Traces. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems (EuroSys’06), Leuven, Belgium, 18–21 April 2006; pp. 375–388.

2. Jia, T.; Yang, L.; Chen, P.; Li, Y.; Meng, F.; Xu, J. LogSed: Anomaly Diagnosis through Mining Time-Weighted
Control Flow Graph in Logs. In Proceedings of the 2017 IEEE 10th International Conference on Cloud
Computing (CLOUD), Honolulu, CA, USA, 25–30 June 2017; pp. 447–455.

3. Jia, T.; Yang, L.; Chen, P.; Li, Y.; Meng, F.; Xu, J. An Approach for Anomaly Diagnosis Based on Hybrid Graph
Model with Logs for Distributed Services. In Proceedings of the 2017 IEEE 10th International Conference on
Cloud Computing (CLOUD), Honolulu, HI, USA, 25–30 June 2007; pp. 25–32.

4. Xu, J.; Chen, P.; Yang, L.; Meng, F.; Wang, P. LogDC: Problem Diagnosis for Declartively-Deployed Cloud
Applications with Log. In Proceedings of the 2017 IEEE 14th International Conference on e-Business
Engineering (ICEBE), Shanghai, China, 4–6 November 2017; pp. 282–287.

5. Bao, L.; Li, Q.; Lu, P.; Lu, J.; Ruan, T.; Zhang, K. Execution anomaly detection in large-scale systems through
console log analysis. J. Syst. Softw. 2018, 143, 172–186. [CrossRef]

6. Tak, B.; Tao, S.; Yang, L.; Zhu, C.; Ruan, Y. LOGAN: Problem Diagnosis in the Cloud Using Log-Based
Reference Models. In Proceedings of the IEEE International Conference on Cloud Engineering (IC2E’16),
Berlin, Germany, 4–8 April 2016; pp. 62–67.

7. Pahl, C. Containerization and the PaaS Cloud. IEEE Cloud Comput. 2015, 2, 24–31. [CrossRef]
8. Alshuqayran, N.; Ali, N.; Evans, R. A Systematic Mapping Study in Microservice Architecture. In Proceedings

of the 2016 IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA),
Macau, China, 4–6 November 2016; pp. 44–51.

9. Guo, D.; Wang W.; Zeng, G.; Wei, Z. Microservices Architecture Based Cloudware Deployment Platform for
Service Computing. In Proceedings of the 2016 IEEE Symposium on Service-Oriented System Engineering
(SOSE), Oxford, UK, 29 March–2 April 2016; pp. 358–363.

10. McGrath, G.;Brenner, P.R. Serverless Computing: Design, Implementation, and Performance. In Proceedings
of the 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW),
Atlanta, GA, USA, 5–8 June 2017; pp. 405–410.

11. Wu, F.; Anchuri, P.; Li, Z. Structural Event Detection from Log Messages In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’17), Halifax, NS,
Canada, 13–17 August 2017; pp. 1175–1184.

12. Ding, R.; Zhou, H.; Lou, J.G.; Zhang, H.; Lin, Q.; Fu, Q.; Zhang, D.; Xie, T. Log2: A cost-aware logging
mechanism for performance diagnosis In Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC’15), Santa Clara, CA, USA, 8–10 July 2015; pp. 1175–1184.

http://dx.doi.org/10.1016/j.jss.2018.05.016
http://dx.doi.org/10.1109/MCC.2015.51

Sustainability 2019, 11, 6306 16 of 17

13. Fu, Q.; Lou, J.G.; Wang, Y.; Li, J. Execution Anomaly Detection in Distributed Systems through Unstructured
Log Analysis. In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining (ICDM ’09),
Miami, FL, USA, 6–9 December 2009; pp. 149–158.

14. Lou, J.G.; Fu, Q.; Yang, S.; Xu, Y.; Li, J. Mining invariants from console logs for system problem detection.
In Proceedings of the 2010 USENIX conference on USENIX Annual Technical Conference (USENIX ATC’10),
Boston, MA, USA, 23–25 June 2010; p. 24.

15. Xu, W.; Huang, L.; Fox, A.; Patterson, D.; Jordan, M. Online System Problem Detection by Mining Patterns
of Console Logs. In Proceedings of the Ninth IEEE International Conference on Data Mining (ICDM ’09),
Miami, FL, USA, 6–9 December 2009; pp. 588–597.

16. Nagaraj, K.; Killian, C.; Neville, J. Structured comparative analysis of systems logs to diagnose performance
problems. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation
(NSDI’12), San Jose, CA, USA, 25–27 April 2012; p. 26.

17. Nandi, Animesh; Mandal, Atri; Atreja, Shubham; Dasgupta, Gargi B.; Bhattacharya, Subhrajit. Anomaly
Detection Using Program Control Flow Graph Mining From Execution Logs In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16), San Jose, CA,
USA, 25–27 April 2016; pp. 215–224.

18. Du, M.; Li, F.; Zheng, G.; Srikumar, V. DeepLog: Anomaly Detection and Diagnosis from System Logs through
Deep Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’17), Dallas, TX, USA, 30 October–3 November 2017; pp. 1285–1298.

19. OpenStack. Available online: https://www.openstack.org/ (accessed on 15 August 2019).
20. Du, M.; Li, F. Spell: Streaming Parsing of System Event Logs. In Proceedings of the 16th IEEE International

Conference on Data Mining (ICDM 2016), Barcelona, Spain, 12–15 December 2016; pp. 859–864.
21. He, P.; Zhu, J.; Zheng, Z.; Lyu, M.R. Drain: An Online Log Parsing Approach with Fixed Depth Tree.

In Proceedings of the International Conference on Web Services (ICWS 2017), Honolulu, HI, USA, 25–30
June 2017; pp. 33–40.

22. Vaarandi, R.; Pihelgas, M. LogCluster—A data clustering and pattern mining algorithm for event logs.
InProceedings of the 11th International Conference on Network and Service Management (CNSM ’15),
Barcelona, Spain, 9–13 November 2015; pp. 1–7.

23. Messaoudi, S.; Panichella, A.; Bianculli, D.; Briand, L.; Sasnauskas, R. A search-based approach for accurate
identification of log message formats. In Proceedings of the 26th Conference on Program Comprehension
(ICPC ’18), Gothenburg, Sweden, 28–29 May 2018; pp. 167–177.

24. Sabato, S.; Yom-Tov, E.; Tsherniak, A.; Rosset, S. Analyzing System Logs: A New View of What’s Important
In Proceedings of the SYSML’07 2nd USENIX Workshop on Tackling Computer Systems Problems with
Machine Learning Techniques, Cambridge, MA, USA, 10 April 2017; pp. 6:1–6:7.

25. Kc, K.; Gu, X. Elt: Efficient log-based troubleshooting system for cloud computing infrastructures.
In Proceedings of the IEEE 30th International Symposium on Reliable Distributed Systems, Madrid, Spain,
4–7 October 2011; pp. 11–20.

26. Fu, X.; Ren, R.; McKee, S.A.; Zhan, J.; Sun, N. Digging deeper into cluster system logs for failure prediction
and root cause diagnosis. In Proceedings of the 2014 IEEE International Conference on Cluster Computing
(Cluster’14), Madrid, Spain, 22–26 September 2014; pp. 103–112.

27. Zhao, X.; Zhang, Y.; Lion, D.; Ullah, M.F.; Luo, Y.; Yuan, D.; Stumm, M. lprof: A non-intrusive request flow
profiler for distributed systems In Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, Broomfield, CO, USA, 6 October 2014; pp. 629–644.

28. Zhou, P.; Gill, B.; Belluomini, W.; Wildani, A. Gaul: Gestalt analysis of unstructured logs for diagnosing
recurring problems in large enterprise storage systems. In Proceedings of the 2010 29th IEEE Symposium on
Reliable Distributed Systems, New Delhi, India, 31 October–3 November 2010; pp. 148–159.

29. Mirgorodskiy, A.V.; Maruyama, N.; Miller, B.P. Problem diagnosis in large-scale computing environments.
In Proceedings of the 2006 ACM/IEEE conference on Supercomputing, Tampa, FL, USA, 11–17 November
2006; p. 88.

30. Xu, W.; Huang, L.; Fox, A.; Patterson, D.; Jordan, M. I. Detecting large-scale system problems by mining
console logs In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, Big Sky,
MT, USA, 11–14 October 2009; pp. 117–132.

https://www.openstack.org/

Sustainability 2019, 11, 6306 17 of 17

31. Zhang, X.; Xu, Y.; Lin, Q.; Qiao, B.; Zhang, H.; Dang, Y.; Xie, C.; Yang, X.; Cheng, Q.; Li, Z.; et al. Robust
Log-based Anomaly Detection on Unstable Log Data. In Proceedings of the 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering
(FSE’19), Tallinn, Estonia, 26–30 August 2019; pp. 807–817.

32. Tan, J.; Pan, X.; Kavulya, S.; Gandhi, R.; Narasimhan, P. Salsa: Analyzing logs as state machines.
In Proceedings of the 1st USENIX Conference on Analysis of System Logs, San Diego, CA, USA, 7 December
2008; p. 6.

33. Sharma, B.; Jayachandran, P.; Verma, A.; Das, C.R. CloudPD: Problem determination and diagnosis in shared
dynamic clouds. In Proceedings of the 2013 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Budapest, Hungary, 24–27 June 2013; pp. 1–12.

34. Jiang, G.; Chen, H.; Yoshihira, K. Discovering likely invariants of distributed transaction systems for
autonomic system management. In Proceedings of the 2006 IEEE International Conference on Autonomic
Computing, Dublin, Ireland, 12–16 June 2006; pp. 199–208.

35. Kang, H.; Chen, H.; Jiang, G. PeerWatch: A fault detection and diagnosis tool for virtualized consolidation
systems. In Proceedings of the 7th International Conference on Autonomic Computing, Washington, DC,
USA, 7–11 June 2010; pp. 119–128.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Design of Priolog
	Template Temporal Correlation Analysis
	Log Templates
	Log Template Time-Series Generation
	Correlation Matrix Construction
	Hierarchical Clustering
	Outlier Identification

	Template Frequency Analysis
	Frequency Vector Construction

	Term Frequency (TF) Analysis

	Evaluation
	Component Failure
	Launch of Oversized VM
	Exceeding Maximum Volume Count
	Result Summary of All Scenarios

	Related Work
	Conclusions
	References

