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Abstract: Renewable energy technologies can not only help in mitigating the greenhouse gas (GHG)
emissions but it can also be very useful for electricity generation at remote locations, where no
other means of power are available. The present study focuses on the techno-economic optimum
design of a small hybrid renewable energy system (HRES) consisting of wind-solar as primary energy
sources. The HRES was modelled for a remote island (Deokjeok-do Island, South Korea) using real
electricity consumption data for one complete year. A daily mean load of 24,720 kWh was entered at
Deokjeok-do Island with a peak load of 2291.54 kW. Average annual values of wind speed and daily
solar radiations were estimated to be 3.6 m/s (10 m height) and 4.13 kWh/m2, respectively. A total of
8760 simulations were performed to achieve the hourly load demand of the mentioned island. In
order to deal with the surplus and electricity deficit, two different types of energy storage systems
(ESS) were modelled i.e., battery and pumped hydro storage (PHS). Four different HRESs were also
evaluated as the most suitable based on levelized cost of energy (LCOE) and net present cost (NPC).
A detailed economic break-down of each component and the impact of different sensitivity variables
on decision making have also been discussed in detail.

Keywords: hybrid renewable energy system (HRES); energy-economics; energy storage system (ESS);
levelized cost of energy (LCOE); net present cost (NPC); sustainable assessment

1. Introduction

With the rapid increase in the population of the world over the last few decades, it has now become
a serious challenge for governments and energy policymakers to fulfil the electricity requirements of
the majority of the people. According to the international energy agency (IEA), 1 out of 5 people in the
world had no access to electricity until 2010 [1]. Most of the people having no access to electricity live in
remote areas, such as villages and islands. One of the solutions is main grid extensions to such remote
areas, but, for locations which are quite a far from main areas, this solution is not a feasible choice,
not only from a technical point of view but economically as well. So, one of the best alternatives is to
build an independent electricity production unit at such sites consisting of locally available renewable
energy resources such as wind and solar [2–6].

Starting at now, numerous relevant examinations of presenting HRES at a remote territory have
been driven far and wide. For instance, A.P. Navarro et al. [7] arranged a blend structure involving
biomass and wind to plan a power plant with a limit of 40 MW in Spain. Beside the guideline
framework, their organized HRES moreover involved various parts, for instance, extra generators,
ESS and biogas generators too. H. Borhanazad et al. [8] completed an examination to analyze the
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breeze qualities, sun controlled radiations and hydro ability of different territories in Malaysia for
commonplace zap. M. Jibran et al. [9] surveyed the biomass capacity of Pakistan and expressed that
biomass can produce 24% of the total electricity demand of the country. They thought about biomasses,
for instance, city strong waste (MSW), bagasse and local creatures compost in their assessment. Binayak
B. et al. [10] thought about an extraordinarily commendable model of HRES for town zap, containing
wind-PV-hydro as fundamental vitality sources. They showed that presenting such HRESs at remote
zones can be monetarily more affordable when contrasted with customary assets of vitality, for example,
atomic. Mazzola et al. [11] organized a PV-biomass based HRES for a network in India and coordinated
its money related probability too. The creators referenced that LCOE can be reduced up to 40% at
whatever point differentiated and analyzed against power age from diesel generators. Furthermore,
Jameel A. et al. [12] analyzed the HRES involving wind-PV-biomass as fundamental vitality hotspots
for a network in Pakistan called the Kallar Kahar. The examination was driven for various conditions
and analysts proposed the foundation of HRES near recently referenced site dependent on strong
moderate financial outcomes.

South Korea is one of such countries which has a large number of islands within its territory.
Most of these islands are connected with a central grid for fulfilling electricity requirements. However,
there are also few islands which are situated at quite a large distance from the mainland, making it
impossible to connect them with a central grid. One of such islands is Deokjeok-do Island (latitude:
37.22◦, longitude: 126.15◦), which is situated at a distance of almost 50 km from Incheon seaport.
Currently, most of the electricity being generated here comes from fossil fuels but the government
intends to make the mentioned island, along with other nearby islands, 100% diesel-free. In the present
study, an independent and off-grid hybrid renewable energy system (HRES) is designed and optimized
to supply the environmental-friendly energy for the island.

There are a number of studies that have been conducted recently in order to determine the
feasibility of installing HRES in remote areas of South Korea. For instance, S. Baek et al. [13] considered
Busan, a large metropolitan city in South Korea, for developing an optimal renewable energy power
generation system. The study used the electricity consumption data of Busan City for the year 2013
and performed multiple scenario-based case studies. They considered only wind and solar as primary
energy sources and found that the lowest LCOE corresponded to a value of approximately 0.399 $/kWh
with 100% renewable energy fraction (REF). In another empirical study, S. Baek et al. [14] designed
renewable energy power systems for the largest international airport of South Korea i.e., Incheon
international airport. The authors’ used current load (100% load), 120% load and 140% load as the base
input values for three different scenarios, respectively. On the basis of economic parameters such as
LCOE and NPC, the authors stated that all the electricity requirements of the mentioned airport can be
fully covered by renewable energy only.

Similarly, S. Baek et al. [15] also designed an optimal HRES for an emerging island of South Korea
known as Yeongjong Island. This small island has critical importance in the economy of South Korea
as the Incheon international airport is situated on this island. The authors strongly recommended
the installation of HRES consisting of 11 Generic 10kW wind turbines and 357kW of PV panels with
LCOE of 0.545 $/kWh and NPC corresponded to almost 3.51 million USD. A very similar study was
also performed by H. Kim et al. [16] focusing on Jeju Island, the largest island in South Korea. The
authors generated multiple scenarios under two major categories i.e., grid-connected and off-grid
power generation systems. They found that a grid-connected HRES will be the most suitable for Jeju
Island consisting of PV-wind-battery-converter with the lowest LCOE. E. Park and S. J. Kwon [17]
suggested a novel method to use HRES for powering electric-powered (EP) taxis in Daejeon, South
Korea. They came up with the three most suitable (lowest LCOE and highest REF) HRESs for this
purpose: most reliable case (grid-connected) with LCOE 0.425$/kWh and REF 0.82, most optimal case
(grid-connected) with LCOE 0.180$/kWh and REF 0.79, and most optimal off-grid case with LCOE
0.461$/kWh and REF 1.0. Similarly, E. Park and S. J. Kwon [18] and K. Yoo et al. [19] also suggested an
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optimal, independent HRES for Gadeokdo Island and Ulleungdo Island in South Korea, respectively.
Some of the other case studies are also prominent in this regard for South Korea [20,21].

1.1. Concept of Hybrid Renewable Energy System (HRES)

Hybrid renewable energy system (HRES) or simply, renewable energy system comprises of at
least two types of renewable energy resources such as wind potential and solar potential. The main
idea about the concept of HRES is to supply cheap and sustainable electricity to areas especially quite
away from mainland. HRES may be connected to the main power station or it can also be a separate
electricity generation system, with its own system for dealing with excess electricity. Figure 1 shows
the conceptual design of a typical HRES in which pumped hydro storage (PHS) is being used as an
energy storage system (ESS). There are three types of energy sources mentioned in Figure 1, wind,
solar and water stored at a particular height. One of the advantages of such HRES is also that it can
utilize rainwater very efficiently to produce electrical power. As shown in Figure 1 that rainwater
can be stored in the upper reservoir (UR) and then it can be allowed to run down to rotate the hydro
turbine rotor for producing electrical power. Lower reservoir (LR) collects the water and pump stores
it back into the UR [2–6].

Figure 1. Conceptual design of a typical hybrid renewable energy system (HRES) [22].

The main objectives of the current work include:

• Studying the feasibility of designing small HRES consisting of wind and solar as primary energy
sources. The intended capacity of small HRES is 1 MW.

• Designing PHS for storing surplus electricity
• Comparing PHS with batteries on economic grounds
• Investigating multiple scenario-based cases of HRES on the basis of detailed

techno-economic analysis.

1.2. Profile of Deokjeok-Do Island, South Korea

Deokjeok-do is an island in South Korea, situated 45 km away from Incheon City. The total area
of Deokjeok-do Island is almost 21 km2 with a population over 17,000. This island is too far from the
mainland of the country, therefore it is not economically feasible to connect this place with a grid in
order to supply electricity. Therefore, Deokjeok-do generates its own electricity using diesel fuels, but
recently, the local administration has shown its interest to make Deokjeok-do, a green island in terms
of electricity generation. This study analyzes the available renewable energy potential at the local site
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and then suggests an optimal HRES based on economic evaluations. Figure 2 shows the geographical
location of Deokjeok-do Island.

Figure 2. Location of Deokjeok-do Island in South Korea.

Although small HRES can also integrate other renewable energy resources such as tidal, biomass
and food-waste along with just wind-solar nexus. All of these resources are available at the studied
site but due to the unavailability of such data, these technologies were not considered in the current
study and only wind-solar were investigated.

2. Materials and Methods

This section presents some of the important details about Deokjeok-do Island such as electric load
and the potential of available renewable energy sources.

2.1. Assessment of Electricity Consumption

So, as to ideally plan an HRES, electricity data, for example, top load, day by day normal power
utilization and hourly consumption profile are of basic significance. The easy-accessibility of electricity
data empowers planning a progressively optimal HRES.

Figure 3 demonstrates the month to month power utilization at Deokjeok-do [23]. The mean daily
burden was observed to be roughly 24,720 kWh with pinnacle heap of 2292 kW regularly happening
during the winter season, and complete yearly power utilization approaches to an estimation of
7.3 GWh. The power utilization in winter is much larger than other seasons because of the frequent
utilization of room warming facilities fueled by electric power.

2.2. Estimation of Renewable Energy Potential

The present study will consider only two renewable energy sources namely wind and solar. The
potential of each source will be estimated and how it can affect the power production, is analyzed
at first.

2.2.1. Wind Resources Assessment

The authors [22] have studied the wind characteristics at Deokjeok-do and found that most of the
winds are coming from the south-west with an average wind speed of 3.6 m/s at a 10 m height. There
are two important statistical parameters needed to be estimated while analyzing the wind potential,
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called the Weibull probability density function (PDF) and cumulative distribution function (CDF),
respectively and can be defined mathematically as:

PDF = f (v) =
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where, k, c and v are Weibull shape parameter, Weibull scale factor and wind speed, respectively. k
determines the x-axis of Weibull distribution whereas c determines the y-axis. The accurate estimation
of these two important parameters is of critical importance. There are a lot of methods to estimate
these variables but the empirical method will be deployed in the current study due to its accuracy and
robustness [22]. In the following equations, vm is mean wind speed, n is number of wind data, σ is the
standard deviation and Γ is called gamma function.
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Figure 3. Monthly electric load at Deokjeok-do Island [23].

Figure 4 shows the wind characteristics of Deokjeok Island prepared using wind data (2005–2015)
measured at 10 m height as measured by Korean Metrological Administration (KMA) [24] and analyzed
by the authors [22]. The most frequent wind speed is 4 m/s as shown in Figure 4b.
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Figure 4. Wind conditions at Deokjeok-do Island (a) Wind rose (b) Weibull plot [22].

2.2.2. Solar Resources Assessment

A study conducted by O. Nematollahi and K.C. Kim [25] estimated the solar potential over
different parts of South Korea. The authors used 24 locations to cover the whole country and stated the
monthly radiation and clearness index of each of the 24 locations. The solar data used by them were
collected for five years (2011–2015) and originally recorded by Korean meteorological administration
(KMA). The authors averaged out all the five years of data and reported the final results. The present
study will use, the results of O. Nematollahi and K.C. Kim [25] to estimate the solar resources of
Deokjeok-do Island. Out of these 24 locations, Incheon City is the nearest to Deokjeok-do Island,
therefore solar radiations over Incheon city will be considered identical as over Deokjeok-do Island
because of the facts that data were averaged out for five years.

Figure 5 shows the estimated solar radiations over Deokjeok-do Island used as input for HOMER
pro simulations.
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Figure 5. Monthly solar radiations at Deokjeok-do Island [13].

2.3. HOMER Pro Simulation

In the present study, the plan for renewable energy installed at Deokjeok-do Island is optimized
using HOMER pro software (Hybrid Optimization Model for Electric Renewables) [26]. All the
above-mentioned data such as load, wind and solar potential were inputted to HOMER pro. Table 1
presents the essential characteristics (technical as well as economic) of all the equipment selected for
the present study.

Table 1. Selected Equipment.

Equipment Model Capital Cost
($/kW)

Replacement
Cost ($/kW)

O&M Cost
($/year)

Lifetime
(years)

Converter MTP-413F
25kW 800 800 10 10

Battery Surrette
6CS25P 250 250 1 20

PV Panel CS6X-325P 1500 1500 30 25
Wind Turbine STX 93/2000 2,889,747 2,889,747 112,375 20

It must be mentioned that equipment was selected after carefully following the guidelines provided
by previous authors [13–22] except wind machine, which was shortlisted by adopting the technique
recommended by the authors [27].

Leonics MTP-413F was selected as the converter as recommended by Busaidi et al. [28] and Akikur
et al. [29] for medium-sized HRES such as generating electricity between 5 GWh to 10 GWh annually.
This model was also recommended by Mandelli et al. [30] based on its low capital and replacement
costs, respectively. Similarly, a kinetic model of battery (6CS25P) manufactured by Surrette is by far
the most commonly used battery model for such type of feasibility studies due to its economic benefits
(only 1 USD replacement cost). There are many different types of PV modules available but solar
module named CS6X-325P manufactured by Canadian Solar Inc. is best suitable for Deokjeok-do
due to its long lifetime (25 years) and high efficiency (20%). Apart from the technical superiority of
CS6X-325P over other PV modules. One other advantage is that this PV panel has a very low capital
cost ($1.5/W). Wind turbine model was selected according to the wind characteristics of Deokjeok-do
and the detailed procedure can be found in the previous study by the authors [27].

Table 1 summarizes all the selected equipment modules and essential details.
Figure 6 displays the HOMER model developed for present work having separate transmission

lines for direct current (DC) and alternate current (AC).
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Figure 6. HOMER model [31].

2.4. Pumped Hydro Storage (PHS) as Alternate Energy Storage System (ESS)

Although HOMER pro only models batteries as default ESS, other types of ESSs can also be
designed separately and compared with batteries. One of such energy storage systems is pumped
hydro storage which is a mechanical type of ESS, as shown in Figure 1. Surplus electricity from HRES
is consumed by a pump to lift the water in order to fill the upper reservoir (UR). On the other hand,
the electricity deficit of HRES is compensated by running a hydro turbine, which uses stored water in
UR. Lower reservoir (LR) can be a tank or it can also be some other natural water resource such as a
river or sea, depending upon the geographical characteristics of the local site. In the current case, as
Deokjeok-do is an island, so the sea will be considered as a lower reservoir.

In the customary PHS for coal-fired power plants or atomic plants, two water stores are required
to be situated on the upper mountain and the lower valley. With the innovation improvement, seawater
can now likewise be utilized as a lower water reservoir, especially in cases of remote islands where
there will probably not be a sufficient new water source. Furthermore, remote islands are encompassed
by the ocean, and in this way, geographical characteristics are also a reason to use seawater as the
lower reservoir. The possibility of utilizing seawater for PHS was first analyzed by Japan [32], and a
small power plant based on PHS as ESS was developed at Okinawa, with an approximate effectiveness
of 77% [33].

Modelling of PHS

The accurate size determination of each component of PHS is significantly important in the
designing process. The size of the pump must be greater than the maximum surplus electricity from
HRES and similarly, the size of the hydro turbine must also be larger than the maximum electricity
deficit. In the current case, there is no need to design LR, as stated above that LR will be the sea.
Accurate size determination of UR is the most complex step in PHS designing process. For designing
UR, pump flow rate (qp(t)) and hydro turbine flow rate (qt(t)) must be known at first place. Pump
flow rate can be defined as follows [34]:

qp(t) =
epPHRES→p(t)

ρgh
= cp.PHRES→p(t) (7)

where ep is overall pumping efficiency (0.5), PHRES→p(t) is surplus power from HRES to pump, ρ is
water density (1000 kg/m3), g is the acceleration due to gravity (9.8 m/s2), h is UR height (60 m assumed)
and cp is called the water pumping coefficient (3.06 m3/kWh), respectively. Similarly, the turbine flow
rate can be defined as follows:

qt(t) =
Pt→HRES(t)
ρghet

=
Pt→HRES(t)

ct
(8)
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where Pt→HRES(t) is the power from the hydro turbine to HRES, et is turbine efficiency (0.65) and ct is
called the turbine generating coefficient (0.106 kWh/m3), respectively. Amount of water in UR at any
time t (QUR t), can be estimated from the following equation:

QUR t = QUR t−1(1− α) + qp(t) − qt(t) (9)

where α is called the evaporation and leakage loss coefficient, which is assumed to be 10% for the
current study. The cost of each component of PHS is estimated by using guidelines provided by
T. Ma et al. [35].

3. Results and Discussion

This section will present the analysis on the basis of detailed technical and economic calculations
and characteristics of the most ideal energy systems best-suited for Deokjeok-do. There were a total of
551,035 systems generated by HOMER pro simulations but the number of feasible systems solutions
were limited to only 232,683.

Out of all the feasible system solutions (232,683), two systems (base cases) were selected as the
most appropriate choice based on lowest possible net present cost (NPC) and lowest possible levelized
cost of energy (LCOE). Both systems are defined as below:

• HRES A (base case): Energy system having lowest NPC
• HRES B (base case): Energy system having lowest LCOE

Table 2 shows the values of some variables for base cases (HRES A and HRES B) and for many
other sensitivity cases. The values of sensitivity variables are selected in such a way that same numbers
have been added and reduced from base values of variables as it is apparent from Table 2 as well.
There can be multiple other combinations of sensitive variables which can be investigated, but that
will make this study too lengthy and out of the scope of current purpose.

Table 2. Sensitivity Variables (HOMER Inputs).

Average Daily Electricity
Consumption (kWh/day)

Interest Rate
(%)

Project’s Total Life
(Years) Case

25,000 6 20 Base
20,000 4 15 Sensitivity
30,000 8 25 Sensitivity

3.1. Optimum HRESs with Battery as ESS

Table 3 summarizes the essential characteristics of two optimal energy systems with batteries
as the only option for energy storage. As batteries are one of the most expensive components of an
HRES [32,34], so alternate ESS such as pumped hydro storage (PHS) will also be designed for both
systems and costs will be compared with each other (Section 3.2). Net present cost (NPC) of energy
system A is 11.3 million USD (lowest) whereas the lowest LCOE is 0.123 USD/kWh in case of energy
system B. Table 3 conjointly displays the values of sensitivity variables at which optimum system
solutions are obtained. Project lifetime of system A (15 years) is a smaller time period than that of
system B (25 years), that’s conjointly one amongst the explanations for low NPC of system A. Generally
speaking, energy systems with low LCOE are preferred because of the fact that governments can
support to reduce the overall NPC of the project via different subsidiary schemes related to renewable
energy projects. So, relatively high NPC can be acceptable in some cases but high LCOE produces
serious drawbacks related to the selection of the project.
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Table 3. Both HRES Planned.

Variable Unit System A System B

NPC Million $ 11.3 17.61
LCOE $/kWh 0.158 0.123

Total Load Scaled
Average kWh/day 20,000 20,000

Nominal Interest Rate per cent 8 4
HRES Life years 15 25

Table 4 shows the total capacity of all equipment selected for system A and system B. Each HRES
comprises of one wind turbine and almost 1000 kW capacity converter. Solar panel capacity of HRES B
(3157 kW) is larger than HRES A (2504 kW), due to which the initial cost of HRES B is more than HRES
A. One point must be mentioned here that by choosing a suitable wind turbine according to local
wind characteristics, each HRES may have different system architectures as compared to the current
scenario [17]. However, choosing a suitable wind turbine for any site requires a complex analysis
involving extreme wind speed (EWS), turbulence intensity (TI) and local geographical characteristics,
which are out of the scope of present work, so not performed here [22,27].

Table 4. Systems Architecture.

Component Model Unit Size (System A) Size (System B)

PV Panels CS6X-325P kW 2504 3157
Battery Surrette 6 CS 25P strings 7197 6269

Wind Turbine STX 93/2000 ea. 1 1
System Converter Leonics MTP-413F 25kW kW 1006 1009
Dispatch Strategy HOMER Cycle Charging N/A N/A N/A

Adding different renewable energy resources such as biomass, tidal energy and food-waste to
both systems, will definitely change the architecture of both systems as it is presented in Table 4. Doing
so, may reduce the LCOE but will definitely increase the overall NPC. Such an investigations have
not been performed here due to unavailability of such data at the local site. However, it is highly
recommended to integrate as many renewable resources as available on the local site with the basic
HRES just consisting of wind and solar energy.

Table 5 shows the summary of electricity production by each component and electricity
consumption as well. As it is clear from the Table that PV panels are the main contributors of
power generation in both cases. Both systems can independently fulfil all the electricity demand of
Deokjeok-do Island, as it is also clear from Table 5 as well.

Table 5. Electricity Production Details.

Electricity
Details

Unit
System A System B

Value Percent of Total
Production Value Percent of Total

Production

PV production kWh/annul 5,173,542 57.37.30 5,969,810 60.83
WT production kWh/annual 3,843,132 42.62 3,843,132 39.16

Total kWh/annual 9,016,674 100.00 9,812,942 100.00
Demand kWh/annual 7,296,369 80.92 7,296,369 74.35
Surplus kWh/annual 1,033,288 11.46 1,821,884 18.57
Unmet kWh/annual 3,631 0.04 3,676 0.04

One shortcoming of the current study is that the simulated data shows results for only one year of
electricity demand (7,296,369 kWh). As the project is planned for 20 years, so it is not known whether
the systems selected in Table 4 be able to fulfil all the electricity demands of the island or not for
upcoming years? One way to address this issue will be probably to use the ‘simulated electricity
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demand’ data of the studied site. However, unfortunately, such data are also not available. So, it is
assumed that electricity demand will remain fixed during all next 20 years. Although, the electricity
demand selected (7,296,369 kWh/year) in this study was the highest number for the last 20 years.

Figures 7 and 8 show the NPC and annualized costs of all the equipment of both system solutions,
respectively. Both the figures indicate that solar panels are the most expensive equipment and also,
their annual maintenance cost is the highest as well for both systems. Capital cost includes different
type of costs occurred at the start of the project such as equipment cost, installation cost, labor cost
and transportation costs. As it is clear from Figures 7 and 8 that capital cost is almost 70% of the
total NPC and annual cost. The second type of cost is annually occurring operating and maintenance
cost which includes workers’ salaries, annual cleanliness cost, fuel cost and electricity cost to run the
auxiliary equipment at the power plant. Replacement cost is used to buy new equipment during the
project running time, once the lifetime of any equipment has finished, as shown in Table 1. Salvage
are those benefits which are obtained by selling all the project equipment and other items after the
project lifetime of 20 years. In Figures 7 and 8, positive cash flow represents costs and negative cash
flow (salvage) are benefits.

Figure 7. Net present cost (NPC) breakdown for both systems (a) System A (b) System B.

Figure 8. Annualised cost breakdown for both systems (a) System A (b) System B.

Figure 9 shows the impact of wind turbine hub height on the economics of both systems i.e.,
HRES A and HRES B (NPV is the net present value which is the difference between present values of
benefits and costs, NPV > 0 is must [27]). It is important to estimate the appropriate hub height as it
has a direct effect on the electricity generated by wind turbine, which subsequently changes the values
of NPV and LCOE. As the hub height increases, wind turbine rotor interacts with relatively higher
wind speeds as compared to lower heights, which generates more electricity but, at the same time cost
of tower increases and VICE VERSA for lower hub heights. So, it is a trade-off between more electricity
and the cost of the tower. Figure 9 determines the optimal hub-height for each case.
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Figure 9. Effect of wind turbine hub height on the economics of both systems.

Finally, Table 6 shows the annual amount of pollutant gases emissions due to the operation of
both systems.

Table 6. Pollutants Emission.

Pollutant Unit System A System B

CO2 kg/annum 795 700
CO kg/annum 8.83 7.77

Unburned Hydrocarbons kg/annum 0 0
Particulate Matter kg/annum 0 0

SO2 kg/annum 0 0
NOx kg/annum 5.52 4.86

3.2. Optimum HRESs with PHS as ESS

HOMER Pro software automatically considers batteries as default ESS for storing surplus electricity
from HRES. However, batteries are one of the most expensive components of any HRES [18]. Therefore,
it was decided to design an alternate ESS such as PHS and compare the results with batteries on
economic grounds. Table 7 shows the values of all important parameters related to the designed PHS
for both optimal HRESs. The technical and economical methodologies for preparing Table 7 have
already been covered in Section 2.4 respectively and can also be found in reference [34]. Both systems
have equal sizes of hydro turbines, whereas the size of the pump is slightly higher in case of system
B. Table 7 also shows the amount of water that must be put inside UR at t = 0 (even before the start
of operation). This is due to the fact that at the start of operation (during few early days) there will
always be electricity deficit in case of both systems, therefore, it will require additional electricity from
the hydro turbine to successfully fulfil the electricity demand of Deokjeok-do Island. It is also clear
from Table 7 that PHS is slightly cheaper than batteries in terms of initial investment for both optimal
system solutions.

Table 7. Pumped hydro storage (PHS) Design for Both Systems.

Parameter Unit System A System B

Maximum hourly deficit of
electricity during the year kW 1005 1009

Size of hydro turbine kW 1020 1020
Maximum hourly surplus
electricity during the year kW 3578 4211

Size of pump kW 3600 4220
UR size m3 229,770 255,300

Minimum level of water in UR m3 275,72 459,54
Date of min. water level in UR date 12/20/2017 11:00:00 10/29/2017 7:00:00
Amount of water in UR at t = 0 m3 528,47 199,134
Capital Cost of hydro turbine Million $ 0.612 0.612

Capital Cost of pump Million $ 0.49 0.58
Capital Cost of UR Million $ 0.22977 0.2553

Total capital cost of PHS Million $ 1.33497 1.44544
Total capital cost of battery bank Million $ 1.8012 1.575
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Figure 10 shows the amount of water in UR throughout the year for both systems A and B. During
the summer season UR is almost fully filled with water for system A whereas it is winter season for
system B. On average basis, water level in UR is less than 50% for 252 days in case of system A and it is
298 days for system B. Minimum levels of water in UR for both systems have already been mentioned
in Table 7. One of the reasons for very low water level during winter and summer seasons (in case of
HRES A and HRES B respectively) is due to the high consumption of electricity during these days. In
South Korea, during the winter season, the minimum temperature passes below -15 ◦C which requires
relatively more electrical energy for heating the indoors of buildings, resulting in high-demand of
electricity. Similar conditions can be associated with the summer season in terms of cooling the indoors
of buildings. Although Figure 10 just shows the water level in UR at any time of the year, this behavior
can be associated with the demand for electricity during the year. The trends are different in both cases
mainly due to the different architecture of both systems as shown in Table 4.

Figure 10. Amount of water in UR.

3.3. Sensitivity Cases

In spite of the fact that the most ideal framework arrangements have just been clarified in
detail in the above segments. In any case, it is additionally of basic significance to quickly explain
a portion of the other alternate framework arrangements based on economic assessments. So, as to
accomplish this objective, Figure 11 has been readied, which demonstrates numerous framework
arrangements acquired by superimposing NPC over LCOE. Figure 11 demonstrates an aggregate of 81
ideal framework solutions obtained by varying the values of all sensitivity referenced in Table 2.
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Figure 11. Feasible HRES solutions with NPC superimposed over levelized cost of energy (LCOE) (a)
Interest rate: 4%; HRES Life: 15 years (b) Interest rate: 6%; HRES Life: 20 years (c) Interest rate: 8%;
HRES Life: 25 years.

4. Conclusions

The current study aimed to design and optimize an off-grid hybrid renewable energy system
(HRES) for a remote island of South Korea, where no other means of power generation are available.
The study considered two different types of renewable energy resources, namely wind and solar. Two
of the most suitable HRESs were recommended based upon the lowest NPC (System A) and LCOE
(System B), respectively.

The daily mean AC load was estimated to be 24,720 kWh with 2292 kW as peak load, which
occurs typically during the winter season. Annual mean wind speed was measured to be 3.6 m/s (10 m
height) with 4.13 kWh/m2 as daily solar radiations. The total net present cost for energy system A was
estimated to be 11.3 million $ whereas for energy system B, it corresponds to a slightly higher value i.e.,
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17.6 million $. However, cost of electricity for energy system A is relatively higher than energy system
B as it is 0.159$/kWh for energy system A and 0.122$/kWh for energy system B. Both systems consist of
one STX 93/2000 wind turbine and 2504 kW PV panels (System A) and 3157 kW PV panels (System
B). The annual electricity demand of the island is 7,296,369 kWh. System A can produce 9,016,674
kWh/year whereas system B can produce 9,812,942 kWh/year. The study also designed the pumped
hydro storage (PHS) to deal with the surplus and deficit of electricity for both systems and compared
the economics with the battery as well. The analysis showed that PHS can be a cheaper choice as
the total capital cost for constructing PHS was estimated to be 1.34 million USD for system A (1.80
million USD for battery) and 1.45 million USD for system B (1.58 million USD for battery). Apart from
above-mentioned system solutions, NPC and LCOE of multiple other systems were also estimated by
varying the values of input variables such as discount rate, project lifetime and daily load.
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