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Abstract: To expand the field of governmental applications of Big Data analytics, this study presents a
case of data-driven decision-making using information on research and development (R&D) projects
in Korea. The Korean government has continuously expanded the proportion of its R&D investment
in small and medium-size enterprises to improve the commercialization performance of national
R&D projects. However, the government has struggled with the so-called “Korea R&D Paradox”,
which refers to how performance has lagged despite the high level of investment in R&D. Using data
from 48,309 national R&D projects carried out by enterprises from 2013 to 2017, we perform a
cluster analysis and decision tree analysis to derive the determinants of their commercialization
performance. This study provides government entities with insights into how they might adjust
their approach to Big Data analytics to improve the efficiency of R&D investment in small- and
medium-sized enterprises.

Keywords: big data; decision tree; government; national R&D project; small and medium-sized
enterprises; commercialization performance

1. Introduction

The concept of Big Data analytics (BDA) pertains to accumulating, combining, analyzing, and
using large-scale data for various purposes and of various types. BDA enables organizations in both
the private sector and, increasingly, the public sector to make better decisions (i.e., more quickly and
efficiently) based on evidence and insights [1–3]. Indeed, Big Data applications in government are no
longer unusual. Many countries have come to regard Big Data as a growth engine for the future as well
as a solution to existing economic and social problems. Over the past decade, governments globally
have announced comprehensive strategies for using Big Data at the national level. They first focused
on the construction of infrastructure to open access to data and promote its utilization. Thereafter, they
supported legal and institutional improvements to empower the private sector to use public data and
create added value (indirect role) as well as used Big Data for policymaking (direct role) [4].

Indeed, building on the constructed infrastructure, most governments endeavor to expand their
own use of Big Data to formulate policies based on concrete data rather than depending on mere
experience or intuition. The use of Big Data has thus far been limited because of the lack of actual
data available to the government to implement such data-driven policies. In particular, the use of
Big Data has been scarce because of the limitations of the infrastructure required to (i) accumulate
and generate reliable data, which is essential for utilization; and (ii) convert the accumulated and
generated data into a form that can actually be used in practice. However, an infrastructure that can
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generate, accumulate, and analyze data has now been established and the discussion on data-driven
policies is re-emerging. The establishment of data-driven policies using Big Data and BDA can help
public administrators at all levels of government and in different areas reach their goals. It can also
prevent the inefficient operation of the government, bad policymaking, and the selection and execution
of misguided alternatives. In summary, complex policy issues affected by various variables can be
handled efficiently and effectively using Big Data and BDA, and the new data-driven insights gained
can aid the decision-making of the government.

Governments have been using Big Data for policymaking in several ways. Basic statistical or
quantitative analyses have been performed based on census data on numbers of people, their living
conditions, and other socioeconomic characteristics collected from sampling or public administration
records on taxes, employment, and so on. At a more advanced level, some governments have built
public health and medical systems through the integration and analysis of data such as medical
records and insurance information, performed disaster forecasting using traffic data, and established
public safety policies based on crime-related data analysis. Specifically, in the context of the present
study, many countries have expanded governmental investment in research and development (R&D),
especially as science and technology have emerged as the driving forces behind economic development
and national competitiveness. Together with this trend, there is an increase in demand to improve the
efficacy of governmental R&D investment to ascertain whether such investment actually provides a
return, determine the issues if the return on investment is low, and understand the strategic investment
methods needed to improve results.

This study expands the concept of BDA to the governmental sector and derives the optimal
solutions for governmental R&D investment in Korea. Hence, it departs from those fields in which Big
Data has already been used for policymaking and focuses on policymaking using Big Data and BDA in
new fields to understand how to improve the efficiency of government-sponsored R&D projects. We
perform a cluster analysis and a decision tree analysis, a predictive modeling method widely used
for machine learning, based on data on around 43,800 national R&D projects in Korean small and
medium-sized enterprises (SMEs: SMEs in this study are described as establishments with fewer than
250 employees), which play a key role in the national economy. Since the 2000s, the Korean government
has expanded its R&D investment in SMEs to enable such firms to commercialize the results of
R&D projects and thereby raise added value. This study thus analyzes the government-sponsored
R&D projects conducted by SMEs to identify the factors that determine whether the goals of such
governmental support are achieved. Methodologically, it uses data taken from the world’s first national
R&D information knowledge portal supplied by the National Science and Technology Information
Service (NTIS). This portal provides information on about 540,000 national R&D projects, such
as governmental R&D investment, number of projects, and innovative performance. Using these
NTIS data on a variety of national R&D projects, we derive the determinants of commercialization
performance and suggest a systematic method of increasing the efficiency of national R&D investment,
with a particular focus on increasing the commercialization performance of SMEs.

The results of this study contribute to the body of knowledge on this topic by establishing strategies
for using Big Data to achieve data-driven policymaking. As governmental investment in R&D has
reached 20 trillion KRW in Korea (the average exchange rate in 2018 was KRW 1,101.48=USD), we
expect the results of this study to be particularly useful for planning governmental investment in R&D
more efficiently and expanding commercialization successes.

The remainder of the paper is organized as follows. In Section 2, we examine the theoretical
background by reviewing previous studies of governments’ use of Big Data. We also examine the status
of governmental R&D investment in Korea and identify problems in the government’s decision-making
process. Section 3 describes the data and analytical method used to solve the problems faced by the
Korean government. Section 4 presents the results of the analysis, and Section 5 summarizes the results
and concludes.
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2. Theoretical Background

2.1. Government and Big Data

Evidence-based policy, which refers to establishing policies grounded on objective and scientific
research and ensuring they are designed and implemented based on concrete data, has existed since
ancient times. In Ancient Greece, Aristotle argued that diverse sources of knowledge should be
included to set rules or develop regulations; Aristotle’s concept of diverse knowledge has been
interpreted to include scientific knowledge [5]. In the medical field in the early 1990s, the phrase
“evidence-based” was formulated to refer to medical practices based on evidentiary data [6] and the
phrase has since entered into generalized use. It is only in recent years, however, that the emphasis on
evidence-based practices has entered the field of government [7,8].

Governmental institutions have traditionally selectively generated and managed the information
the government needs, using data for institutional maintenance and reinforcing organizational
capabilities rather than making them publicly available. Gradually, however, governments have
been encouraged to change this monopolistic approach to information management. Owing to rapid
changes in sociocultural environments and behaviors caused by globalization and the increasing
complexity and diversity of society as well as the development of ICT, there have been significant
changes in the environment in which governmental policies are implemented [9]. It is increasingly
argued that the government should eschew opinion-based policies and the selective application of
evidence, driven by ideological perspectives, prejudices, and conjecture, and instead make policy
decisions based on citable evidence, with ample access to data [10,11]. Research has found that through
evidence-based policymaking, governments can gain trust in a changing environment [12], justify
policy decisions, make policy decisions more quickly, resolve conflicts in the process of formulating
and implementing policies, and improve the quality of policies [13–15].

The key factors to evidence-based policymaking are securing the objectivity of the materials or data
used [16] and conducting scientific analysis [17]. Therefore, to reach the stage where evidence-based
policies can be established, it is first necessary to collect high-quality data that enable the suitable
analysis of the issue in question, select scientific methods to analyze this accumulated data, and apply
the analytical results to the process of designing policies. However, in only a few limited fields, such as
healthcare, security, and public safety, and environmental monitoring and response measures, have
governments been able to secure sufficient data with proven objectivity, conduct scientific analysis,
and apply these findings to formulate policies. One of the main reasons for this slow progress has
been the lack of accumulated data. However, data-based practices are now expected to become
applicable to a wider range of fields thanks to improvements in data collection, integration, and
analysis techniques [18].

Studies have analyzed the application of BDA to governmental practices in the healthcare, security,
and public safety sectors. In the healthcare sector, governments use Big Data to find the strongest
scientific basis for suppressing increases in medical expenses. One of the top priorities of governments
has been building an infrastructure that links the Big Data from various organizations through the
construction of databases that connect the individual patients of public administrative and medical
organizations by developing a network of data on existing medical services [1,19]. Using such databases,
studies have analyzed the optimal treatments and cost reductions based on predictions of high-cost
patients, readmitted patients, and occurrences of complications and medical incidents; other studies
have focused on applying these data and achieving service optimization through personalized medical
services, clinical decision support systems, and mobile devices [20,21].

In the public safety sector, governments identify crime trends by analyzing the times, areas,
and types of crime incidents within criminal records. These data are used to establish public safety
policies such as dispatching more police officers to certain crime-prone areas. Based on the analyzed
information, an application has been developed to improve citizens’ safety; this application notifies
citizens in areas in which crime is expected to occur to reduce crime rates. Studies of these issues are
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referred to as security informatics, an area of expertise continuously advancing through the integration
of technical, organizational, and policy-based approaches [22–24].

2.2. R&D Policy of the Korean Government: the Korea R&D Paradox

With the advent of the knowledge-based society in the 21st century, science and technology
have emerged as new growth engines for strengthening national competitiveness, outstripping the
importance of other factors of production such as capital and labor. As a result, countries globally are
continuously expanding investment in R&D to secure these growth engines. The Korean government
has also increased its R&D investment in pursuit of economic development through science and
technology. As of 2017, R&D investment in South Korea amounted to 78.8 trillion KRW, the fifth
largest in the world and the largest globally in proportion to GDP. Of this total, the government’s
R&D expenditure was KRW 19.4 trillion, nearly 5.5 times greater than the 3.5 trillion KRW spent
in 2000 [25]. In 2017, government-funded research institutes received 7.9 trillion KRW, academia
4.4 trillion KRW, SMEs 4.1 trillion KRW, large firms 0.4 trillion KRW, and other actors, including
public research institutes, 2.6 trillion KRW. In particular, R&D investment in SMEs has been steadily
increasing, rising from 2,854 billion KRW in 2013 to 4,119 billion KRW in 2017 (The proportion of R&D
support for SMEs was calculated based on the purchasing power parity index in 2010; the equivalent
index of South Korea was 56.8%, significantly higher than the percentages in the United States (11.4%),
France (24.8%), and the United Kingdom (25.2%) [26]); however, investment in large firms has been
decreasing, falling from 861 billion KRW to just 419 billion KRW in 2017 [25]. The government expects
to improve commercialization performance and economic growth by implementing R&D support for
SMEs, which account for 99% of all enterprises in Korea.

However, despite this proactive support, the level of commercialization performance achieved
as an outcome of government-sponsored R&D projects has continued to be low. According to the
government’s plan announced in 2014 to promote innovation among SMEs, the success rate of
commercialization attributed to government R&D projects for SMEs has been only around 50% [27].
Recently, the Presidential Advisory Council on Science and Technology formulated and approved a
national R&D innovation plan including a provision to double R&D investment for SMEs. The plan
sets quantitative targets to support SMEs, requiring government agencies and public institutions,
which have annual R&D budgets of 30 billion KRW, to invest a certain percentage of their R&D funding
in SMEs [28]. The problem is that performance has been analyzed in a fragmented manner based only
on R&D investment and the number of commercialized projects, and there is no systematic analysis of
which projects involving SMEs have achieved successful commercialization outcomes thanks to R&D
investment and whether such commercialization has generated actual sales.

The Korean government established the NTIS in 2006 to share and jointly utilize information on
national R&D projects, which had previously been managed by individual departments. However, the
government’s utilization of NTIS data has been limited to merely presenting R&D expenditure by actor,
research phase, and region using basic statistical analysis or releasing the number of achievements such
as papers, patents, and technology transfers, including commercialization performance. Although the
government has collected sufficient data on national R&D projects, it has been unable to effectively
apply data analytics to formulate data-driven R&D policies.

3. Analytical Method

3.1. Analysis Procedure

This study aims to derive the optimal solution for enhancing the efficiency of governmental R&D
investment in SMEs. As most of the data on R&D projects carried out in 2018 have not yet been entered
into the NTIS, we extracted data on 48,309 national R&D projects conducted by SMEs from 2013 to
2017. Python was used for data preprocessing and analysis.
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We next employed cluster analysis to group the data and thus examine the determinants of
commercialization performance. Cluster analysis is suitable for the exploration of the large amounts
of R&D project data made available by the Korean government. In addition, it can classify these
R&D project data to show their characteristics. Using the results of the cluster analysis, we can
then understand the structure of project data in high-performing projects when commercialization
performance outcomes are not revealed by using indicators such as average investment.

We then clustered the data into groups using the self-organizing map (SOM) algorithm [29].
Cluster analysis methods such as principal component analysis can efficiently form clusters using a
small quantity of data to interpret large-scale multidimensional data. However, some data are lost
because of the linear data reduction issue; another problem is that these methods are unsuitable for
analyzing non-linear targets [30,31]. To avoid these problems, we thus used the SOM algorithm, which
can process large-scale data quickly and performs the strongest of all available hierarchical cluster
analysis methods [32].

Table 1 shows the 13 input variables for the cluster analysis. These variables were based on
the project information available from the NTIS in 2017, which the Korean government uses for
the investigation, analysis, and evaluation of national R&D programs [25]. Based on the clustering
results, we used four indicators of commercialization performance in the NTIS, namely the average
number of commercialized projects, commercialization period, sales from commercialized projects,
and the number of jobs created by commercialized projects, to compare and analyze each cluster
(Table 2). Finally, we conducted a decision tree analysis using the classification and regression tree
(CART) algorithm to identify the determinants of commercialization performance for the projects in
the clusters [33]. The input variables for the decision tree analysis included not only the variables in
Table 1, but also the categorical variables that could not be used in the cluster analysis. Table 3 shows
the added variables and their descriptions.

Table 1. Input variables for the cluster analysis.

Variable Description

Project period Total project period

Source of funding Source of funding for R&D projects classified into a general account,
a special account, and funding

Government investment R&D expenditure invested by the central government

Private cash ratio

Cash ratio accounts for among the private-sector contributions by
the relevant performing organization and/or the local government in

addition to the proportion of the budget provided by the
central government

Private non-cash ratio

Non-cash ratio accounts for among the private-sector contributions
by the relevant performing organization and/or the local

government in addition to the proportion of the budget provided by
the central government

Research commissioned
Number of research projects commissioned and managed by

enterprises when some of the R&D projects are performed under a
contract or jointly performed

Funding for research
commissioned

Total support funding for research projects commissioned and
managed by enterprises when some of the R&D projects are

performed under a contract or jointly performed

Research commissioned
by an actor

Actor performing under a contract or jointly performing some of the
R&D project managed by enterprises; classified into enterprise,

university, government-funded research institute, foreign research
institute, and other

Continuation
R&D projects classified into new or continued projects. The latter
refers to projects whose project period has expired, but that have

been confirmed to continue
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Table 1. Cont.

Variable Description

Phase R&D phase classified into basic research, applied research,
development research, and other

Characteristics

Characteristics of the final outcomes of R&D projects in terms of:
project period, project budget, capabilities of researchers, current

level of R&D; classified into idea development, prototype
development, product or process development, and other

Practical use Target of R&D projects; classified into practical and non-practical use

Technology life cycle (TLC) Technology life cycle of R&D projects; classified into introduction,
growth, maturity, decline, and other

Table 2. Indicators of commercialization performance.

Indicator Description

Number of commercialized projects Number of commercialized projects

Commercialization period Difference between the year of commercialization and
year of the project start

Sales Sales from commercialized projects
Job creation Number of jobs created by commercialized projects

Table 3. Input variables for the decision tree analysis.

Variable Description

Name of department Name of the administrative department that manages all aspects of the
planning, evaluation, and management of R&D projects

Research field Research field of R&D projects; into nature, life, and artificial following the
national standard classifications of science and technology

Application field Application field of R&D projects; classified into industry and the public sector

3.2. Analysis Model

3.2.1. Cluster Analysis: The SOM Algorithm

The SOM algorithm, proposed and developed by Kohonen [29,34], is an unsupervised neural
network used to visualize and analyze high-dimensional data in the form of maps arranged in
easy-to-understand low dimensional neurons. It consists of two layers of artificial neural networks;
one is the input layer that receives input vectors and the other is the competitive layer comprising a
two-dimensional grid. In this layer, vectors are clustered at one point according to the characteristics
of the input vector. The input layer has the same number of neurons as the number of input variables,
and the competitive layer has the same number of neurons as the number of clusters predetermined by
the user. The data in the input layer are arranged in the competitive layer through learning, which is
called a map. The sorted data is displayed as a grid on the map. Data with similar patterns are located
close together on the map, while data with different patterns are located far away from each other.
This allows us to easily visually assess not only similarities in the clusters but also similarities between
the clusters. To determine the optimal number of clusters, we compared the silhouette coefficient
with the number of clusters and conducted the analysis based on the number of clusters with the
highest coefficient.

3.2.2. Decision Tree Analysis

Decision tree analysis classifies decision rules into a tree structure to perform the classification
and prediction. It is a data mining-based distribution technique that searches for large amounts of
unexpected or valuable structures. After the major input variables in a large amount of data are found,
decision tree analysis is useful for effectively analyzing the interactions between the individual factors
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to determine how the various interactions affect the target. In addition, since the analysis process is
expressed through a tree structure, it is easy to interpret.

The CART algorithm can be applied regardless of the scale of the objective or input variable.
Moreover, the decision tree can be easily interpreted by dividing it through binary splits rather than
multiple splits. Another advantage of this approach is that the process of analysis is expressed in the
form of trees, which simplifies the interpretation and requires no assumptions of linearity or normality
in the variables. This enables the use of both continuous and categorical variables.

Depending on the type of objective variable, the CART algorithm classifies continuous and
categorical variables under the classification tree and regression tree, respectively. In cases where the
objective variable is categorical, such as in this study, the Gini index and entropy are used to measure
impurity. Optimal splitting is conducted by selecting the input variables that minimize the Gini index
and entropy [35]. Furthermore, it is robust in response to outliers, and is a non-parametric method that
does not require assumptions about the distribution. Since the first separation occurs for the variable
with the strongest explanatory power, it is an effective method for identifying important variables.
Hence, this study used the CART algorithm to derive a predictive model for the creation of qualitative
commercialization performance, which is then verified using 10-fold cross-validation. To evaluate the
performance of the predicted outcomes, we use the receiver operating characteristic curve to calculate
the area under the curve (AUC) [36].

4. Results

4.1. Clustering Results

We used the SOM algorithm to cluster the 48,309 national R&D projects conducted by SMEs from
2013 to 2017. First, we compared the silhouette coefficients for each number of clusters to select the
optimal number of clusters. Upon comparing the values from 2 × 2 up to 10 × 10, we found that
the 3 × 3 clusters had the highest silhouette coefficient value (0.4523) and therefore we conducted
clustering using 3 × 3 clusters (Figure 1).

Figure 1. Silhouette coefficients by the number of clusters.

Figure 2 presents the results of the cluster analysis using 3 × 3 clusters, showing the distribution
of observations across each cluster. Cluster 21 (C21) was the largest, with 15,006 projects, followed by
C20 and C02, while C10 was found to be the smallest cluster. As the clustering results included no
outlier clusters, we analyzed all the clusters to calculate the average governmental investment per
R&D project, as shown in Figure 3, and the average number of projects in which R&D successfully
led to commercialization. In the case of successfully commercialized projects, we examined the
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average number of commercialized projects, average commercialization period, average sales from
commercialized projects, and average number of jobs created by commercialized projects (Figure 4).

Figure 2. Clustering results using the SOM algorithm.

Figure 3. Average government investment per R&D project (Unit: 100 million KRW).

First, the clusters in which R&D projects led to the highest commercialization performance were
C10 and C00. The average time required in C10 and C00 to yield commercialization performance
was relatively short, at 0.37 and 0.16 years, respectively. However, while the projects in these clusters
reached commercialization in the short term, they were found to have performed more poorly than
those in other clusters in terms of qualitative performance, such as sales and job creation. This finding
indicates that rapid commercialization in more R&D projects does not necessarily lead to qualitative
performance. In particular, although C10 received the largest amount of governmental investment,
it was observed to have poor commercialization performance.

Conversely, the cluster with the longest commercialization period, C01, was found to be among
the three worst performing clusters in terms of generated sales and job creation. This finding shows
that a longer average commercialization period also does not necessarily lead to strong qualitative
performance. For C21, another cluster that had a longer commercialization period, it took more than
one year to achieve commercialization. However, C21 was among the three best performing clusters in
terms of sales as well as exhibiting relatively strong job creation performance. Most of the projects
in C20, which performed well in terms of both measures of qualitative performance (sales and job
creation) were found to have reached commercialization within six months of the completion of the
R&D projects. While the cluster with the highest revenue, C22, appears to have generated high revenue
due to the large number of commercialized projects, it also performed relatively well in terms of
job creation while also requiring only a short time to reach commercialization (under six months).
Considering these findings, we conclude that the commercialization period does not appear to be a
determining factor for the qualitative performance of commercialization.
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Figure 4. Commercialization performance of each cluster. (a) Average number of commercialized
projects (Unit: number of projects). (b) Average commercialized period (Unit: year). (c) Average
sales from commercialized projects (Unit: 100 million KRW). (d) Average number of jobs created by
commercialized projects (Unit: number of jobs).

4.2. Determinants of Commercialization Performance in Each Cluster

Based on the results of the cluster analysis, we conducted the decision tree analysis to identify
the specific factors that led to the qualitative performance in C20 and C22. We also examined which
factors led to the qualitative performance in C21 as opposed to another cluster that had similar times
to commercialization, C01, which required a longer period to reach commercialization than C20 and
C22. Table 4 reports the measured AUC values. Values closer to 1 indicate the higher accuracy of the
predictive model; an AUC value of 1 indicates perfect accuracy, while values lower than 1 but greater
than or equal to 0.9 may be interpreted as indicating high accuracy. Since all the AUC values measured
for each cluster exceed 0.9, the predictive models for each cluster derived in the decision tree analysis
can be regarded as being reliable.

Table 4. AUC values of each cluster.

Cluster AUC Value

C00 0.9996
C01 0.9994
C02 0.9998
C10 0.9881
C11 0.9982
C12 0.9996
C20 0.9982
C21 0.9998
C22 0.9999
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The results of the decision tree analysis for each cluster are as follows. In the case of C20, which
yielded the strongest qualitative performance in terms of job creation, projects designated for “practical
use”, characteristics equal to “other development”, and a technology life cycle equal to “other” had
a 0.9814 probability of being in C20. Next, projects designated for “practical use”, characteristics
equal to “other development”, a technology life cycle equal to “emerging”, and a phase equal to
“applied research” had a 0.9600 probability of being in C20. Projects designated for “practical use”,
characteristics equal to “other development”, a technology life cycle equal to “growth”, “maturity”, or
“decline”, and a phase equal to “applied research” had a 0.8312 probability of being in C20 (Figure 5).

Figure 5. Decision tree analysis results for C20.

In the case of cluster C22, which demonstrated the strongest qualitative performance in terms of
sales, new projects “not designated for practical use” with characteristics equal to “idea development”
or “other development” had a 0.9994 probability of being in C22 (Figure 6). Among the projects in
C21, which had a longer period to commercialization than C20 and C22 but yielded strong qualitative
performance in terms of sales and job creation, new projects “not designated for practical use” with
characteristics equal to “product or process development” had a 0.9993 probability of being in C21
(Figure 7). Among the projects in C01, which had a longer period to commercialization, as in the case
of C21, but performed poorly in terms of sales and job creation, new projects designated for practical
use with characteristics not equal to “other” had a 0.9801 probability of being in C01 (Figure 8).

Figure 6. Decision tree analysis results for C22.
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Figure 7. Decision tree analysis results for C21.

Figure 8. Decision tree analysis results for C01.

Of the projects that required a longer-than-average commercialization period, those not
designated for practical use were found to perform better. Projects not designated for practical
use with characteristics equal to “product or process development” were found to take longer
until commercialization but performed better in terms of sales and job creation when they were
commercialized successfully. Therefore, projects not designated for practical use with characteristics
equal to “product or process development” appeared to require sufficient time rather than
rapid commercialization.

C22 showed a large number of projects for non-practical use. In addition, C21, which generated
strong qualitative performance, had many projects for non-practical use. However, C01 had a low
number of commercialized projects and did not create high qualitative performance, and projects
for practical use belonged to C01. Projects for practical use are those in which firms participate to
commercialize technology to generate economic and social value from sales and job creation. However,
such projects for practical use failed to achieve the expected levels of commercialization, indicating a
mismatch in government R&D policies.

5. Conclusions and Implications

This paper presented a new case of a government’s application of BDA. Based on data on national
R&D projects in Korea, we conducted cluster and decision tree analyses to identify the determinants of
commercialization performance. These analyses showed a low success rate of commercialization for
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national R&D projects. Among successfully commercialized projects, many were not for practical use,
indicating a mismatch in government R&D policies. In addition, many projects were commercialized
but failed to create sales or jobs; this shows a lack of social and economic value creation, which is
the primary goal of governmental R&D investment in SMEs, and thus a failure to realize a return
on investment.

The findings of this study suggest the following policy implications. First, considering the finding
that governmental investment did not lead to the determinants of commercialization performance,
policymakers must be selective and focused when they design R&D policies for SMEs, as the expansion
of inputs does not necessarily lead to an increase in outputs. It seems that the linear-based viewpoint,
in which increasing R&D investment simply leads to national economic growth, has prevailed in the
policymaking arena. In other words, the results of the cluster analysis show that under the current
structure of R&D support, large investment projects do not lead to qualitative commercialization
performance. Moreover, although the proportion of projects with less investment is large, such projects
do not lead to qualitative performance, either. As such, to enhance the effects of R&D support, it is
necessary to first elaborate on how to select supported targets and determine the optimal investment
for them.

Second, policymakers must conduct integrated reviews of projects designated for practical use.
Whether being designated for practical use was analyzed as the determinants of commercialization
performance. Interestingly, however, projects not designated for practical use, but aimed at the
development of products or processes, have higher commercialization performance than those
projects designated for practical use and with the characteristics of R&D that may directly lead to
commercialization performance such as prototypes or product/process development. Policymakers
focus on the practical application and commercialization of technologies when providing R&D support
for SMEs as well as expanding the proportion of projects designated for practical use; however, the
findings of this study show that the effectiveness of such efforts is low. As such, it is necessary to fully
review the achievability of objectives and possibility of the realization of performance when selecting
projects for practical use rather than first expanding the proportion of projects for practical use.

Finally, policymakers must review the R&D information collected by the NTIS when establishing
data-driven R&D policies. It is difficult to interpret those R&D characteristics analyzed as determinants
of commercialization performance when they are categorized as “others”, making it hard to apply
them when formulating policy. Indeed, it is difficult to identify their exact intent because of a lack of
standardization. It is thus necessary to ensure collected items can be converted into analyzable data to
help policymakers apply the data derived from national R&D projects in practice.

Hence, this study makes a significant contrition to the literature by expanding the field of
governments’ application of BDA and presenting a case of policymaking based on data. In addition, it
shows that the government should be concerned about what data can be made available in the future
to make policy decisions. Future research is, however, necessary to more closely examine the factors
identified in this analysis as determinants of commercialization performance.
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