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Abstract: The present research leverages prior works to automatically estimate wall and ceiling
R-values using a combination of a smart WiFi thermostat, building geometry, and historical energy
consumption data to improve the calculation of the mean radiant temperature (MRT), which is integral
to the determination of thermal comfort in buildings. To assess the potential of this approach for
realizing energy savings in any residence, machine learning predictive models of indoor temperature
and humidity, based upon a nonlinear autoregressive exogenous model (NARX), were developed.
The developed models were used to calculate the temperature and humidity set-points needed to
achieve minimum thermal comfort at all times. The initial results showed cooling energy savings in
excess of 83% and 95%, respectively, for high- and low-efficiency residences. The significance of this
research is that thermal comfort control can be employed to realize significant heating, ventilation,
and air conditioning (HVAC) savings using readily available data and systems.

Keywords: thermal comfort control; PMV; smart WiFi thermostat; mean radiant temperature;
machine learning

1. Introduction

Climate change is primarily caused by greenhouse gas emissions, especially carbon dioxide (CO2).
Power generation contributes most significantly to carbon release. In 2018, as documented by the U.S.
Energy Information Agency (EIA), residential and commercial building sectors’ combined consumption
represented 40% of total U.S. energy consumption. The residential sector accounts for 55% of this
amount. According to the EIA 2015 Residential Energy Consumption Survey (RECS), air conditioning
and space heating account for 17% and 15% of residential electricity consumption, respectively. It is
evident that minimizing heating, ventilation, and air condition (HVAC) energy consumption can
reduce residential energy consumption and greenhouse gas emissions both nationally and worldwide.

Since 2015, there has been a marked evolution of implemented utility-related energy efficiency
programs. Pilot programs managed by utility providers throughout the U.S. have documented the
energy-saving potential of smart thermostats, ranging from negative to 20% savings [1]. A 2018 report
on smart thermostat market characterization, prepared by a Bonneville Power Administration (BPA)
research team, concluded that only “smart advanced thermostats”, which include occupancy sensing
and self-learning algorithms, yield savings. One of the studies in their research effort showed an
annual saving of 745–955 kWh per thermostat [2].

The well-known saving mechanism applied by smart thermostats is to maintain a high cooling
temperature set-point and a low heating temperature set-point during occupied periods, with even
larger increases/decreases (depending upon the season) in unoccupied periods. The former means
that users must, to some extent, sacrifice their comfort to achieve energy savings [3]. However,
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compromising indoor thermal comfort can lead to significant negative impacts on occupant health and
productivity [4,5].

2. Background

The question is, therefore, how do systems simultaneously save energy and ensure thermal
comfort? It is first important to understand the factors that contribute to thermal comfort. Zonal
dry-bulb air temperature alone does not reflect the actual thermal sensation of occupants. In particular,
the temperature measurement afforded by a thermostat only represents the indoor room temperature
of the space where the thermostat is located. Three additional general factors affect thermal comfort,
including (i) other internal environmental factors (room relative humidity, air velocity, and mean
radiant temperature (MRT); (ii) residential factors associated with occupant age, gender, clothing
ensemble, and level of activity or metabolic rate; and (iii) occupant controls, such as the opening and
closing of windows and blinds. Ideally, thermostat set-points should account for most of the factors
affecting thermal comfort to generate set-points that are able to establish thermal comfort at any time
for the actual conditions existing in a residence.

Fanger’s predicted mean vote (PMV) has generally been used to characterize thermal comfort in
buildings. This model was developed by testing multiple subjects under steady-state moderated indoor
environments in the 1970s. The PMV index is based upon a heat balance of the human thermoregulatory
system [6]. Thermal equilibrium is achieved when heat losses to the ambient environment are equal to
the heat produced by the human body.

The American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE)
proposed that the PMV index predicts the average vote of a large group of people on a defined thermal
sensation scale [7]. This seven-point scale ranges from −3 to +3 and effectively accounts for the
perceived comfort of a majority of people. The lower and upper ends of the scale are associated with
most people feeling cold and warm, respectively, as shown in Table 1.

Table 1. Fanger’s PMV level values and associated thermal sensation.

Value Sensation

+3 Hot
+2 Warm
+1 Slightly warm
0 Neutral
−1 Slightly cool
−2 Cool
−3 Cold

The PMV index is calculated using six parameters. Four of these are environmental thermal
parameters: air temperature (Ta), relative humidity (RH), mean radiant temperature (MRT), and air
velocity (m/s). Two are occupant factors: clothing insulation (Clo) and activity level (MET) are related
to the human metabolic rate. A comfort range, given by −0.5 < PMV < +0.5, provides reasonable
comfort for 90% of people.

Of these, a smart WiFi thermostat assesses only room temperature and humidity. Proposed herein
is a new approach to measure the MRT. In general, the other parameters cannot be known without
additional sensors or input from the residents themselves. Thus, the following assumptions were made.

(1) Activity level (MET). The MET generally ranges from 1.0 to 1.7. A conservative MET value can be
estimated depending upon the physical task (e.g., 1.0 for reading or writing while sitting, 1.7 for
walking about).

(2) Clothing level (Clo). An indoor clothing assembly of between 0.36–0.57 and 0.61–1.01 for,
respectively, summer and winter conditions is typically employed. For a minimum energy
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perspective, we assumed a clothing level reflective of a desire to save energy; thus, a Clo for,
respectively, summer and winter conditions of 0.36 and 1.01 was used herein.

(3) Relative air velocity/air flow (var). According to ASHRAE 55, the indoor air velocity should not
exceed 0.2 m/s (39 fpm) to achieve a minimum livable condition [8]. Also, in order to reduce
draft risk at any temperatures below 22.5 ◦C (72.5·◦F), airspeed due to the HVAC system must
be 0.15 m/s (30 fpm) or below [9]. Therefore, the relative air velocity was assumed to be 0.1 m/s
(19.7 fpm).

A number of researchers have investigated various active thermal comfort control approaches in
residences based upon the PMV. In these studies, control methodologies have included fuzzy logic
(FLC) [10] and neural network (NN) [11] based predictive controllers. Prior researchers have succeeded
in simultaneously maintaining thermal comfort and reducing energy consumption. In [10], the authors
utilized a complicated hierarchical FLC with a 3D fuzzy set to represent thermal comfort based upon
the PMV indicator, indoor illumination, and CO2 level. Its membership function constraints were
tuned by a genetic algorithm (GA). The authors noted a roughly 8% energy increase in order to satisfy
more occupants. In [11], a discrete model-based predictive controller was developed. A cost function
to optimize the controller by minimizing energy consumption and maintaining thermal comfort was
developed. Energy savings in relation to a standard constant temperature setpoint control l, ranging
from 41% - 77%, were realized.

Table 2 summarizes the research conducted in this arena. Included in this table are descriptions
of the MRT determination, the thermal comfort assessment, the assumed factor values in calculating
the PMV, the control techniques employed, the energy savings derived, and the sensors and other
hardware employed. The latter is particularly important. The requirement of sensors not available in
systems already present in residences poses a substantial barrier to market penetration.
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Table 2. Summary of calculation of MRT for use in thermal comfort calculations.

Author
(Year) MRT Thermal Comfort

Assessment Assumed Factors Control Technique Energy Savings Sensors/Other
Hardware

Torres et al. (2008)
[12]

Suggested consideration of
thermal radiation to/from
walls; however, no clear

method described

Standard Fanger’s
PMV formulation

Clothing = 0.6–0.8 Clo
(summer)

Airflow = 0.1 m/s
MET = 1–1.7

NN based on PMV index to
control setpoint through a

PI controller

Not directly
measured Not mentioned

Ferreira et al (2012)
[13]

Measured by room-based
thermometer

Standard Fanger’s
PMV formulation

Clothing = 0.65–1.0 Clo
(summer)

Air flow = 0.08–0.1 m/s
MET = 1

Models developed to
predict indoor temperature

and PMV. Used in model
predictive control bounded

by PMV

41%–77% compared
to traditional controls

Significant use of
additional sensors

Zheng et al. (2018)
[14]

Assumed equal to room air
temperature

From occupant
surveys

Clothing level obtained by
questionnaire

Airflow <0.2 m/s
MET = 1

No control. Merely
assessed thermal comfort NA

Thermostat, building
automation system, data

logger

Ciabattoni et al.
(2015) [15]

Assumed equal to room air
temperature

Standard Fanger’s
PMV formulation

Clothing = 0.65 Clo
Airflow = 0.2 m/s

MET = 1

FLC used to control fan
speed Not mentioned

Humidity and
temperature sensors with

EnOcean technology

Marvuglia et al.
(2014) [16]

Assumed equal to room air
temperature

Not directly
addressed Not mentioned Coupled NARX/FLC

controller Not mentioned Air temperature airspeed
data logger
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There is no evidence of thermal comfort control having been implemented at scale. Most
approaches have been tested in laboratories or at small-scales, and have utilized sensors not commonly
present in residences to improve the estimation of the PMV. Only the research of Zheng et al. [14], which
relies only on smart thermostat measurements (room temperature and humidity), has the potential for
rapid market scalability. However, their approach calculated the real-time PMV value by assuming an
MRT equal to room temperature. This assumption is generally poor, especially in poorly-insulated
residences and in rooms with significant exterior exposure [7]. No prior study has leveraged the
thermostat collected data to improve estimation of the MRT and the PMV. The approach posed, because
it relies only upon smart WiFi thermostat information, has potential for rapid scalability.

Here, prior research of Alanezi et al. [17], where wall, window, and ceiling R-values are estimated
using a combination of smart WiFi thermostat, weather, energy consumption, residential building
geometry, and occupancy data, was leveraged. With the exterior R-values, interior temperature,
and known exterior temperature, the interior surface temperature of the envelope elements can be
estimated from a steady-state heat transfer analysis, yielding a more accurate MRT, and therefore PMV
assessment. With the PMV known, the thermostat setpoint can be reset if needed to achieve the desired
PMV level. The posed approach requires no additional sensors other than those provided by a smart
WiFi thermostat. Thus, thermal comfort control can be achieved at no extra cost.

Additionally, assuming the presence of a home automation system, where a resident could “set
up” their home by defining the dimensions of each room and identifying the presence of exterior
connected surfaces in each room, room level MRT, and PMV calculations are possible. Further, because
a home automation system can know where the people in the home are located, a worst-case thermal
comfort control condition can be established for the entire residence based upon where people are
present. The thermostat setpoint can be adjusted in order to achieve this comfort condition.

The following describes the data leveraged for this research, presents the methodology employed
to estimate the MRT using smart WiFi thermostat data, and describes the simulation used to assess
the potential of minimum thermal comfort control in different types of residences to achieve energy
savings. It then presents results from the cases considered in terms of the energy savings derived and
the improvement of the MRT and thus the comfort estimation from the approach we employ. It also
discusses the implications of the results. It concludes with a statement about future research required.

3. Methodology

3.1. Data Collection and Preprocessing

Data used for this study are mainly from 700+ university student residences (450 stand-alone
detached residences, and the rest, apartment residences) in the Midwest USA. This data consists of
historical smart WiFi thermostat readings (cooling/heating setpoint, indoor air temperature, and relative
humidity, and cool/heat/fan status), monthly energy consumption, weather, and building geometry
data. The historical weather data was obtained from NOAA’s Climate Data Online resource [18].

All data was synched and merged, and then normalized (scaled from −1.0 to 1.0).

3.2. Estimating the MRT

Alanezi et al. [17] developed and validated a method to automatically audit the energy effectiveness
of any stand-alone residence using a combination of archived smart WiFi thermostats, weather, metered
energy consumption, and building geometry data. Occupancy data has been shown to improve
their evaluation. These data would be available to a WiFi thermostat manager providing service
to a utility. A single model, valid for any stand-alone residence, can be developed by combining
synched and merged data for all residences into a single dataset. The training data includes the most
important HVAC energy characteristics for a residence, namely the wall insulation thickness, window
type, ceiling insulation thickness, water heater fuel type and efficiency, and heating/cooling system
efficiency. This data would be available within utility districts which have completed energy audits
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on many houses. Supervised-learning machine learning models (distributed random forest, global
boosting, deep learning neural network) can be developed to accurately predict each individual energy
characteristic based on a training set of residences. The models developed have been proven to be
capable of predicting the R-values of the envelope components in other residences. This approach
serves as the basis for developing an improved estimation of the MRT, as follows.

In order to estimate the MRT of a space, the interior temperature of all surfaces enclosing a space
is needed. Non-exterior connected surfaces can be estimated to be equal in temperature to the room
temperature, which is assumed to be adequately reflected by the measured smart WiFi thermostat
temperature. The interior surfaces connected to exterior walls, ceiling, or basement/crawlspace are
estimated from knowledge of the real-time room and exterior temperatures and envelope R-values.
These temperatures are obtained using a steady-state heat transfer analysis. Application of an energy
balance on each exterior connected surface under this assumption, and assuming that the solar gain on
any of the surfaces is small, requires that the heat flow through the envelope component be equal to
the heat flow from the interior surface of the envelope to the indoor air, as given by Equation (1) and
shown in Figure 1.

Q = A·
Ti − Te,in

Rhi
= A·

Te,in − To

Re + Rho
(1)

where

Rho = convective thermal resistance on exterior surface, typically 0.03 m2—C◦/W.
Rhi = convective thermal resistance on interior surface, typically 0.12 m2—C◦/W.
Re = conductive thermal resistance through envelope component.
Te,in = interior surface temperature of envelope component.

Figure 1. Thermal resistance analysis of heat flow through envelope components.

Rearranging yields the following interior surface temperature of wall, given by

Te,i =
(Re + Rho)Ti + RhiTo

Re + Rho + Rhi
(2)

With all surface area information available through a home automation setup by the resident,
and with estimates of the exterior envelope component interior surface temperatures, the MRT can be
calculated using an area weighted average given by Equation (3).

MRT =
A1ts1 + . . .+ ANtsN

A1 + . . .+ AN
(3)

3.3. Applying Thermal Comfort Control to WiFi Thermostats

A feedback control scenario based upon Fanger’s PMV equation [6], shown in Equation (4)
below, was used to control the thermal comfort to be set as the minimum thermal comfort range for
cooling. At each sampled time, the PMV was calculated based upon thermostat measurements (room
temperature and humidity), and inferred thermostat measurement (MRT) and minimum thermal
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comfort values for other parameters in Fanger’s equation for the room air velocity, clothing level (Clo),
and metabolic rate (MET).

PMV = f (ta, MRT, RH, var, Clo, MET) (4)

Then the measured PMV was compared to the desired PMV and adjustments were made to the
thermostat setpoint level if needed. The control logic was as follows. The thermostat setpoint value
was increased/decreased by 1 degree if the PMV value was above 0.5 (minimum cooling thermal
comfort condition) and less than 0; otherwise, the setpoint temperature was maintained.

Cooling : ∆Tsetpoint =


−1, PMV ≥ 0.5

Tcurrent, setpt, 0 < PMV < 0.5

+1, PMV ≤ 0

This same logic would apply to a heating situation, except instead, the PMV would be maintained
between −0.5 and 0 for minimum thermal comfort.

3.4. Smart Home Automation Assistant to Define Actual Minimum Thermal Comfort in A Residence

This research also considers the idea that the minimum comfort within a residence depends upon
where the residents are. For example, if a resident is in a room with a large number of windows and
with exposure to two or three exterior connected surfaces, the MRT could be much closer to the outdoor
temperature than were a resident or residents in a room with little or no exposure to exterior walls,
windows or attic walls. Thus, the determination of the minimum thermal comfort condition in a house
should take into account where the residents are within a residence.

In a smart home automation era, it is feasible to know where people are in the residence.
All a resident would need to do is say “John is in the living room” or “Sarah is in the dining room” to
enable the automation system to know where they are located. Moreover, we could readily imagine
an app that helps residents “set-up” their houses. They could identify for each room the following:
the room dimensions, which walls are exterior walls, if the room is exposed to the attic space or roof, the
number and size of windows in the room, and if the room’s floor is exposed to an unheated/uncooled
space beneath.

Moreover, residents could even say what they are doing in each room, whether they are sitting,
sleeping, exercising, or other things. Thus it would be feasible to more accurately estimate the metabolic
level (MET). Lastly, they could also identify what clothing they are wearing and if they have an open
window or a floor or ceiling fan. Thus, the CLO and vair parameters could theoretically be estimated
with greater accuracy.

It will thus be possible to estimate the MRT and PMV real-time in each room. Knowledge of
where occupants are will enable estimation of a worst-case PMV for the residence. The thermostat
setpoint for a single zoned residence could then be adjusted to maintain a minimum comfort PMV in
the worst-case occupied zone.

3.5. Assessing the Energy Savings Impact of Minimum Thermal Comfort Control Via Simulation

In this section, we describe a dynamic data-based model used to evaluate the energy-savings
impact of the thermal comfort control strategy described in Section 3.3. The developed dynamic
model leverages thermostat data for an individual residence, synched with simultaneous weather data.
The thermostat data include human times, cool/heat/fan status, cooling/heating setpoint, indoor air
temperature, and relative humidity, and outdoor weather conditions.

With the dynamic model developed for a residence, new setpoint targets based upon real-time
PMV comfort assurance can be tested, and the resulting cooling (and heating) energy savings can
be estimated.
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The dynamic model was developed based on a nonlinear autoregressive network with exogenous
inputs (NARX) neural network. Figure 2 depicts this approach. The NARX was created in MATLAB
2019a, with 20 hidden neurons and the Levenberg–Marquardt as the training function.

Figure 2. NARX architecture used to predict the indoor temperature. The model uses synched smart
WiFi and weather data.

Model validation was achieved by applying the model to data not used for the model training.
The validation data inputs were outdoor temperature and humidity and interior thermostat setpoint
data. The model was applied to predict indoor temperature and humidity. The predictions for these
were compared to the measured values for those inputs in order to assess the efficacy of the developed
model. R-squared and RMSE metrics were used to evaluate the quality of the validation.

4. Results

4.1. Case Studies

In this study, we considered smaller two story residences with floor areas of approximately 100 m2.
Residences had 3 bedrooms, a living room, a dining room, a family room and a kitchen. Typical room
dimensions in these residences are listed in Table 3 below (dimensions in meters).

Table 3. Typical room dimensions in residences considered in the study

Living room
3.7 × 5.5

Dining room
3.4 × 3.7

Family room
3.7 × 4.9

Kitchen
3 × 3

Bedroom
3.4 × 3.4

Master bedroom
3.7 × 4.6

In order to assess the variability of thermal comfort from room to room, we additionally considered
variation in terms of exterior surface connection for the rooms themselves. Table 4 describes the two
cases considered for each room. Case 1 for each room was associated with more interior surfaces being
exposed to exterior surfaces. Case 2 was associated with less exterior surface connection. The floor
condition for all cases was a conditioned full-basement. Thus, the floor surface was assumed to be at
the residential ambient temperature in the calculation of the MET.

Lastly, in order to assess the effect of general residential energy effectiveness on thermal comfort
control, particularly in terms of insulation, two general types of residences were studied: an energy-
efficient one and an energy-inefficient one. Table 5 shows the wall, window, and attic RSI values
(R-value in imperial units) employed in these two types of residences.
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Table 4. Types of rooms considered with two different cases of exterior surface connection.

Room Name Case 1—Significant Exterior Connection Case 2—Little Exterior Connection

Living room 2 exterior walls, 2 windows, ceiling, 1st floor 1 exterior wall, no window, ceiling, 1st floor

Family room 2 exterior walls, 4 windows, ceiling, 1st floor 1 exterior wall, 1 window, ceiling, 1st floor

Dining room 2 exterior walls, 2 windows, ceiling, 1st floor 1 exterior wall, no window, ceiling, 1st floor

Kitchen 1 exterior wall, 1 window, ceiling, 1st floor N/A

Master
bedroom

2 exterior walls, 2 windows, ceiling (attic),
2nd floor

1 exterior wall, 1 window ceiling (attic),
2nd floor

Bedroom 2 2 exterior walls, 2 windows, ceiling (attic),
2nd floor

1 exterior wall, 1 window, ceiling (attic),
2nd floor

Bedroom 3 2 exterior walls, 2 windows, ceiling (attic),
2nd floor

1 exterior wall, 1 window, ceiling (attic),
2nd floor

Table 5. RSI value of inefficient and efficient building envelope.

Envelope
RSI Value Inefficient Residence Efficient Residence

RSIwall 0.88 2.47

RSIwindow 0.18 0.35

RSIattic 1.06 5.28

4.2. NARX Dynamic Model Performance

The suitability of the NARX model in predicting the temperature and humidity inside the residence,
as estimated by the measured temperature and humidity at the thermostat, was validated. Figure 3
shows a plot of the predicted normalized temperature in the room versus the validated temperature
for a high-efficiency residence. This plot illustrates a strong correspondence between the model
prediction and the measured temperature. Similar results were seen for the low-efficiency residence
case. The model validation metrics for the models developed were exceptional, with R-squared values
for all developed models greater than 0.99.

Figure 3. Predicted versus actual temperature validation data, not used to develop model, for
high-efficiency residences

Figure 4 shows a time series plot of both the predicted and measured internal temperature for
validation data; e.g., data not used to train the model. The plot again shows excellent correspondence
between the two data series.
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Figure 4. Time series plot for predicted (red) and actual (blue) measured indoor temperature as
a function of time for a high-efficiency house case and no external surface exposure

4.3. Effect of More Accurate Evaluation of MRT from Thermostat Data on the Indicated PMV in a Room

Comparative results are presented for the calculated PMV for non-thermal comfort controlled
actual residential data using the standard MRT approximation as equal to the ambient temperature
and the more accurate smart WiFi thermostat enabled MRT estimation posed herein. Figure 5a shows
the PMV values in an efficient residence in a room with little exterior exposure calculated with the
thermostat-enabled improved MRT in orange and the standard MRT in blue. Additionally, the thermal
comfort zone, defined by ASHRAE 55, is represented by the region between two green lines. Here
the assumed air flow is 0.1 m/s, the people in the space are sedentary, and have clothing levels of 0.36
(typical summer indoor clothing). It is shown that for this case there is little difference between the
PMV determined from the two MRT methodologies. A similar result was observed for a room with
significant exterior exposure.

Figure 5b,c, which shows the PMV values in an inefficient residence with, respectively, little and
significant exterior exposure, shows a significant deviation between the calculated PMV using the
new and standard MRT estimations. This is particularly true in Figure 5c, where significant exterior
exposure causes greater thermal discomfort than predicted using the standard MRT estimation.

4.4. Simulation of Thermal Comfort Control

Figure 6 shows data and results from a simulation of thermal comfort control using the dynamic
models for room temperature and humidity for a low-efficiency residence. Figure 6a shows the
non-controlled outdoor temperature in degrees Fahrenheit and the cooling status (on or off) as
a function of time. This plot shows that the cooling duty cycle is high for this period of time. Figure 6b
shows the controlled PMV versus the actual non-controlled PMV associated with the case shown in
Figure 5c (low-efficiency residence with large surface exposure). In this plot, it is clear that the PMV
index is generally maintained within the desired PMV band from 0 to 0.5 using the posited control
methodology, except where the outdoor temperature has dropped below the cooling setpoint and
cooling is not needed. Figure 6c shows a time series of the setpoint condition established to maintain
the desired PMV level in comparison to the actual setpoint for the non-controlled case. It is evident
from this figure that a much higher temperature setpoint can be maintained in general to achieve the
minimum thermal comfort condition desired. Thus, substantial energy savings are derived.
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Figure 5. Thermal comfort simulation result: the PMV value with calculated MRT versus the ASHRAE
standard MRT for (a) high-efficiency residence in a room with little exterior exposure; (b) low-efficiency
residence with little exterior exposure; and (c) low-efficiency residence with significant exterior exposure.
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Figure 6. Thermal comfort control in a low-efficiency residence with significant room exterior exposure
plots documenting the (a) baseline time series for the outdoor temperature and non-controlled cooling
status; (b) PMV time series from thermal comfort control in comparison to no control; and (c) temperature
setpoint time-series comparisons of the actual thermostat setpoint and the thermostat setpoint required
to maintain the PMV in the range of 0 to 0.5.
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4.5. Energy Savings Based on Minimum Comfort in Individual Room

To estimate the cooling energy savings derived from minimum thermal comfort control, thermal
control simulations such as those described in the previous section, which utilize the dynamic model
developed for each residence applied to historical weather data, must be completed. From these
simulations, the air conditioner system’s run time using thermal comfort control can be determined.
Energy savings are then determined by calculating the difference between the actual and simulated
cooling system’s run times.

Figure 7 below shows the percentage cooling savings realized from minimum thermal comfort
control for the different residential energy effectiveness and room exterior cases considered and for the
different rooms described in Tables 3–5. The cases shown represent efficient and inefficient residences
of equal size. For each room, two cases are shown; one representing a room with significant exterior
surface (wall, window, or ceiling) exposure and another with little exterior surface exposure. The blue
and grey bars are associated with significant exterior surface connection and the orange and yellow
bars are associated with little exterior surface connection. Cooling energy savings relative to no PMV
control were, respectively, in the range of 83%–87% for the efficient residential case and above 95% for
the inefficient residential case. The savings were slightly less when there was more surface exposure
because of a higher MRT, which requires establishment of a lower setpoint temperature in order to
maintain minimum thermal comfort. Overall, these results show the potential value of integrating
thermal comfort control into home automation systems. For example, if, for the cases considered,
the home automation system knew that residents were all in the family room, a higher temperature
setpoint could be maintained in order to insure minimum thermal comfort. Even greater savings are
potentially derivable from this knowledge.

Figure 7. Percentage cooling energy savings using minimum thermal comfort control for both an
efficient and inefficient residence for various rooms with significant (blue and grey) and little exterior
surface connection (orange and yellow).

5. Conclusions

Implementation of a thermal comfort control which relies on a smart WiFi thermostat alone has
been demonstrated. In this approach, an improved means to estimate the MRT, based upon prior
estimation of exterior wall and ceiling RSI values obtained from smart WiFi thermostat information,
was posed. The modified MRT estimation was shown to be particularly valuable in poorly insulated
residences, especially if a space has a significant exterior connection.
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Additionally, we demonstrated the ability to leverage a dynamic machine learning-based predictive
model of the residential temperature and humidity measured by a smart WiFi thermostat using historical
thermostat and outdoor weather data to estimate savings with thermal comfort control. Such models
are derivable for any smart WiFi-equipped residence. Thus, we have demonstrated the ability to
estimate thermal comfort control savings in any residence. This information could be communicated
to occupants to enable them to choose to control for comfort rather than temperature alone.

Lastly, through simulated implementation of thermal comfort control using the developed dynamic
models in both high- and low-efficiency residences, we have shown potential cooling savings for these
types of residences to be, respectively, in the order of 85% and 95%. These results show the promise of
smart WiFi thermostats enable thermal comfort control for achieving large scale savings from cooling.
This research also reveals the opportunity to leverage home automation systems to permit thermal
comfort control based upon the room or rooms where people are present.

The limitation of this research is that these conclusions have been drawn via simulations leveraging
developed dynamic models of internal temperature and humidity in residences in order to assess the
impact of thermal comfort control using a smart WiFi thermostat controller. Future research is needed
to experimentally validate the savings from thermal comfort control in a variety of residences. As well,
future research should explore the potential for integrating this type of control into home automation
systems to enable room by room estimations of thermal comfort.
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